1
|
Chembazhi UV, Bangru S, Dutta R, Das D, Peiffer B, Natua S, Toohill K, Leona A, Purwar I, Bhowmik A, Goyal Y, Sun Z, Diehl AM, Kalsotra A. Dysregulated RNA splicing induces regeneration failure in alcohol-associated liver disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626099. [PMID: 39651310 PMCID: PMC11623683 DOI: 10.1101/2024.11.29.626099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Individuals with progressive liver failure are at a high risk of mortality without liver transplantation. However, our understanding of derailed regenerative responses in failing livers is limited. Here, we performed comprehensive multi-omic profiling of healthy and diseased human livers using bulk and single-nucleus RNA-plus ATAC-seq. We report that hepatic immune milieu alterations in alcohol-associated liver disease (ALD) prevent hepatocytes from transitioning to a proliferative progenitor-like state, trapping them into an unproductive intermediate state. We discovered striking changes in RNA binding protein (RBP) expression, particularly ESRP, PTBP, and SR families, that cause misregulation of developmentally controlled RNA splicing in ALD. Our data pinpoint ESRP2 as a pivotal disease-sensitive RBP and support a causal role of its deficiency in ALD pathogenesis. Notably, splicing defects in ESRP2-targets Tcf4 and Slk , amongst others, directly alter their nuclear localization and activities, disrupting WNT and Hippo signaling pathways, which are critical for normal liver regeneration. We demonstrate that changes in stromal cell populations enrich failing ALD livers with TGF-β, which suppresses ESRP2-driven epithelial splicing program and replaces functional parenchyma with quasi-progenitor-like cells lacking liver-specific functions. This unprecedented account of transcriptional and post-transcriptional dysregulation in ALD suggests that targeting misspliced RNAs could improve recovery and serve as biomarkers for poor ALD outcomes.
Collapse
|
2
|
Delisle SV, Labreche C, Lara-Márquez M, Abou-Hamad J, Garland B, Lamarche-Vane N, Sabourin LA. Expression of a kinase inactive SLK is embryonic lethal and impairs cell migration in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119783. [PMID: 38871226 DOI: 10.1016/j.bbamcr.2024.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Kinases are known to have kinase activity independent functions. To gain further insights into potential kinase-independent functions of SLK/STK2, we have developed a kinase-dead allele, SLKK63R using in vivo CRISPR/Cas technology. Our studies show that blastocysts homozygote for SLKK63R do not develop into viable mice. However, heterozygotes are viable and fertile with no overt phenotypes. Analyses of mouse embryonic fibroblasts show that expression of SLKK63R results in a 50% decrease in kinase activity in heterozygotes. In contrast to previous studies, our data show that SLK does not form homodimers and that the kinase defective allele does not act in a dominant negative fashion. Expression of SLKK63R leads to altered Rac1 and RhoA activity, increased stress fiber formation and delayed focal adhesion turnover. Our data support a previously observed role for SLK in cell migration and suggest that at least 50% kinase activity is sufficient for embryonic development.
Collapse
Affiliation(s)
- Samuel V Delisle
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Cedrik Labreche
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mónica Lara-Márquez
- Cancer Research Program, Research Institute of the McGill University Health Centre and Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - John Abou-Hamad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Dept. of Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brennan Garland
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre and Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Luc A Sabourin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Dept. of Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Wu X, Zhang Z, Qiu Z, Wu X, Chen J, Liu L, Liu X, Zhao S, Yang Y, Zhao Y. TNIK in disease: from molecular insights to therapeutic prospects. Apoptosis 2024:10.1007/s10495-024-01987-w. [PMID: 38853204 DOI: 10.1007/s10495-024-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
TRAF2 and NCK interacting kinase (TNIK), a critical interacting protein kinase, is currently receiving wide attention. TNIK is found in various human body organs and tissues and participates in cell motility, proliferation, and differentiation. On the one hand, its aberrant expression is related to the onset and progression of numerous malignant tumors. On the other hand, TNIK is important in neuronal growth, proliferation, differentiation, and synaptic formation. Thus, the novel therapeutic strategies for targeting TNIK offer a promising direction for cancer, neurological or psychotic disorders. Here, we briefly summarized the biological information of TNIK, reviewed the role and regulatory mechanism in cancer and neuropsychiatric diseases, and introduced the research progress of inhibitors targeting TNIK. Taken together, this review hopes to contribute to the in-depth understanding of the function and regulatory mechanism of TNIK, which is of great significance for revealing the role of TNIK in the occurrence and treatment of diseases.
