1
|
Gu JP, Qi TZ, Zhu DR, He XJ, Guo SP, Lan X, Gu H, Luo JL, Yang M, Gu YC, Wang WL, Chen GT, Fan BY. Isolation of pentasaccharide resin glycosides from the whole plants of Ipomoea biflora and their cytotoxic activities. PHYTOCHEMISTRY 2025; 236:114494. [PMID: 40154902 DOI: 10.1016/j.phytochem.2025.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
A total of eight previously undescribed pentasaccharide resin glycosides, named ipomofins I-VIII (1-8), along with five known ones (9-13), were isolated from the whole plants of Ipomoea biflora. Their structural elucidation was achieved through a comprehensive application of spectroscopic and chemical techniques. All these resin glycosides were characterized as partially acylated pentasaccharides, originating from operculinic acids A or D, containing l-rhamnose, d-glucose, d-xylose or d-fucose units, and 11S-hydroxyhexadecanoic acid serving as the aglycone. Notably, compounds 1 and 2 represent the first resin glycosides with operculinic acid D as their core structure, while compounds 3 and 4 are the first derivatives of operculinic acid A featuring a 23-membered ring. Compounds 1, 2, and 4-6 exhibited apparent cytotoxic effects against certain cancer cell lines. Particularly, compound 5 demonstrated the ability to impair colony formation, reduce the proportion of EdU-positive cells, and enhance the expression of proteins related to endoplasmic reticulum stress (ERS) in HCT-15 cells, indicating that its cytotoxicity might be driven by the activation of ERS pathways. Collectively, this research identified 13 resin glycosides from I. biflora, including eight previously undescribed compounds, with compound 5 emerging as a potential anticancer agent due to its induction of ERS.
Collapse
Affiliation(s)
- Jin-Ping Gu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Tian-Zi Qi
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Dong-Rong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xu-Jia He
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Su-Peng Guo
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Xin Lan
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Hong Gu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Jia-Lie Luo
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Min Yang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG426EY, UK
| | - Wen-Li Wang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| | - Guang-Tong Chen
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| | - Bo-Yi Fan
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| |
Collapse
|
2
|
Nishikawa H, Sato R, Misuda N, Furumura H, Miyasaka T, Hirano M, Kinoshita H, Yoneda K, Ono M, Yasuda S. In vitro lipase inhibition and in silico modelling analysis of the resin glycosides from the seeds of Ipomoea muricata and pharbitin from Pharbitidis Semen. Nat Prod Res 2025:1-8. [PMID: 40336369 DOI: 10.1080/14786419.2025.2495162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
Resin glycosides (RGs) are the unique constituents of Convolvulaceae plants. This study aims to investigate the inhibitory effects of the RG fraction from Ipomoea muricata seeds (IMRG) and that of pharbitin from Pharbitidis Semen (seeds of I. nil) on three representative digestive enzymes, lipase, α-amylase and α-glucosidase, in vitro. The results indicated that both RG fraction had lipase-selective inhibitory activity. Three genuine RGs, as three muricatins, and a glycosidic acid methyl ester, previously isolated from I. muricata seeds, showed clear lipase inhibition. In silico analysis of these four compounds was performed using both porcine (PDB ID: 1ETH) and human (PDB ID: 1LPB) lipases. Docking simulations using all four active molecules confirmed highly stable binding scores to the active sites of both pancreatic lipases. In conclusion, we demonstrated here for the first time that the IMRG fraction, pharbitin and four compounds from I. muricata are responsible for lipase inhibition in vitro.
