1
|
Goto Y. Immunomodulation by Leishmania parasites: Potential for controlling other diseases. Parasitol Int 2025; 104:102987. [PMID: 39515578 DOI: 10.1016/j.parint.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
In the mammalian hosts, Leishmania parasites survive and proliferate within phagolysosomes of macrophages. To avoid being killed by the immune cells, Leishmania parasites utilize their molecules to manipulate macrophages' functions for survival. Targets of such immunomodulatory molecules are not limited to macrophages, as Leishmania-derived molecules sometimes show influence on other immune cells such as neutrophils, dendritic cells, T cells and B cells. This review covers research on immunomodulation of host immunity by Leishmania parasites and introduces some examples of parasite-derived molecules participating in the immunomodulation. For example, Leishmania cell surface lipophosphoglycan (LPG) can modulate TLR2 signaling and PI3K/Akt axis in macrophages leading to induction of Th2 cells. Because chronic secretion of inflammatory cytokines is one of the causes of immune-mediated diseases such as atherosclerosis, Crohn's disease, and rheumatoid arthritis, LPG may be useful as a drug to suppress the inflammatory conditions. The unique characteristics of leishmanial molecules pose a promise as a source of immunomodulatory drugs for controlling diseases other than leishmaniasis.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| |
Collapse
|
2
|
Wang M, Shang Z, Qiao F, Hei J, Ma X, Wang Y. Notch signaling pathway involved in Echinococcus granulosus infection regulates dendritic cell development and differentiation. Front Cell Infect Microbiol 2023; 13:1147025. [PMID: 37274316 PMCID: PMC10235693 DOI: 10.3389/fcimb.2023.1147025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction The Notch signaling pathway is involved in the development of many diseases; it regulates the development of dendritic cells (DCs), and affects the immune response of DC-mediated T cells. We previously found that ferritin and malate dehydrogenase (mMDH) in Echinococcus granulosus (E.granulosus) induced different immune responses through sensitized DCs. Therefore, in the study we explored whether the Notch signaling pathway affects the development and differentiation of DCs, causing changes in the immune response of DCs sensitized with E. granulosus antigens, and clarified whether it is involved in E.granulosus infection. Methods We used the Notch signaling pathway inhibitor [N-[3,5-difluorophenace-tyl] -L-alanyl]-S-phenylglycinet-butyl ester (DAPT) or activator Jagged1 to construct in vitro cell models with blocked or activated Notch signaling respectively. We analyzed the effect of Notch signaling on the development and differentiation of DCs by detecting their morphology, migration function, capacity to promote T cell proliferation, and cytokine secretion. We observed the changes in DC response to E. granulosus antigens and the mediated immune response. Results DAPT inhibited the development and maturation of DCs, which were in a non-responsive or incompetent state, reduced the sensitization of DCs to Eg.ferritin, weakened the migration ability of DCs, disrupted their ability to mediate T-cell proliferation, reduced DC expression of MHCII, CD80, CD60, and CD40 co-stimulatory molecules, prevented the secretion of cytokines and attenuated the expression of Notch1, Notch2, Notch3 receptors, Jagged1, Delta-like 4 (Delta4), and Hes1. Following Jagged1 addition, the function of DCs was restored to some extent, and the expression of Notch1, Delta4 and Hes1 was activated in response to the stimulation of Eg.ferritin. However, Eg.mMDH stimulated DCs to produce an immune response showing weak interference by DAPT and Jagged1. Discussion The study suggests that the Notc h signaling pathway is involved in the Eg.ferritin-sensitized DC-mediated immune response, which may become a new target for treating E.granulosus infection.
Collapse
Affiliation(s)
- Mingxia Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Zailing Shang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Fei Qiao
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Junhu Hei
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Xueling Ma
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
- Key Laboratory of Common Infectious Diseases of Ningxia Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Expression Profile Analysis of Circular RNAs in Leishmaniasis. Trop Med Infect Dis 2022; 7:tropicalmed7080176. [PMID: 36006268 PMCID: PMC9415058 DOI: 10.3390/tropicalmed7080176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that seriously influences global public health. Among all the parasitic diseases, leishmaniasis is the third most common cause of morbidity after malaria and schistosomiasis. Circular RNAs (circRNAs) are a new type of noncoding RNAs that are involved in the regulation of biological and developmental processes. However, there is no published research on the function of circRNAs in leishmaniasis. This is the first study to explore the expression profiles of circRNAs in leishmaniasis. GO and KEGG analyses were performed to determine the potential function of the host genes of differentially expressed circRNAs. CircRNA–miRNA–mRNA (ceRNA) regulatory network analysis and protein–protein interaction (PPI) networks were analyzed by R software and the STRING database, respectively. A total of 4664 significant differentially expressed circRNAs were identified and compared to those in control groups; a total of 1931 were up-regulated and 2733 were down-regulated. The host genes of differentially expressed circRNAs were enriched in ubiquitin-mediated proteolysis, endocytosis, the MAPK signaling pathway, renal cell carcinoma, autophagy and the ErbB signaling pathway. Then, five hub genes (BRCA1, CREBBP, EP300, PIK3R1, and CRK) were identified. This study provides new evidence of the change of differentially expressed circRNAs and its potential function in leishmaniasis. These results may provide novel insights and evidence for the diagnosis and treatment of leishmaniasis.
