1
|
Sciortino A, Orhant-Prioux M, Guerin C, Bonnemay L, Takagi Y, Sellers J, Colin A, Théry M, Blanchoin L. Filament transport supports contractile steady states of actin networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639071. [PMID: 40060478 PMCID: PMC11888238 DOI: 10.1101/2025.02.21.639071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
In all eukaryotic cells, the actin cytoskeleton is maintained in a dynamic steady-state. Actin filaments are continuously displaced from cell periphery, where they assemble, towards the cell's center, where they disassemble. Despite this constant flow and turnover, cellular networks maintain their overall architecture constant. How such a flow of material can support dynamic yet steady cellular architectures remains an open question. To investigate the role of myosin-based forces in contractile steady-states of actin networks, we used a reconstituted in vitro system based on a minimal set of purified proteins, namely actin, myosin and actin regulators. We found that, contrary to previous bulk experiments, when confined in microwells, the actin network could self-organize into ordered arrangements of contractile bundles, flowing continuously without collapsing. This was supported by three-dimensional fluxes of actin filaments, spatially separated yet balancing each other. Unexpectedly, maintaining these fluxes did not depend on filament nucleation or elongation, but solely on filament transport. Ablation of the contractile bundles abolished the flux balance and led to network collapse. These findings demonstrate that the dynamic steady state of actin networks can be sustained by filament displacement and recirculation, independently of filament assembly and disassembly.
Collapse
Affiliation(s)
- Alfredo Sciortino
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris 75005, France
| | - Magali Orhant-Prioux
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| | - Christophe Guerin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| | - Louise Bonnemay
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris 75005, France
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - James Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Alexandra Colin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| | - Manuel Théry
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris 75005, France
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris 75005, France
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| |
Collapse
|
2
|
Revenu C, Lebreton C, Cannata Serio M, Rosello M, Duclaux-Loras R, Duroure K, Nicolle O, Eggeler F, Prospéri MT, Stoufflet J, Vougny J, Lépine P, Michaux G, Cerf-Bensussan N, Coudrier E, Perez F, Parlato M, Del Bene F. Myosin 1b regulates intestinal epithelial morphogenesis via interaction with UNC45A. Cell Rep 2024; 43:114941. [PMID: 39636728 DOI: 10.1016/j.celrep.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Vesicle trafficking and the establishment of apicobasal polarity are essential processes in epithelial morphogenesis. UNC45A deficiency has been reported in a multi-organ syndrome presenting with severe diarrhea associated with enterocyte polarity defects. Myosin 1b, an actin motor able to bind membranes, regulates membrane shaping and vesicle trafficking. Here, we show that MYO1B is part of the UNC45A interactome. In the absence of UNC45A, myosin 1b is degraded and forms aggregates when proteasome activity is inhibited. In 3D Caco-2 cells, lumen formation is impaired in the absence of myosin 1b, associated with spindle orientation defects, Golgi apparatus fragmentation, and trafficking impairment. In zebrafish larvae, loss of myo1b results in intestinal bulb epithelium folding defects associated with terminal web disorganization and vesicle accumulation, reminiscent of villous atrophy. In conclusion, we show that myosin 1b plays an unexpected role in the development of the intestinal epithelium downstream of UNC45A, establishing its contribution in the gut defects reported in UNC45A patients.
Collapse
Affiliation(s)
- Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Corinne Lebreton
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Magda Cannata Serio
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marion Rosello
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Rémi Duclaux-Loras
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Karine Duroure
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ophélie Nicolle
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Fanny Eggeler
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Marie-Thérèse Prospéri
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Julie Stoufflet
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Priscilla Lépine
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Nadine Cerf-Bensussan
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marianna Parlato
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France.
| |
Collapse
|
3
|
Xu M, Rutkowski DM, Rebowski G, Boczkowska M, Pollard LW, Dominguez R, Vavylonis D, Ostap EM. Myosin-I synergizes with Arp2/3 complex to enhance the pushing forces of branched actin networks. SCIENCE ADVANCES 2024; 10:eado5788. [PMID: 39270022 PMCID: PMC11397503 DOI: 10.1126/sciadv.ado5788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Class I myosins (myosin-Is) colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by the Arp2/3 complex on the surface of beads coated with myosin-I and nucleation-promoting factor. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Myosin-I triggered symmetry breaking and comet tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations, suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.