Collapse
Affiliation(s)
| | - Ryusei Sato
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Kamimashiki-Gun, Kumamoto, Japan
| | - Nodoka Misuda
- Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Hibiki Furumura
- Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Takaki Miyasaka
- Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Masashi Hirano
- Graduate School of Agriculture, Tokai University, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Kamimashiki-Gun, Kumamoto, Japan
| | - Hideki Kinoshita
- Graduate School of Agriculture, Tokai University, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Kamimashiki-Gun, Kumamoto, Japan
| | - Kazunari Yoneda
- Graduate School of Agriculture, Tokai University, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Kamimashiki-Gun, Kumamoto, Japan
| | - Masateru Ono
- Graduate School of Agriculture, Tokai University, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Kamimashiki-Gun, Kumamoto, Japan
| | - Shin Yasuda
- Graduate School of Agriculture, Tokai University, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Kamimashiki-Gun, Kumamoto, Japan
| |
Collapse
|
3
|
Khosravi A, Nnamdi P, May A, Slattery K, Sammelson RE, Shi WQ. Structural Modifications Reveal Dual Functions of the C-4 Carbonyl Group in the Fatty Acid Chain of Ipomoeassin F. Molecules 2025; 30:400. [PMID: 39860269 PMCID: PMC11767275 DOI: 10.3390/molecules30020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Ipomoeassin F (Ipom-F) is a plant-derived macrocyclic resin glycoside that potently inhibits cancer cell growth through blockage of Sec61-mediated protein translocation at the endoplasmic reticulum. Recently, detailed structural information on how Ipom-F binds to Sec61α was obtained using Cryo-EM, which discovered that polar interactions between asparagine-300 (N300) in Sec61α and four oxygens in Ipom-F are crucial. One of the four oxygens is from the carbonyl group at C-4 of the fatty acid chain. In contrast, our previous structure-activity relationship (SAR) studies suggest that the carbonyl group is not essential. To resolve this discrepancy, we designed and synthesized two new open-chain analogues (10 and 11); 10 without the C-4 carbonyl had a dramatic activity loss, whereas 11 with an amide functional group was even more potent than Ipom-F. These new SAR data, in conjunction with some previous SAR information, imply two functional roles of the C-4 carbonyl: (1) to form H-bonds with N300; and (2) to regulate interactions of the fatty acid chain with membrane lipids. Impacts of these dual functions on antiproliferation depend on the overall structure of an Ipom-F derivative. Moreover, 11 can serve as a lead compound for developing future amino acid/peptide-modified analogues of Ipom-F with improved therapeutic properties.
Collapse
Affiliation(s)
- Arman Khosravi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA; (A.K.); (P.N.); (K.S.); (R.E.S.)
| | - Precious Nnamdi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA; (A.K.); (P.N.); (K.S.); (R.E.S.)
| | - Alexa May
- Chemistry Department, Michigan State University, East Lansing, MI 48824, USA;
| | - Kelsey Slattery
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA; (A.K.); (P.N.); (K.S.); (R.E.S.)
| | - Robert E. Sammelson
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA; (A.K.); (P.N.); (K.S.); (R.E.S.)
| | - Wei Q. Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA; (A.K.); (P.N.); (K.S.); (R.E.S.)
| |
Collapse
|
4
|
Chang J, Pickard A, Herrera JA, O'Keefe S, Garva R, Hartshorn M, Hoyle A, Dingle L, Knox J, Jowitt TA, Coy M, Wong J, Reid A, Lu Y, Zeltz C, Venkateswaran RV, Caswell PT, High S, Gullberg D, Kadler KE. Endocytic recycling is central to circadian collagen fibrillogenesis and disrupted in fibrosis. eLife 2025; 13:RP95842. [PMID: 39812558 PMCID: PMC11735028 DOI: 10.7554/elife.95842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.
Collapse
Affiliation(s)
- Joan Chang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Adam Pickard
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Jeremy A Herrera
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Sarah O'Keefe
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Richa Garva
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Matthew Hartshorn
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Anna Hoyle
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Lewis Dingle
- Blond McIndoe Laboratories, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - John Knox
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Madeleine Coy
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Adam Reid
- Blond McIndoe Laboratories, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Center of Excellence, University of BergenBergenNorway
| | - Rajamiyer V Venkateswaran
- Manchester University National Health Service Foundation Trust, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Patrick T Caswell
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Stephen High
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Center of Excellence, University of BergenBergenNorway
| | - Karl E Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
5
|
Sicairos B, Zhou J, Hu Z, Zhang Q, Shi WQ, Du Y. Proteomic analysis reveals the dominant effect of ipomoeassin F on the synthesis of membrane and secretory proteins in triple-negative breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605505. [PMID: 39131350 PMCID: PMC11312459 DOI: 10.1101/2024.07.28.605505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ipomoeassin F (Ipom-F) is a natural compound with embedded carbohydrates that exhibits a potent cytotoxic effect on triple-negative breast cancer (TNBC) cells. The mechanism behind this selective potency remains unclear. To elucidate this mechanism, we analyzed the proteome profiles of the TNBC MDA-MB-231 cells after exposure to Ipom-F at different time points and increasing doses using a quantitative proteomic method. Our proteomic data demonstrate that the major effect of Ipom-F on MDA-MB-231 cells is the inhibition of membrane and secreted protein expression. Our proteomic data are consistent with the recently uncovered molecular mechanism of action of Ipom-F, which binds to Sec61-α and inhibits the co-translational import of proteins into the endoplasmic reticulum. We have defined a subset of membrane and secreted proteins particularly sensitive to Ipom-F. Analysis of the expression of these Ipom-F-sensitive proteins in cancer cell lines and breast cancer tissues demonstrates that some of these proteins are upregulated in TNBC cells. Thus, it is likely that TNBC cells may have adapted to the elevated levels of some proteins identified as sensitive to Ipom-F in this study; inhibition of the expression of these proteins leads to a crisis in proliferation and/or survival for the cells.
