1
|
Mohan V, Vinjamuri SR, Sahoo P, Hatwar A, S N S, Krishna U, P V V, Vijayan K. Apicomplexan Espionage: Orchestrated Miscommunication at the Host-Parasite Interface. ACS Infect Dis 2024; 10:4040-4047. [PMID: 39499240 DOI: 10.1021/acsinfecdis.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Intracellular parasites, including Toxoplasma and Plasmodium, are entirely reliant on the active scavenging of host-derived nutrients to fuel their replicative cycle, as they are confined within a specialized membrane-bound compartment, the parasitophorous vacuole (PV). Initial observations, based on the proximity of host vesicles to the parasitophorous vacuole membrane (PVM), suggested that parasites utilize host vesicles to obtain essential nutrients. However, mounting evidence has now unequivocally demonstrated that intracellular pathogens establish membrane contacts with host organelles, establishing control over host cellular machinery. These intimate interactions enable the parasites to gain unimpeded access to cytosolic resources critical for development while evading host immune responses. This review consolidates the latest advancements in understanding the molecular machinery driving these transkingdom contacts and their functional roles. Further investigation into these processes promises to revolutionize our understanding of organelle communication, with profound implications for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Vaisak Mohan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Parnika Sahoo
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Abhinav Hatwar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sandra S N
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Usha Krishna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Vyshnav P V
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
2
|
Otesteanu CF, Caldelari R, Heussler V, Sznitman R. Machine learning for predicting Plasmodium liver stage development in vitro using microscopy imaging. Comput Struct Biotechnol J 2024; 24:334-342. [PMID: 38690550 PMCID: PMC11059334 DOI: 10.1016/j.csbj.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Malaria, a significant global health challenge, is caused by Plasmodium parasites. The Plasmodium liver stage plays a pivotal role in the establishment of the infection. This study focuses on the liver stage development of the model organism Plasmodium berghei, employing fluorescent microscopy imaging and convolutional neural networks (CNNs) for analysis. Convolutional neural networks have been recently proposed as a viable option for tasks such as malaria detection, prediction of host-pathogen interactions, or drug discovery. Our research aimed to predict the transition of Plasmodium-infected liver cells to the merozoite stage, a key development phase, 15 hours in advance. We collected and analyzed hourly imaging data over a span of at least 38 hours from 400 sequences, encompassing 502 parasites. Our method was compared to human annotations to validate its efficacy. Performance metrics, including the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity, were evaluated on an independent test dataset. The outcomes revealed an AUC of 0.873, a sensitivity of 84.6%, and a specificity of 83.3%, underscoring the potential of our CNN-based framework to predict liver stage development of P. berghei. These findings not only demonstrate the feasibility of our methodology but also could potentially contribute to the broader understanding of parasite biology.
Collapse
Affiliation(s)
- Corin F. Otesteanu
- Artificial Intelligence in Medicine group, University of Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Switzerland
| | | | - Raphael Sznitman
- Artificial Intelligence in Medicine group, University of Bern, Switzerland
| |
Collapse
|
3
|
Schroeder EA, Toro-Moreno M, Raphemot R, Sylvester K, Colón IC, Derbyshire ER. Toxoplasma and Plasmodium associate with host Arfs during infection. mSphere 2024; 9:e0077023. [PMID: 38349168 PMCID: PMC10964417 DOI: 10.1128/msphere.00770-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 03/27/2024] Open
Abstract
The apicomplexans Toxoplasma gondii and Plasmodium are intracellular parasites that reside within a host-derived compartment termed the parasitophorous vacuole (PV). During infection, the parasites must acquire critical host resources and transport them across their PV for development. However, the mechanism by which host resources are trafficked to and across the PV remains uncertain. Here, we investigated host ADP ribosylation factors (Arfs), a class of proteins involved in vesicular trafficking that may be exploited by T. gondii and Plasmodium berghei for nutrient acquisition. Using overexpressed Arf proteins coupled with immunofluorescence microscopy, we found that all Arfs were internalized into the T. gondii PV, with most vacuoles containing at least one punctum of Arf protein by the end of the lytic cycle. We further characterized Arf1, the most abundant Arf inside the T. gondii PV, and observed that active recycling between its GDP/GTP-bound state influenced Arf1 internalization independent of host guanine nucleotide exchange factors (GEFs). In addition, Arf1 colocalized with vesicle coat complexes and exogenous sphingolipids, suggesting a role in nutrient acquisition. While Arf1 and Arf4 were not observed inside the PV during P. berghei infection, our gene depletion studies showed that liver stage development and survival depended on the expression of Arf4 and the host GEF, GBF1. Collectively, these observations indicate that apicomplexans use distinct mechanisms to subvert the host vesicular trafficking network and efficiently replicate. The findings also pave the way for future studies to identify parasite proteins critical to host vesicle recruitment and the components of vesicle cargo. IMPORTANCE The parasites Toxoplasma gondii and Plasmodium live complex intracellular lifestyles where they must acquire essential host nutrients while avoiding recognition. Although previous work has sought to identify the specific nutrients scavenged by apicomplexans, the mechanisms by which host materials are transported to and across the parasite vacuole membrane are largely unknown. Here, we examined members of the host vesicular trafficking network to identify specific pathways subverted by T. gondii and Plasmodium berghei. Our results indicate that T. gondii selectively internalizes host Arfs, a class of proteins involved in intracellular trafficking. For P. berghei, host Arfs were restricted by the parasite's vacuole membrane, but proteins involved in vesicular trafficking were identified as essential for liver stage development. A greater exploration into how and why apicomplexans subvert host vesicular trafficking could help identify targets for host-directed therapeutics.