Collapse
Affiliation(s)
- Mengqi Xu
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Grzegorz Rebowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luther W. Pollard
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - E. Michael Ostap
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Asante-Asamani E, Dalton M, Brazill D, Strychalski W. Modeling the dynamics of actin and myosin during bleb stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564082. [PMID: 37961169 PMCID: PMC10634845 DOI: 10.1101/2023.10.26.564082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The actin cortex is very dynamic during migration of eukaryotes. In cells that use blebs as leading-edge protrusions, the cortex reforms beneath the cell membrane (bleb cortex) and completely disassembles at the site of bleb initiation. Remnants of the actin cortex at the site of bleb nucleation are referred to as the actin scar. We refer to the combined process of cortex reformation along with the degradation of the actin scar during bleb-based cell migration as bleb stabilization. The molecular factors that regulate the dynamic reorganization of the cortex are not fully understood. Myosin motor protein activity has been shown to be necessary for blebbing, with its major role associated with pressure generation to drive bleb expansion. Here, we examine the role of myosin in regulating cortex dynamics during bleb stabilization. Analysis of microscopy data from protein localization experiments in Dictyostelium discoideum cells reveals a rapid formation of the bleb's cortex with a delay in myosin accumulation. In the degrading actin scar, myosin is observed to accumulate before active degradation of the cortex begins. Through a combination of mathematical modeling and data fitting, we identify that myosin helps regulate the equilibrium concentration of actin in the bleb cortex during its reformation by increasing its dissasembly rate. Our modeling and analysis also suggests that cortex degradation is driven primarily by an exponential decrease in actin assembly rate rather than increased myosin activity. We attribute the decrease in actin assembly to the separation of the cell membrane from the cortex after bleb nucleation.
Collapse
Affiliation(s)
| | - Mackenzie Dalton
- Department of Mathematics, Clarkson University, Clarkson, Potsdam, NY 13699
| | | | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
5
|
Zhang HF, Delaidelli A, Javed S, Turgu B, Morrison T, Hughes CS, Yang X, Pachva M, Lizardo MM, Singh G, Hoffmann J, Huang YZ, Patel K, Shraim R, Kung SH, Morin GB, Aparicio S, Martinez D, Maris JM, Bosse KR, Williams KC, Sorensen PH. A MYCN-independent mechanism mediating secretome reprogramming and metastasis in MYCN-amplified neuroblastoma. SCIENCE ADVANCES 2023; 9:eadg6693. [PMID: 37611092 PMCID: PMC10446492 DOI: 10.1126/sciadv.adg6693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) and predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to MNA+ NB remains poorly understood. Here, we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently coexpressed with MYCN and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN, among which we uncover myosin 1B (MYO1B) as being highly expressed in MNA+ NB and, using a chick chorioallantoic membrane (CAM) model, as a crucial regulator of invasion and metastasis. Global secretome and proteome profiling further delineates MYO1B in regulating secretome reprogramming in MNA+ NB cells, and the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism promoting aggressive behavior in MNA+ NB and independently of MYCN.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Sumreen Javed
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Busra Turgu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Taylor Morrison
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Christopher S. Hughes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Xiaqiu Yang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Manideep Pachva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Michael M. Lizardo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Gurdeep Singh
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Jennifer Hoffmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Zhou Huang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Daniel Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Poul H. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| |
Collapse
|
6
|
Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 2022; 23:836-852. [PMID: 35918536 DOI: 10.1038/s41580-022-00508-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
7
|
Pernier J, Schauer K. Does the Actin Network Architecture Leverage Myosin-I Functions? BIOLOGY 2022; 11:biology11070989. [PMID: 36101369 PMCID: PMC9311500 DOI: 10.3390/biology11070989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays crucial roles in cell morphogenesis and functions. The main partners of cortical actin are molecular motors of the myosin superfamily. Although our understanding of myosin functions is heavily based on myosin-II and its ability to dimerize, the largest and most ancient class is represented by myosin-I. Class 1 myosins are monomeric, actin-based motors that regulate a wide spectrum of functions, and whose dysregulation mediates multiple human diseases. We highlight the current challenges in identifying the “pantograph” for myosin-I motors: we need to reveal how conformational changes of myosin-I motors lead to diverse cellular as well as multicellular phenotypes. We review several mechanisms for scaling, and focus on the (re-) emerging function of class 1 myosins to remodel the actin network architecture, a higher-order dynamic scaffold that has potential to leverage molecular myosin-I functions. Undoubtfully, understanding the molecular functions of myosin-I motors will reveal unexpected stories about its big partner, the dynamic actin cytoskeleton.