Collapse
Affiliation(s)
- Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Zhijian Hu
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Dr., Manhasset, New York, 11030, USA
| | - Qingyang Zhang
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
6
|
Yoo TY, Mitchison TJ. Quantitative comparison of nuclear transport inhibition by SARS coronavirus ORF6 reveals the importance of oligomerization. Proc Natl Acad Sci U S A 2024; 121:e2307997121. [PMID: 38236733 PMCID: PMC10823255 DOI: 10.1073/pnas.2307997121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024] Open
Abstract
Open Reading Frame 6 (ORF6) proteins, which are unique to severe acute respiratory syndrome-related (SARS) coronavirus, inhibit the classical nuclear import pathway to antagonize host antiviral responses. Several alternative models were proposed to explain the inhibitory function of ORF6 [H. Xia et al., Cell Rep. 33, 108234 (2020); L. Miorin et al., Proc. Natl. Acad. Sci. U.S.A. 117, 28344-28354 (2020); and M. Frieman et al., J. Virol. 81, 9812-9824 (2007)]. To distinguish these models and build quantitative understanding of ORF6 function, we developed a method for scoring both ORF6 concentration and functional effect in single living cells. We combined quantification of untagged ORF6 expression level in single cells with optogenetics-based measurement of nuclear transport kinetics, using methods that could be adapted to measure concentration-dependent effects of any untagged protein. We found that SARS-CoV-2 ORF6 is ~15 times more potent than SARS-CoV-1 ORF6 in inhibiting nuclear import and export, due to differences in the C-terminal region that is required for the NUP98-RAE1 binding. The N-terminal region was required for transport inhibition. This region binds membranes but could be replaced by synthetic constructs which forced oligomerization in solution, suggesting its primary function is oligomerization. We propose that the hydrophobic N-terminal region drives oligomerization of ORF6 to multivalently cross-link the NUP98-RAE1 complexes at the nuclear pore complex, and this multivalent binding inhibits bidirectional transport.
Collapse
Affiliation(s)
- Tae Yeon Yoo
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Timothy J. Mitchison
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
7
|
Stewart H, Lu Y, O’Keefe S, Valpadashi A, Cruz-Zaragoza LD, Michel HA, Nguyen SK, Carnell GW, Lukhovitskaya N, Milligan R, Adewusi Y, Jungreis I, Lulla V, Matthews DA, High S, Rehling P, Emmott E, Heeney JL, Davidson AD, Edgar JR, Smith GL, Firth AE. The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity. iScience 2023; 26:108080. [PMID: 37860693 PMCID: PMC10583119 DOI: 10.1016/j.isci.2023.108080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localizes to mitochondria, where it inhibits innate immunity by restricting IFN-β production, but not NF-κB activation or JAK-STAT signaling downstream of type I IFN stimulation. We find that ORF3c is inhibitory after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterized mechanism of innate immune evasion by this important human pathogen.
Collapse
Affiliation(s)
- Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sarah O’Keefe
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Anusha Valpadashi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Rachel Milligan
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Yasmin Adewusi
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Valeria Lulla
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Stephen High
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Edward Emmott
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Itskanov S, Wang L, Junne T, Sherriff R, Xiao L, Blanchard N, Shi WQ, Forsyth C, Hoepfner D, Spiess M, Park E. A common mechanism of Sec61 translocon inhibition by small molecules. Nat Chem Biol 2023; 19:1063-1071. [PMID: 37169959 PMCID: PMC11458068 DOI: 10.1038/s41589-023-01337-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
The Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin. All inhibitors bind to a common lipid-exposed pocket formed by the partially open lateral gate and plug domain of Sec61. Mutations conferring resistance to the inhibitors are clustered at this binding pocket. The structures indicate that Sec61 inhibitors stabilize the plug domain in a closed state, thereby preventing the protein-translocation pore from opening. Our study provides the atomic details of Sec61-inhibitor interactions and the structural framework for further pharmacological studies and drug design.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Laurie Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tina Junne
- Biozentrum, University of Basel, Basel, Switzerland
| | - Rumi Sherriff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Li Xiao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Craig Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, Basel, Switzerland
| | | | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Ricci D, Demangel C. From Bacterial Toxin to Therapeutic Agent: The Unexpected Fate of Mycolactone. Toxins (Basel) 2023; 15:369. [PMID: 37368670 DOI: 10.3390/toxins15060369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
"Recognizing a surprising fact is the first step towards discovery." This famous quote from Louis Pasteur is particularly appropriate to describe what led us to study mycolactone, a lipid toxin produced by the human pathogen Mycobacterium ulcerans. M. ulcerans is the causative agent of Buruli ulcer, a neglected tropical disease manifesting as chronic, necrotic skin lesions with a "surprising" lack of inflammation and pain. Decades after its first description, mycolactone has become much more than a mycobacterial toxin. This uniquely potent inhibitor of the mammalian translocon (Sec61) helped reveal the central importance of Sec61 activity for immune cell functions, the spread of viral particles and, unexpectedly, the viability of certain cancer cells. We report in this review the main discoveries that marked our research into mycolactone, and the medical perspectives they opened up. The story of mycolactone is not over and the applications of Sec61 inhibition may go well beyond immunomodulation, viral infections, and oncology.