Collapse
Affiliation(s)
- Erin A. Schroeder
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maria Toro-Moreno
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Rene Raphemot
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Isabel C. Colón
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Emily R. Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Mitchell G, Torres L, Fishbaugher ME, Lam M, Chuenchob V, Zalpuri R, Ramasubban S, Baxter CN, Flannery EL, Harupa A, Mikolajczak SA, Jorgens DM. Correlative light-electron microscopy methods to characterize the ultrastructural features of the replicative and dormant liver stages of Plasmodium parasites. Malar J 2024; 23:53. [PMID: 38383417 PMCID: PMC10882739 DOI: 10.1186/s12936-024-04862-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The infection of the liver by Plasmodium parasites is an obligatory step leading to malaria disease. Following hepatocyte invasion, parasites differentiate into replicative liver stage schizonts and, in the case of Plasmodium species causing relapsing malaria, into hypnozoites that can lie dormant for extended periods of time before activating. The liver stages of Plasmodium remain elusive because of technical challenges, including low infection rate. This has been hindering experimentations with well-established technologies, such as electron microscopy. A deeper understanding of hypnozoite biology could prove essential in the development of radical cure therapeutics against malaria. RESULTS The liver stages of the rodent parasite Plasmodium berghei, causing non-relapsing malaria, and the simian parasite Plasmodium cynomolgi, causing relapsing malaria, were characterized in human Huh7 cells or primary non-human primate hepatocytes using Correlative Light-Electron Microscopy (CLEM). Specifically, CLEM approaches that rely on GFP-expressing parasites (GFP-CLEM) or on an immunofluorescence assay (IFA-CLEM) were used for imaging liver stages. The results from P. berghei showed that host and parasite organelles can be identified and imaged at high resolution using both CLEM approaches. While IFA-CLEM was associated with more pronounced extraction of cellular content, samples' features were generally well preserved. Using IFA-CLEM, a collection of micrographs was acquired for P. cynomolgi liver stage schizonts and hypnozoites, demonstrating the potential of this approach for characterizing the liver stages of Plasmodium species causing relapsing malaria. CONCLUSIONS A CLEM approach that does not rely on parasites expressing genetically encoded tags was developed, therefore suitable for imaging the liver stages of Plasmodium species that lack established protocols to perform genetic engineering. This study also provides a dataset that characterizes the ultrastructural features of liver stage schizonts and hypnozoites from the simian parasite species P. cynomolgi.
Collapse
Affiliation(s)
- Gabriel Mitchell
- Open Innovation at Global Health Disease Area, Biomedical Research, Novartis, Emeryville, CA, USA.