Collapse
Affiliation(s)
- Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Zhenye Qiu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Lu Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Shiyan Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China.
| | - Ye Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
4
|
Cybulsky AV, Papillon J, Bryan C, Navarro‐Betancourt JR, Sabourin LA. Role of the Ste20-like kinase SLK in podocyte adhesion. Physiol Rep 2024; 12:e15897. [PMID: 38163671 PMCID: PMC10758337 DOI: 10.14814/phy2.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Joan Papillon
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Craig Bryan
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - José R. Navarro‐Betancourt
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Luc A. Sabourin
- Ottawa Hospital Research Institute, Cancer TherapeuticsOttawaOntarioCanada
| |
Collapse
|
5
|
Yoder MD, Van Osten S, Weber GF. Gene expression analysis of the Tao kinase family of Ste20p-like map kinase kinase kinases during early embryonic development in Xenopus laevis. Gene Expr Patterns 2023; 48:119318. [PMID: 37011704 PMCID: PMC10453956 DOI: 10.1016/j.gep.2023.119318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Development of the vertebrate embryo requires strict coordination of a highly complex series of signaling cascades, that drive cell proliferation, differentiation, migration, and the general morphogenetic program. Members of the Map kinase signaling pathway are repeatedly required throughout development to activate the downstream effectors, ERK, p38, and JNK. Regulation of these pathways occurs at many levels in the signaling cascade, with the Map3Ks playing an essential role in target selection. The thousand and one amino acid kinases (Taoks) are Map3Ks that have been shown to activate both p38 and JNK and are linked to neurodevelopment in both invertebrate and vertebrate organisms. In vertebrates, there are three Taok paralogs (Taok1, Taok2, and Taok3) which have not yet been ascribed a role in early development. Here we describe the spatiotemporal expression of Taok1, Taok2, and Taok3 in the model organism Xenopus laevis. The X. laevis Tao kinases share roughly 80% identity to each other, with the bulk of the conservation in the kinase domain. Taok1 and Taok3 are highly expressed in pre-gastrula and gastrula stage embryos, with initial expression localized to the animal pole and later expression in the ectoderm and mesoderm. All three Taoks are expressed in the neural and tailbud stages, with overlapping expression in the neural tube, notochord, and many anterior structures (including branchial arches, brain, otic vesicles, and eye). The expression patterns described here provide evidence that the Tao kinases may play a central role in early development, in addition to their function during neural development, and establish a framework to better understand the developmental roles of Tao kinase signaling.
Collapse
Affiliation(s)
- Michael D Yoder
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| | - Steven Van Osten
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, PA, 19063, USA.
| | - Gregory F Weber
- Department of Biology, University of Indianapolis, Indianapolis, IN, 46227, USA.