Collapse
Affiliation(s)
- Daniela Ricci
- Institut Pasteur, Université Paris Cité, Inserm U1224, Immunobiology and Therapy Unit, 75015 Paris, France
| | - Caroline Demangel
- Institut Pasteur, Université Paris Cité, Inserm U1224, Immunobiology and Therapy Unit, 75015 Paris, France
| |
Collapse
|
10
|
Wang W, Li Y, He Y, Jiang X, Yi Y, Zhang X, Zhang S, Chen G, Yang M, Luo JL, Fan B. Progress in the total synthesis of resin glycosides. Front Chem 2022; 10:1036954. [DOI: 10.3389/fchem.2022.1036954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Resin glycosides, mainly distributed in plants of the family Convolvulaceae, are a class of novel and complex glycolipids. Their structural complexity and significant biological activities have received much attention from synthetic chemists, and a number of interesting resin glycosides have been synthesized. The synthesized resin glycosides and their analogues not only helped in structural verification, structural modification, and further biological activity exploration but also provided enlightenment for the synthesis of glycoside compounds. Herein, the present review summarizes the application of various efforts toward the synthesis of resin glycosides in the last decade.
Collapse
|
11
|
O'Keefe S, Pool MR, High S. Membrane protein biogenesis at the ER: the highways and byways. FEBS J 2022; 289:6835-6862. [PMID: 33960686 DOI: 10.1111/febs.15905] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023]
Abstract
The Sec61 complex is the major protein translocation channel of the endoplasmic reticulum (ER), where it plays a central role in the biogenesis of membrane and secretory proteins. Whilst Sec61-mediated protein translocation is typically coupled to polypeptide synthesis, suggestive of significant complexity, an obvious characteristic of this core translocation machinery is its surprising simplicity. Over thirty years after its initial discovery, we now understand that the Sec61 complex is in fact the central piece of an elaborate jigsaw puzzle, which can be partly solved using new research findings. We propose that the Sec61 complex acts as a dynamic hub for co-translational protein translocation at the ER, proactively recruiting a range of accessory complexes that enhance and regulate its function in response to different protein clients. It is now clear that the Sec61 complex does not have a monopoly on co-translational insertion, with some transmembrane proteins preferentially utilising the ER membrane complex instead. We also have a better understanding of post-insertion events, where at least one membrane-embedded chaperone complex can capture the newly inserted transmembrane domains of multi-span proteins and co-ordinate their assembly into a native structure. Having discovered this array of Sec61-associated components and competitors, our next challenge is to understand how they act together in order to expand the range and complexity of the membrane proteins that can be synthesised at the ER. Furthermore, this diversity of components and pathways may open up new opportunities for targeted therapeutic interventions designed to selectively modulate protein biogenesis at the ER.
Collapse
Affiliation(s)
- Sarah O'Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Martin R Pool
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
12
|
Yoo TY, Mitchison T. Quantification of nuclear transport inhibition by SARS-CoV-2 ORF6 using a broadly applicable live-cell dose-response pipeline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.12.10.472151. [PMID: 34931191 PMCID: PMC8687474 DOI: 10.1101/2021.12.10.472151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS coronavirus ORF6 inhibits the classical nuclear import pathway to antagonize host antiviral responses. Several models were proposed to explain its inhibitory function, but quantitative measurement is needed for model evaluation and refinement. We report a broadly applicable live-cell method for calibrated dose-response characterization of the nuclear transport alteration by a protein of interest. Using this method, we found that SARS-CoV-2 ORF6 is ~15 times more potent than SARS-CoV-1 ORF6 in inhibiting bidirectional nuclear transport, due to differences in the NUP98-binding C-terminal region that is required for the inhibition. The N-terminal region promotes membrane binding and was required for activity, but could be replaced by constructs which forced oligomerization in solution. Based on these data, we propose that the hydrophobic N-terminal region drives oligomerization of ORF6 to multivalently cross-link the FG domains of NUP98 at the nuclear pore complex, and this multivalent binding inhibits bidirectional transport.