| | - Laura Torres
- Open Innovation at Global Health Disease Area, Biomedical Research, Novartis, Emeryville, CA, USA
| | | | - Melanie Lam
- Open Innovation at Global Health Disease Area, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Vorada Chuenchob
- Global Health Disease Area, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Shreya Ramasubban
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Caitlin N Baxter
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Erika L Flannery
- Global Health Disease Area, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Anke Harupa
- Global Health Disease Area, Biomedical Research, Novartis, Emeryville, CA, USA
| | | | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| |
Collapse
|
5
|
Glennon EK, Wei L, Roobsoong W, Primavera VI, Tongogara T, Yee CB, Sattabongkot J, Kaushansky A. Host kinase regulation of Plasmodium vivax dormant and replicating liver stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566868. [PMID: 38014051 PMCID: PMC10680662 DOI: 10.1101/2023.11.13.566868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Upon transmission to the liver, Plasmodium vivax parasites form replicating schizonts, which continue to initiate blood-stage infection, or dormant hypnozoites that reactivate weeks to months after initial infection. P. vivax phenotypes in the field vary significantly, including the ratio of schizonts to hypnozoites formed and the frequency and timing of relapse. Evidence suggests that both parasite genetics and environmental factors underly this heterogeneity. We previously demonstrated that data on the effect of a panel of kinase inhibitors with overlapping targets on Plasmodium liver stage infection, in combination with a computational approach called kinase regression (KiR), can be used to uncover novel host regulators of infection. Here, we applied KiR to evaluate the extent to which P. vivax liver-stage parasites are susceptible to changes in host kinase activity. We identified a role for a subset of host kinases in regulating schizont and hypnozoite infection and schizont size and characterized overlap as well as variability in host phosphosignaling dependencies between parasite forms and across multiple patient isolates. Striking, our data point to variability in host dependencies across P. vivax isolates, suggesting one possible origin of the heterogeneity observed across P. vivax in the field.
Collapse
|
6
|
Mittal N, Davis C, McLean P, Calla J, Godinez-Macias KP, Gardner A, Healey D, Orjuela-Sanchez P, Ottilie S, Chong Y, Gibson C, Winzeler EA. Human nuclear hormone receptor activity contributes to malaria parasite liver stage development. Cell Chem Biol 2023; 30:486-498.e7. [PMID: 37172592 PMCID: PMC10878326 DOI: 10.1016/j.chembiol.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/14/2022] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Chemical genetic approaches have had a transformative impact on discovery of drug targets for malaria but have primarily been used for parasite targets. To identify human pathways required for intrahepatic development of parasite, we implemented multiplex cytological profiling of malaria infected hepatocytes treated with liver stage active compounds. Some compounds, including MMV1088447 and MMV1346624, exhibited profiles similar to cells treated with nuclear hormone receptor (NHR) agonist/antagonists. siRNAs targeting human NHRs, or their signaling partners identified eight genes that were critical for Plasmodium berghei infection. Knockdown of NR1D2, a host NHR, significantly impaired parasite growth by downregulation of host lipid metabolism. Importantly, treatment with MMV1088447 and MMV1346624 but not other antimalarials, phenocopied the lipid metabolism defect of NR1D2 knockdown. Our data underlines the use of high-content imaging for host-cellular pathway deconvolution, highlights host lipid metabolism as a drug-able human pathway and provides new chemical biology tools for studying host-parasite interactions.
Collapse
Affiliation(s)
- Nimisha Mittal
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chadwick Davis
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Peter McLean
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Jaeson Calla
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karla P Godinez-Macias
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alison Gardner
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - David Healey
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Pamela Orjuela-Sanchez
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Sabine Ottilie
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yolanda Chong
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | | | - Elizabeth A Winzeler
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Kim WK, Choi W, Deshar B, Kang S, Kim J. Golgi Stress Response: New Insights into the Pathogenesis and Therapeutic Targets of Human Diseases. Mol Cells 2023; 46:191-199. [PMID: 36574967 PMCID: PMC10086555 DOI: 10.14348/molcells.2023.2152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 12/29/2022] Open
Abstract
The Golgi apparatus modifies and transports secretory and membrane proteins. In some instances, the production of secretory and membrane proteins exceeds the capacity of the Golgi apparatus, including vesicle trafficking and the post-translational modification of macromolecules. These proteins are not modified or delivered appropriately due to insufficiency in the Golgi function. These conditions disturb Golgi homeostasis and induce a cellular condition known as Golgi stress, causing cells to activate the 'Golgi stress response,' which is a homeostatic process to increase the capacity of the Golgi based on cellular requirements. Since the Golgi functions are diverse, several response pathways involving TFE3, HSP47, CREB3, proteoglycan, mucin, MAPK/ETS, and PERK regulate the capacity of each Golgi function separately. Understanding the Golgi stress response is crucial for revealing the mechanisms underlying Golgi dynamics and its effect on human health because many signaling molecules are related to diseases, ranging from viral infections to fatal neurodegenerative diseases. Therefore, it is valuable to summarize and investigate the mechanisms underlying Golgi stress response in disease pathogenesis, as they may contribute to developing novel therapeutic strategies. In this review, we investigate the perturbations and stress signaling of the Golgi, as well as the therapeutic potentials of new strategies for treating Golgi stress-associated diseases.