| |
Collapse
|
6
|
Qiu J, Xiong J, Jiang L, Wang X, Zhang K, Yu H. Molecular mechanisms involved in regulating protein activity and biological function of MST3. Cell Div 2023; 18:8. [PMID: 37202821 DOI: 10.1186/s13008-023-00090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
Mammalian sterile 20-like (Ste20-like) protein kinase 3 (MST3) or serine/threonine-protein kinase 24 (STK24) is a serine/threonine protein kinase that belongs to the mammalian STE20-like protein kinase family. MST3 is a pleiotropic protein that plays a critical role in regulating a variety of events, including apoptosis, immune response, metabolism, hypertension, tumor progression, and development of the central nervous system. The MST3-mediated regulation is intricately related to protein activity, post-translational modification, and subcellular location. Here, we review the recent progress on the regulatory mechanisms against MST3 and its-mediated control of disease progression.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junzhi Xiong
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Jiang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xinmin Wang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yu
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
7
|
Xu WT, Shi LL, Xu J, Qian H, Zhou H, Wang LH. Ezrin expression in female reproductive tissues: A review of regulation and pathophysiological implications. Front Cell Dev Biol 2023; 11:1125881. [PMID: 36968198 PMCID: PMC10030596 DOI: 10.3389/fcell.2023.1125881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Ezrin, a plasma membrane-microfilament linker, is a cytoskeletal organizer involved in many cellular activities by binding to the membrane protein-ezrin-cytoskeletal protein complex and regulating downstream signal transduction. Increasing evidence demonstrates that ezrin plays an important role in regulating cell polarity, proliferation and invasion. In this study, we analyzed the effects of ezrin on oocytes, follicle development, embryo development and embryo implantation. We reviewed the recent studies on the modalities of ezrin regulation and its involvement in the biological processes of female reproductive physiology and summarized the current research advances in ezrin inhibitors. These studies will provide new strategies and insights for the treatment of diseases.
Collapse
Affiliation(s)
- Wen-Ting Xu
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Ling-Li Shi
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Jie Xu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Huifang Zhou
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huifang Zhou, ; Li-Hong Wang,
| | - Li-Hong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
- *Correspondence: Huifang Zhou, ; Li-Hong Wang,
| |
Collapse
|
8
|
Song K, Jiang X, Xu X, Chen Y, Zhang J, Tian Y, Wang Q, Weng J, Liang Y, Ma W. Ste20-like kinase activity promotes meiotic resumption and spindle microtubule stability in mouse oocytes. Cell Prolif 2022; 56:e13391. [PMID: 36579845 PMCID: PMC10068952 DOI: 10.1111/cpr.13391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Ste20-like kinase (SLK) is involved in cell proliferation and migration in somatic cells. This study aims to explore SLK expression and function in mouse oocyte meiosis. Western blot, immunofluorescence, Co-immunoprecipitation, drug treatment, cRNA construct and in vitro transcription, microinjection of morpholino oilgo (MO) and cRNA were performed in oocytes. High and stable protein expression of SLK was detected in mouse oocyte meiosis, with dynamic distribution in the nucleus, chromosomes and spindle apparatus. SLK phosphorylation emerges around meiotic resumption and reaches a peak during metaphase I (MI) and metaphase II. SLK knockdown with MO or expression of kinase-dead SLK K63R dramatically delays meiotic resumption due to sequentially suppressed phosphorylation of Polo-like kinase 1 (Plk1) and cell division cycle 25C (CDC25C) and dephosphorylation of cyclin-dependent kinase 1 (CDK1). SLK depletion promotes ubiquitination-mediated degradation of paxillin, an antagonist to α-tubulin deacetylation, and thus destroys spindle assembly and chromosome alignment; these phenotypes can be substantially rescued by exogenous expression of SLK kinase active fragment. Additionally, exogenous SLK effectively promotes meiotic progression and spindle assembly in aging oocytes with reduced SLK. Collectively, this study reveals SLK is required for meiotic resumption and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Ke Song
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Jiang
- Division of Sport Anatomy, School of Sport Science, Beijing Sport University, Beijing, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ye Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Royero P, Quatraccioni A, Früngel R, Silva MH, Bast A, Ulas T, Beyer M, Opitz T, Schultze JL, Graham ME, Oberlaender M, Becker A, Schoch S, Beck H. Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase. Cell Rep 2022; 41:111757. [PMID: 36476865 PMCID: PMC9756112 DOI: 10.1016/j.celrep.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding.
Collapse
Affiliation(s)
- Pedro Royero
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Anne Quatraccioni
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Rieke Früngel
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Arco Bast
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Beyer
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany
| | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Mark E. Graham
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Albert Becker
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany,Corresponding author
| |
Collapse
|