Collapse
|
13
|
Tirincsi A, O’Keefe S, Nguyen D, Sicking M, Dudek J, Förster F, Jung M, Hadzibeganovic D, Helms V, High S, Zimmermann R, Lang S. Proteomics Identifies Substrates and a Novel Component in hSnd2-Dependent ER Protein Targeting. Cells 2022; 11:cells11182925. [PMID: 36139500 PMCID: PMC9496750 DOI: 10.3390/cells11182925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Importing proteins into the endoplasmic reticulum (ER) is essential for about 30% of the human proteome. It involves the targeting of precursor proteins to the ER and their insertion into or translocation across the ER membrane. Furthermore, it relies on signals in the precursor polypeptides and components, which read the signals and facilitate their targeting to a protein-conducting channel in the ER membrane, the Sec61 complex. Compared to the SRP- and TRC-dependent pathways, little is known about the SRP-independent/SND pathway. Our aim was to identify additional components and characterize the client spectrum of the human SND pathway. The established strategy of combining the depletion of the central hSnd2 component from HeLa cells with proteomic and differential protein abundance analysis was used. The SRP and TRC targeting pathways were analyzed in comparison. TMEM109 was characterized as hSnd3. Unlike SRP but similar to TRC, the SND clients are predominantly membrane proteins with N-terminal, central, or C-terminal targeting signals.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Sarah O’Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Mark Sicking
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | | | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
- Correspondence: (R.Z.); (S.L.)
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
- Correspondence: (R.Z.); (S.L.)
| |
Collapse
|
14
|
Liu XH, Cheng T, Liu BY, Chi J, Shu T, Wang T. Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development. Front Pharmacol 2022; 13:955648. [PMID: 36016554 PMCID: PMC9395726 DOI: 10.3389/fphar.2022.955648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 has raised a health crisis worldwide. The high morbidity and mortality associated with COVID-19 and the lack of effective drugs or vaccines for SARS-CoV-2 emphasize the urgent need for standard treatment and prophylaxis of COVID-19. The receptor-binding domain (RBD) of the glycosylated spike protein (S protein) is capable of binding to human angiotensin-converting enzyme 2 (hACE2) and initiating membrane fusion and virus entry. Hence, it is rational to inhibit the RBD activity of the S protein by blocking the RBD interaction with hACE2, which makes the glycosylated S protein a potential target for designing and developing antiviral agents. In this study, the molecular features of the S protein of SARS-CoV-2 are highlighted, such as the structures, functions, and interactions of the S protein and ACE2. Additionally, computational tools developed for the treatment of COVID-19 are provided, for example, algorithms, databases, and relevant programs. Finally, recent advances in the novel development of antivirals against the S protein are summarized, including screening of natural products, drug repurposing and rational design. This study is expected to provide novel insights for the efficient discovery of promising drug candidates against the S protein and contribute to the development of broad-spectrum anti-coronavirus drugs to fight against SARS-CoV-2.
Collapse
|
15
|
Synthesis, Biological Evaluation and Docking Studies of Ring-Opened Analogues of Ipomoeassin F. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144419. [PMID: 35889292 PMCID: PMC9320607 DOI: 10.3390/molecules27144419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
The plant-derived macrocyclic resin glycoside ipomoeassin F (Ipom-F) binds to Sec61α and significantly disrupts multiple aspects of Sec61-mediated protein biogenesis at the endoplasmic reticulum, ultimately leading to cell death. However, extensive assessment of Ipom-F as a molecular tool and a therapeutic lead is hampered by its limited production scale, largely caused by intramolecular assembly of the macrocyclic ring. Here, using in vitro and/or in cellula biological assays to explore the first series of ring-opened analogues for the ipomoeassins, and indeed all resin glycosides, we provide clear evidence that macrocyclic integrity is not required for the cytotoxic inhibition of Sec61-dependent protein translocation by Ipom-F. Furthermore, our modeling suggests that open-chain analogues of Ipom-F can interact with multiple sites on the Sec61α subunit, most likely located at a previously identified binding site for mycolactone and/or the so-called lateral gate. Subsequent in silico-aided design led to the discovery of the stereochemically simplified analogue 3 as a potent, alternative lead compound that could be synthesized much more efficiently than Ipom-F and will accelerate future ipomoeassin research in chemical biology and drug discovery. Our work may also inspire further exploration of ring-opened analogues of other resin glycosides.
Collapse
|
16
|
Pohl M, Martin-Sancho L, Ratnayake R, White KM, Riva L, Chen QY, Lieber G, Busnadiego I, Yin X, Lin S, Pu Y, Pache L, Rosales R, Déjosez M, Qin Y, De Jesus PD, Beall A, Yoh S, Hale BG, Zwaka TP, Matsunaga N, García-Sastre A, Stertz S, Chanda SK, Luesch H. Sec61 Inhibitor Apratoxin S4 Potently Inhibits SARS-CoV-2 and Exhibits Broad-Spectrum Antiviral Activity. ACS Infect Dis 2022; 8:1265-1279. [PMID: 35766385 PMCID: PMC9260726 DOI: 10.1021/acsinfecdis.2c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.