Collapse
Affiliation(s)
- Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Wooseon Choi
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Barsha Deshar
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shinwon Kang
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G, Canada
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
8
|
Lahree A, Mello-Vieira J, Mota MM. The nutrient games - Plasmodium metabolism during hepatic development. Trends Parasitol 2023; 39:445-460. [PMID: 37061442 DOI: 10.1016/j.pt.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Malaria is a febrile illness caused by species of the protozoan parasite Plasmodium and is characterized by recursive infections of erythrocytes, leading to clinical symptoms and pathology. In mammals, Plasmodium parasites undergo a compulsory intrahepatic development stage before infecting erythrocytes. Liver-stage parasites have a metabolic configuration to facilitate the replication of several thousand daughter parasites. Their metabolism is of interest to identify cellular pathways essential for liver infection, to kill the parasite before onset of the disease. In this review, we summarize the current knowledge on nutrient acquisition and biosynthesis by liver-stage parasites mostly generated in murine malaria models, gaps in knowledge, and challenges to create a holistic view of the development and deficiencies in this field.
Collapse
Affiliation(s)
- Aparajita Lahree
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - João Mello-Vieira
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
9
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
10
|
Vijayan K, Arang N, Wei L, Morrison R, Geiger R, Parks KR, Lewis AJ, Mast FD, Douglass AN, Kain HS, Aitchison JD, Johnson JS, Aderem A, Kaushansky A. A genome-wide CRISPR-Cas9 screen identifies CENPJ as a host regulator of altered microtubule organization during Plasmodium liver infection. Cell Chem Biol 2022; 29:1419-1433.e5. [PMID: 35738280 PMCID: PMC9481707 DOI: 10.1016/j.chembiol.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Prior to initiating symptomatic malaria, a single Plasmodium sporozoite infects a hepatocyte and develops into thousands of merozoites, in part by scavenging host resources, likely delivered by vesicles. Here, we demonstrate that host microtubules (MTs) dynamically reorganize around the developing liver stage (LS) parasite to facilitate vesicular transport to the parasite. Using a genome-wide CRISPR-Cas9 screen, we identified host regulators of cytoskeleton organization, vesicle trafficking, and ER/Golgi stress that regulate LS development. Foci of γ-tubulin localized to the parasite periphery; depletion of centromere protein J (CENPJ), a novel regulator identified in the screen, exacerbated this re-localization and increased infection. We demonstrate that the Golgi acts as a non-centrosomal MT organizing center (ncMTOC) by positioning γ-tubulin and stimulating MT nucleation at parasite periphery. Together, these data support a model where the Plasmodium LS recruits host Golgi to form MT-mediated conduits along which host organelles are recruited to PVM and support parasite development.
Collapse
Affiliation(s)
- Kamalakannan Vijayan
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Nadia Arang
- Center for Infectious Disease Research, Seattle, WA, USA
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Robert Morrison
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Rechel Geiger
- MSTP Program, University of Washington, Seattle, WA, USA
| | - K Rachael Parks
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Adam J Lewis
- Center for Infectious Disease Research, Seattle, WA, USA
| | - Fred D Mast
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Alyse N Douglass
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Heather S Kain
- Center for Infectious Disease Research, Seattle, WA, USA
| | - John D Aitchison
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
11
|
Role of Host Small GTPases in Apicomplexan Parasite Infection. Microorganisms 2022; 10:microorganisms10071370. [PMID: 35889089 PMCID: PMC9319929 DOI: 10.3390/microorganisms10071370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The Apicomplexa are obligate intracellular parasites responsible for several important human diseases. These protozoan organisms have evolved several strategies to modify the host cell environment to create a favorable niche for their survival. The host cytoskeleton is widely manipulated during all phases of apicomplexan intracellular infection. Moreover, the localization and organization of host organelles are altered in order to scavenge nutrients from the host. Small GTPases are a class of proteins widely involved in intracellular pathways governing different processes, from cytoskeletal and organelle organization to gene transcription and intracellular trafficking. These proteins are already known to be involved in infection by several intracellular pathogens, including viruses, bacteria and protozoan parasites. In this review, we recapitulate the mechanisms by which apicomplexan parasites manipulate the host cell during infection, focusing on the role of host small GTPases. We also discuss the possibility of considering small GTPases as potential targets for the development of novel host-targeted therapies against apicomplexan infections.