Collapse
Affiliation(s)
- Julien Pernier
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à L’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Kristine Schauer
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
- Correspondence:
| |
Collapse
|
8
|
Prospéri MT, Pernier J, Lachuer H, Coudrier E. Plekhh1, a partner of myosin 1 and an effector of EphB2 controls the cortical actin network for cell repulsion. J Cell Sci 2021; 134:272686. [PMID: 34723325 DOI: 10.1242/jcs.258802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
EphB2/ephrinB signalling that plays a major role in cell segregation during embryonic development and tissue homeostasis, induces an important reorganization of the cortical actin network. We have previously reported that myosin 1b contributes to the reorganisation of the cortical actin network upon EphB2 signalling. In this report we have identified Plekhh1, as a new partner of members of the myosin 1 family and EphB2 receptors. Plekhh1 interacts with myosin 1b via its N-terminus domain and with EphB2 via its C-terminus domain. Furthermore, Plekhh1 is tyrosine-phosphorylated, and this depends on EphB2 kinase activity. Such as the manipulation of the expression level of myosin 1b and myosin 1c, manipulation of Plekhh1 expression levels reveals that Plekhh1 controls the formation of filopodia, the length of focal adhesions and the formation of blebs. Furthermore, binding of Plekhh1 interacting domain to myosin 1b increases the motor activity of myosin 1b in vitro. Together our data show that Plekhh1 is an effector of EphB2 and suggest that Plekhh1 regulates the cortical actin network via the interaction of its N-terminus domain with myosin 1 upon EphB2/ephrinB signalling.
Collapse
Affiliation(s)
- Marie-Thérèse Prospéri
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Julien Pernier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Hugo Lachuer
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| |
Collapse
|
9
|
Mechanically tuning actin filaments to modulate the action of actin-binding proteins. Curr Opin Cell Biol 2020; 68:72-80. [PMID: 33160108 DOI: 10.1016/j.ceb.2020.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
In cells, the actin cytoskeleton is regulated by an interplay between mechanics and biochemistry. A key mechanism, which has emerged based on converging indications from structural, cellular, and biophysical data, depicts the actin filament as a mechanically tunable substrate: mechanical stress applied to an actin filament induces conformational changes, which modify the binding and the regulatory action of actin-binding proteins. For a long time, however, direct evidence of this mechanotransductive mechanism was very scarce. This situation is changing rapidly, and recent in vitro single-filament studies using different techniques have revealed that several actin-binding proteins are able to sense tension, curvature, and/or torsion, applied to actin filaments. Here, we discuss these recent advances and their possible implications.
Collapse
|
10
|
First person – Julien Pernier. J Cell Sci 2020. [DOI: 10.1242/jcs.253930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Julien Pernier is first author on ‘Myosin 1b flattens and prunes branched actin filaments’, published in JCS. Julien conducted the research described in this article while a postdoc in Patricia Bassereau's lab at the Institut Curie, Paris, France. He is now a postdoc in the lab of Christophe Le Clainche at the Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France, investigating the roles of actin-binding proteins in actin network dynamics and organization.
Collapse
|