Collapse
Affiliation(s)
- Marie
O. Pohl
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Laura Martin-Sancho
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Ranjala Ratnayake
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center
for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Kris M. White
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
- Global Health
and Emerging Pathogens Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Laura Riva
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Qi-Yin Chen
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center
for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Gauthier Lieber
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Idoia Busnadiego
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Xin Yin
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Samuel Lin
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Yuan Pu
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lars Pache
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Romel Rosales
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
- Global Health
and Emerging Pathogens Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marion Déjosez
- Huffington
Center for Cell-based Research in Parkinson’s Disease, Black
Family Stem Cell Institute, Department of Cell, Developmental and
Regenerative Biology, Icahn School of Medicine
at Mount Sinai, New York, New York 10502, United States
| | - Yiren Qin
- Huffington
Center for Cell-based Research in Parkinson’s Disease, Black
Family Stem Cell Institute, Department of Cell, Developmental and
Regenerative Biology, Icahn School of Medicine
at Mount Sinai, New York, New York 10502, United States
| | - Paul D. De Jesus
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Anne Beall
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Sunnie Yoh
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Benjamin G. Hale
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas P. Zwaka
- Huffington
Center for Cell-based Research in Parkinson’s Disease, Black
Family Stem Cell Institute, Department of Cell, Developmental and
Regenerative Biology, Icahn School of Medicine
at Mount Sinai, New York, New York 10502, United States
| | - Naoko Matsunaga
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Adolfo García-Sastre
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
- Global Health
and Emerging Pathogens Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- The
Tisch Cancer Institute, Icahn School of
Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Silke Stertz
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Sumit K. Chanda
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center
for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
17
|
Fan BY, Jiang X, Li YX, Wang WL, Yang M, Li JL, Wang AD, Chen GT. Chemistry and biological activity of resin glycosides from Convolvulaceae species. Med Res Rev 2022; 42:2025-2066. [PMID: 35707917 DOI: 10.1002/med.21916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/12/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Abstract
Carbohydrate-based drug discovery has gained more and more attention during the last few decades. Resin glycoside is a kind of novel and complex glycolipids mainly distributed in plants of the family Convolvulaceae. Over the last decade, a number of natural resin glycosides and derivatives have been isolated and identified, and exhibited a broad spectrum of biological activities, such as cytotoxic, multidrug-resistant reversal on both microbial pathogens and mammalian cancer cells, antivirus, anticonvulsant, antidepressant, sedative, vasorelaxant, laxative, and α-glucosidase inhibitory effects, indicating their potential as lead compounds for drug discovery. A systematic review of the literature studies was carried out to summarize the chemistry and biological activity of resin glycosides from Convolvulaceae species, based on various data sources such as PubMed, Web of Science, Scopus, and Google scholar. The keyword "Convolvulaceae" was paired with "resin glycoside," "glycosidic acid," "glycolipid," or "oligosaccharide," and the references published between 2009 and June 2021 were covered. In this article, we comprehensively reviewed the structures of 288 natural resin glycoside and derivatives newly reported in the last decade. Moreover, we summarized the biological activities and mechanisms of action of the resin glycosides with pharmaceutical potential. Taken together, great progress has been made on the chemistry and biological activity of resin glycosides from Convolvulaceae species, however, more exploratory research is still needed, especially on the mechanism of action of the biological activities.
Collapse
Affiliation(s)
- Bo-Yi Fan
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xing Jiang
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Xin Li
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wen-Li Wang
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Min Yang
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jian-Lin Li
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - An-Dong Wang
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Guang-Tong Chen
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
18
|
Leznicki P, Schneider HO, Harvey JV, Shi WQ, High S. Co-translational biogenesis of lipid droplet integral membrane proteins. J Cell Sci 2022; 135:272279. [PMID: 34558621 PMCID: PMC8627552 DOI: 10.1242/jcs.259220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Membrane proteins destined for lipid droplets (LDs), a major intracellular storage site for neutral lipids, are inserted into the endoplasmic reticulum (ER) and then trafficked to LDs where they reside in a hairpin loop conformation. Here, we show that LD membrane proteins can be delivered to the ER either co- or post-translationally and that their membrane-embedded region specifies pathway selection. The co-translational route for LD membrane protein biogenesis is insensitive to a small molecule inhibitor of the Sec61 translocon, Ipomoeassin F, and instead relies on the ER membrane protein complex (EMC) for membrane insertion. This route may even result in a transient exposure of the short N termini of some LD membrane proteins to the ER lumen, followed by putative topological rearrangements that would enable their transmembrane segment to form a hairpin loop and N termini to face the cytosol. Our study reveals an unexpected complexity to LD membrane protein biogenesis and identifies a role for the EMC during their co-translational insertion into the ER. Summary: Insertion of many lipid droplet membrane proteins into the ER is co-translational, mediated by the ER membrane protein complex and may involve topology reorientation.