Collapse
|
4
|
Nishino T, Yoshihara M, Nakayama T, Tsuchiya T, Tahara S, Ozaki H, Takahashi S. Identifying potential regulators of JAGGED1 expression in portal mesenchymal cells. BMC Res Notes 2022; 15:172. [PMID: 35562782 PMCID: PMC9102744 DOI: 10.1186/s13104-022-06058-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Portal mesenchymal cells induce the epithelial differentiation of the bile ducts in the developing liver via one of the Delta-Notch signaling components, JAGGED1. Although this differential induction is crucial for normal liver physiology as its genetic disorder (Alagille syndrome) causes jaundice, the molecular mechanism behind JAGGED1 expression remains unknown. Here, we searched for upstream regulatory transcription factors of JAGGED1 using an integrated bioinformatics method. Results According to the DoRothEA database, which integrates multiple lines of evidence on the relationship between transcription factors and their downstream target genes, three transcription factors were predicted to be upstream of JAGGED1: SLUG, SOX2, and EGR1. Among these, SLUG and EGR1 were enriched in ACTA2-expressing portal mesenchymal cells in two previously reported human fetal liver single-cell RNA-seq datasets. JAGGED1-expressing portal mesenchymal cells tended to express SLUG rather than EGR1, supporting that SLUG induced JAGGED1 expression. Together with the higher confidentiality of SLUG (DoRothEA level A) over EGR1 (DoRothEA level D), we concluded that SLUG was one of the most important candidate transcription factors upstream of JAGGED1. These results add mechanistic insights into the developmental biology of how portal mesenchymal cells support biliary development in the liver. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06058-4.
Collapse
Affiliation(s)
- Teppei Nishino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Masaharu Yoshihara
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan. .,Department of Primary Care and Medical Education, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. .,Laboratory Animal Resource Center, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Takahiro Nakayama
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Japan
| | - Saeko Tahara
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Biswas K, Couillard M, Cavallone L, Burkett S, Stauffer S, Martin BK, Southon E, Reid S, Plona TM, Baugher RN, Mellott SD, Pike KM, Albaugh ME, Maedler-Kron C, Hamel N, Tessarollo L, Marcus V, Foulkes WD, Sharan SK. A novel mouse model of PMS2 founder mutation that causes mismatch repair defect due to aberrant splicing. Cell Death Dis 2021; 12:838. [PMID: 34489406 PMCID: PMC8421400 DOI: 10.1038/s41419-021-04130-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Hereditary non-polyposis colorectal cancer, now known as Lynch syndrome (LS) is one of the most common cancer predisposition syndromes and is caused by germline pathogenic variants (GPVs) in DNA mismatch repair (MMR) genes. A common founder GPV in PMS2 in the Canadian Inuit population, NM_000535.5: c.2002A>G, leads to a benign missense (p.I668V) but also acts as a de novo splice site that creates a 5 bp deletion resulting in a truncated protein (p.I668*). Individuals homozygous for this GPV are predisposed to atypical constitutional MMR deficiency with a delayed onset of first primary malignancy. We have generated mice with an equivalent germline mutation (Pms2c.1993A>G) and demonstrate that it results in a splicing defect similar to those observed in humans. Homozygous mutant mice are viable like the Pms2 null mice. However, unlike the Pms2 null mice, these mutant mice are fertile, like humans homozygous for this variant. Furthermore, these mice exhibit a significant increase in microsatellite instability and intestinal adenomas on an Apc mutant background. Rectification of the splicing defect in human and murine fibroblasts using antisense morpholinos suggests that this novel mouse model can be valuable in evaluating the efficacy aimed at targeting the splicing defect in PMS2 that is highly prevalent among the Canadian Inuits.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Martin Couillard
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Luca Cavallone
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Teri M Plona
- CLIA Molecular Diagnostics Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ryan N Baugher
- CLIA Molecular Diagnostics Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephanie D Mellott
- CLIA Molecular Diagnostics Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristen M Pike
- CLIA Molecular Diagnostics Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | | | - Nancy Hamel
- Department of Oncology, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Victoria Marcus
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - William D Foulkes
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC, Canada
- Department of Oncology, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
- Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, H4A 3JI, Canada
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
6
|
First person – Pragya Chandrakar. J Cell Sci 2021. [DOI: 10.1242/jcs.258532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Pragya Chandrakar is first author on ‘Jagged–Notch-mediated divergence of immune cell crosstalk maintains the anti-inflammatory response in visceral leishmaniasis’, published in JCS. Pragya conducted the research described in this article while a Senior Research Fellow in Dr Susanta Kar's lab at the CSIR Central Drug Research Institute, Lucknow, India. She is now a Postdoctoral Research Fellow in the lab of Dr John Chan at Albert Einstein College of Medicine, New York, USA, investigating the different possible mechanisms by which foreign pathogens breach the immune system.
Collapse
|