Collapse
|
12
|
Schroeder EA, Chirgwin ME, Derbyshire ER. Plasmodium's fight for survival: escaping elimination while acquiring nutrients. Trends Parasitol 2022; 38:544-557. [PMID: 35534377 PMCID: PMC9187605 DOI: 10.1016/j.pt.2022.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/10/2022] [Accepted: 04/10/2022] [Indexed: 01/08/2023]
Abstract
Plasmodium parasites extensively alter their host hepatocyte to evade host detection and support an unprecedented replication rate. Host cell manipulation includes association with the host early and late endomembrane systems, where Plasmodium accesses nutrients while suppressing cellular immune processes. Early endomembrane organelles provide an opportunity to sequester an abundance of lipids and proteins, but the association with late endomembrane organelles also risks autophagy-mediated elimination. While not all parasites survive, those that do benefit from a plethora of nutrients provided through this pathway. In this review, we discuss recent advances in our understanding of how Plasmodium parasites balance the need for host nutrients while avoiding elimination during the liver stage.
Collapse
Affiliation(s)
- Erin A Schroeder
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Jiang C, Huang X, Yao J, Yu L, Wei F, Yang A. The role of membrane contact sites at the bacteria-host interface. Crit Rev Microbiol 2021; 48:270-282. [PMID: 34403642 DOI: 10.1080/1040841x.2021.1961678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Membrane contact sites (MCSs) refer to the areas of close proximity between heterologous membranes. A growing body of evidence indicates that MCSs are involved in important cellular functions, such as cellular material transfer, organelle biogenesis, and cell growth. Importantly, the study of MCSs at the bacteria-host interface is an emerging popular research topic. Intracellular bacterial pathogens have evolved a variety of fascinating strategies to interfere with MCSs by injecting effectors into infected host cells. Bacteria-containing vacuoles establish direct physical contact with organelles within the host, ensuring vacuolar membrane integrity and energy supply from host organelles and protecting the vacuoles from the host endocytic pathway and lysosomal degradation. An increasing number of bacterial effectors from various bacterial pathogens hijack components of host MCSs to form the vacuole-organelle MCSs for material exchange. MCS-related events have been identified as new mechanisms of microbial pathogenesis to greatly improve bacterial survival and replication within host cells. In this review, we will discuss the recent advances in MCSs at the bacteria-host interface, focussing on the roles of MCSs mediated by bacterial effectors in microbial pathogenesis.
Collapse
Affiliation(s)
- Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Kellermann M, Scharte F, Hensel M. Manipulation of Host Cell Organelles by Intracellular Pathogens. Int J Mol Sci 2021; 22:ijms22126484. [PMID: 34204285 PMCID: PMC8235465 DOI: 10.3390/ijms22126484] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pathogenic intracellular bacteria, parasites and viruses have evolved sophisticated mechanisms to manipulate mammalian host cells to serve as niches for persistence and proliferation. The intracellular lifestyles of pathogens involve the manipulation of membrane-bound organellar compartments of host cells. In this review, we described how normal structural organization and cellular functions of endosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, or lipid droplets are targeted by microbial virulence mechanisms. We focus on the specific interactions of Salmonella, Legionella pneumophila, Rickettsia rickettsii, Chlamydia spp. and Mycobacterium tuberculosis representing intracellular bacterial pathogens, and of Plasmodium spp. and Toxoplasma gondii representing intracellular parasites. The replication strategies of various viruses, i.e., Influenza A virus, Poliovirus, Brome mosaic virus, Epstein-Barr Virus, Hepatitis C virus, severe acute respiratory syndrome virus (SARS), Dengue virus, Zika virus, and others are presented with focus on the specific manipulation of the organelle compartments. We compare the specific features of intracellular lifestyle and replication cycles, and highlight the communalities in mechanisms of manipulation deployed.
Collapse
Affiliation(s)
- Malte Kellermann
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
| | - Felix Scharte
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
| | - Michael Hensel
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
- CellNanOs–Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Barbarastr 11, 49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-(0)-541-969-3940
| |
Collapse
|
15
|
First person – Mariana De Niz. J Cell Sci 2021. [DOI: 10.1242/jcs.258882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Mariana De Niz is first author on ‘Hijacking of the host cell Golgi by Plasmodium berghei liver stage parasites’, published in JCS. Mariana conducted the research described in this article while a PhD student in Volker T. Heussler's lab at Institute of Cell Biology, University of Bern, Switzerland. She is now a Postdoctoral fellow in the lab of Luisa M. Figueiredo at Instituto de Medicina Molecular, University of Lisbon, Portugal, where she is interested in understanding cell and biophysical properties of host–pathogen interactions mediating parasite invasion of mammalian hosts.
Collapse
|