Collapse
Affiliation(s)
- Pawel Leznicki
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | | | - Jada V Harvey
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
19
|
Wong HT, Cheung V, Salamango DJ. Decoupling SARS-CoV-2 ORF6 localization and interferon antagonism. J Cell Sci 2022; 135:274474. [DOI: 10.1242/jcs.259666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Like many pathogenic viruses, SARS-CoV-2 must overcome interferon (IFN)-mediated host defenses for infection establishment. To achieve this, SARS-CoV-2 deploys overlapping mechanisms to antagonize IFN production and signaling. The strongest IFN antagonist is the accessory protein ORF6, which localizes to multiple membranous compartments, including the nuclear envelope, where it directly binds nuclear pore components Nup98-Rae1 to inhibit nuclear translocation of activated STAT1/IRF3 transcription factors. However, this direct cause-and-effect relationship between ORF6 localization and IFN antagonism has yet to be explored experimentally. Here, we use extensive mutagenesis studies to define the structural determinants required for steady-state localization and demonstrate that mis-localized ORF6 variants still potently inhibit nuclear trafficking and IFN signaling. Additionally, expression of a peptide that mimics the ORF6/Nup98 interaction domain robustly blocked nuclear trafficking. Furthermore, pharmacologic and mutational approaches combined to suggest that ORF6 is likely a peripheral-membrane protein, opposed to being a transmembrane protein as previously speculated. Thus, ORF6 localization and IFN antagonism are independent activities, which raises the possibility that ORF6 may have additional functions within membrane networks to enhance virus replication.
Collapse
Affiliation(s)
- Hoi Tong Wong
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Victoria Cheung
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 1194, USA
| | - Daniel J. Salamango
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, 11794, USA
| |
Collapse
|
20
|
Kitamura T, Suzuki R, Inuki S, Ohno H, McPhail KL, Oishi S. Design of Coibamide A Mimetics with Improved Cellular Bioactivity. ACS Med Chem Lett 2022; 13:105-110. [PMID: 35059129 PMCID: PMC8762706 DOI: 10.1021/acsmedchemlett.1c00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Coibamide A, a cyclic depsipeptide isolated from a Panamanian marine cyanobacterium, shows potent cytotoxic activity via the inhibition of the Sec61 translocon. We designed a coibamide A mimetic in which the ester linkage between MeThr and d-MeAla in coibamide A was replaced with an alkyl linker to provide a stable macrocyclic scaffold possessing a MeLys(Me) residue. Taking advantage of a facile solid-phase synthetic approach, an structure-activity relationship (SAR) study of the newly designed macrocyclic structure was performed, with a focus on altering the pattern of N-methyl substitution and amino acid configurations. Overall, the simplified macrocyclic scaffold with an alkyl linker resulted in a significantly reduced cytotoxicity. Instead, more potent coibamide A derivatives with a β-(4-biphenylyl)alanine (Bph) group were identified after the optimization of the Tyr(Me) position in the original macrocyclic scaffold of coibamide A based on the characteristic apratoxin A substructures. The similar SAR between coibamide A and apratoxin A suggests that the binding site of the Tyr(Me) side chain at the luminal end of Sec61α may be shared.
Collapse
Affiliation(s)
- Takashi Kitamura
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rikito Suzuki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Department
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Shinsuke Inuki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Department
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
21
|
Inhibitors of the Sec61 Complex and Novel High Throughput Screening Strategies to Target the Protein Translocation Pathway. Int J Mol Sci 2021; 22:ijms222112007. [PMID: 34769437 PMCID: PMC8585047 DOI: 10.3390/ijms222112007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proteins targeted to the secretory pathway start their intracellular journey by being transported across biological membranes such as the endoplasmic reticulum (ER). A central component in this protein translocation process across the ER is the Sec61 translocon complex, which is only intracellularly expressed and does not have any enzymatic activity. In addition, Sec61 translocon complexes are difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its function has thus been notoriously difficult. However, such translocation inhibitors may not only be valuable tools for cell biology, but may also represent novel anticancer drugs, given that cancer cells heavily depend on efficient protein translocation into the ER to support their fast growth. In this review, different inhibitors of protein translocation will be discussed, and their specific mode of action will be compared. In addition, recently published screening strategies for small molecule inhibitors targeting the whole SRP-Sec61 targeting/translocation pathway will be summarized. Of note, slightly modified assays may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex, in order to identify novel antibiotic drugs.
Collapse
|
22
|
O’Keefe S, Zong G, Duah KB, Andrews LE, Shi WQ, High S. An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum. Commun Biol 2021; 4:828. [PMID: 34211117 PMCID: PMC8249459 DOI: 10.1038/s42003-021-02363-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
The heterotrimeric Sec61 complex is a major site for the biogenesis of transmembrane proteins (TMPs), accepting nascent TMP precursors that are targeted to the endoplasmic reticulum (ER) by the signal recognition particle (SRP). Unlike most single-spanning membrane proteins, the integration of type III TMPs is completely resistant to small molecule inhibitors of the Sec61 translocon. Using siRNA-mediated depletion of specific ER components, in combination with the potent Sec61 inhibitor ipomoeassin F (Ipom-F), we show that type III TMPs utilise a distinct pathway for membrane integration at the ER. Hence, following SRP-mediated delivery to the ER, type III TMPs can uniquely access the membrane insertase activity of the ER membrane complex (EMC) via a mechanism that is facilitated by the Sec61 translocon. This alternative EMC-mediated insertion pathway allows type III TMPs to bypass the Ipom-F-mediated blockade of membrane integration that is seen with obligate Sec61 clients.
Collapse
Affiliation(s)
- Sarah O’Keefe
- grid.5379.80000000121662407School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Guanghui Zong
- grid.164295.d0000 0001 0941 7177Department of Chemistry and Biochemistry, University of Maryland, College Park, MD USA
| | - Kwabena B. Duah
- grid.252754.30000 0001 2111 9017Department of Chemistry, Ball State University, Muncie, IN USA
| | - Lauren E. Andrews
- grid.252754.30000 0001 2111 9017Department of Chemistry, Ball State University, Muncie, IN USA
| | - Wei Q. Shi
- grid.252754.30000 0001 2111 9017Department of Chemistry, Ball State University, Muncie, IN USA
| | - Stephen High
- grid.5379.80000000121662407School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021; 9:689. [PMID: 34207313 PMCID: PMC8234041 DOI: 10.3390/biomedicines9060689] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
As a public health emergency of international concern, the highly contagious coronavirus disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant challenges to both human health and economic development. Natural products may play a pivotal role in treating lung diseases. We reviewed published studies relating to natural products, used alone or in combination with US Food and Drug Administration-approved drugs, active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to 31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-lung cancer agents have gained widespread attention, including natural products as monotherapy for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated potential value and with the assistance of nanotechnology, combination drug therapies, and the codrug strategy, this "natural remedy" could serve as a starting point for further drug development in treating these lung diseases.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Understanding individual SARS-CoV-2 proteins for targeted drug development against COVID-19. Mol Cell Biol 2021; 41:e0018521. [PMID: 34124934 PMCID: PMC8384068 DOI: 10.1128/mcb.00185-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic, responsible for millions of deaths globally. Even with effective vaccines, SARS-CoV-2 will likely maintain a hold in the human population through gaps in efficacy, percent vaccinated, and arising new strains. Therefore, understanding how SARS-CoV-2 causes widespread tissue damage and the development of targeted pharmacological treatments will be critical in fighting this virus and preparing for future outbreaks. Herein, we summarize the progress made thus far by using in vitro or in vivo models to investigate individual SARS-CoV-2 proteins and their pathogenic mechanisms. We have grouped the SARS-CoV-2 proteins into three categories: host entry, self-acting, and host interacting. This review focuses on the self-acting and host-interacting SARS-CoV-2 proteins and summarizes current knowledge on how these proteins promote virus replication and disrupt host systems, as well as drugs that target the virus and virus interacting host proteins. Encouragingly, many of these drugs are currently in clinical trials for the treatment of COVID-19. Future coronavirus outbreaks will most likely be caused by new virus strains that evade vaccine protection through mutations in entry proteins. Therefore, study of individual self-acting and host-interacting SARS-CoV-2 proteins for targeted therapeutic interventions is not only essential for fighting COVID-19 but also valuable against future coronavirus outbreaks.
Collapse
|
25
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
26
|
First person – Sarah O'Keefe. J Cell Sci 2021. [DOI: 10.1242/jcs.258479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Sarah O'Keefe is first author on ‘Ipomoeassin-F inhibits the in vitro biogenesis of the SARS-CoV-2 spike protein and its host cell membrane receptor’, published in JCS. Sarah is a postdoc in the lab of Stephen High at the School of Biological Sciences, University of Manchester, UK, where she is developing small molecule inhibitors for the benefit of human health.
Collapse
|