1
|
Tam KT, Baar K. Using load to improve tendon/ligament tissue engineering and develop novel treatments for tendinopathy. Matrix Biol 2025; 135:39-54. [PMID: 39645093 DOI: 10.1016/j.matbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Tendon and ligament injuries are highly prevalent but heal poorly, even with proper care. Restoration of native tissue function is complicated by the fact that these tissues vary anatomically in terms of their mechanical properties, composition, and structure. These differences develop as adaptations to diverse mechanical demands; however, pathology may alter the loads placed on the tissue. Musculoskeletal loads can be generally categorized into tension, compression, and shear. Each of these regulate distinct molecular pathways that are involved in tissue remodeling, including many of the canonical tenogenic genes. In this review, we provide a perspective on the stage-specific regulation of mechanically sensitive pathways during development and maturation of tendon and ligament tissue, including scleraxis, mohawk, and others. Furthermore, we discuss structural features of healing and diseased tendon that may contribute to aberrant loading profiles, and how the associated disturbance in molecular signaling may contribute to incomplete healing or the formation of degenerative phenotypes. The perspectives provided here draw from studies spanning in vitro, animal, and human experiments of healthy and diseased tendon to propose a more targeted approach to advance rehabilitation, orthobiologics, and tissue engineering.
Collapse
Affiliation(s)
- Kenneth T Tam
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA 95616, USA; Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Keith Baar
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA 95616, USA; Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; VA Northern California Health Care System, Mather, CA 95655, USA.
| |
Collapse
|
2
|
Oishi M, Shinjo K, Takanari K, Muraoka A, Suzuki MM, Kanbe M, Higuchi S, Ebisawa K, Hashikawa K, Kamei Y, Kondo Y. Exclusive expression of KANK4 promotes myofibroblast mobility in keloid tissues. Sci Rep 2024; 14:8725. [PMID: 38622256 PMCID: PMC11018845 DOI: 10.1038/s41598-024-59293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Keloids are characterized by abnormal wound healing with excessive accumulation of extracellular matrix. Myofibroblasts are the primary contributor to extracellular matrix secretion, playing an essential role in the wound healing process. However, the differences between myofibroblasts involved in keloid formation and normal wound healing remain unclear. To identify the specific characteristics of keloid myofibroblasts, we initially assessed the expression levels of well-established myofibroblast markers, α-smooth muscle actin (α-SMA) and transgelin (TAGLN), in scar and keloid tissues (n = 63 and 51, respectively). Although myofibroblasts were present in significant quantities in keloids and immature scars, they were absent in mature scars. Next, we conducted RNA sequencing using myofibroblast-rich areas from keloids and immature scars to investigate the difference in RNA expression profiles among myofibroblasts. Among significantly upregulated 112 genes, KN motif and ankyrin repeat domains 4 (KANK4) was identified as a specifically upregulated gene in keloids. Immunohistochemical analysis showed that KANK4 protein was expressed in myofibroblasts in keloid tissues; however, it was not expressed in any myofibroblasts in immature scar tissues. Overexpression of KANK4 enhanced cell mobility in keloid myofibroblasts. Our results suggest that the KANK4-mediated increase in myofibroblast mobility contributes to keloid pathogenesis.
Collapse
Affiliation(s)
- Mayumi Oishi
- Department of Plastic and Reconstructive Surgery, Aichi Children's Health and Medical Center, Obu, Japan
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Keisuke Takanari
- Division of Plastic and Reconstructive Surgery, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ayako Muraoka
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho M Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Miki Kanbe
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Shinichi Higuchi
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Katsumi Ebisawa
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Kazunobu Hashikawa
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Yuzuru Kamei
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan.
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Schmitt HM, Hake KM, Perkumas KM, Lê BM, Suarez MF, De Ieso ML, Rahman RS, Johnson WM, Gomez-Caraballo M, Ashley-Koch AE, Hauser MA, Stamer WD. Lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) lncRNA differentially regulates gene and protein expression, signaling and morphology of human ocular cells. Hum Mol Genet 2023; 32:3053-3062. [PMID: 37540217 PMCID: PMC10586201 DOI: 10.1093/hmg/ddad128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Pseudoexfoliation glaucoma (PEXG) is characterized by dysregulated extracellular matrix (ECM) homeostasis that disrupts conventional outflow function and increases intraocular pressure (IOP). Prolonged IOP elevation results in optic nerve head damage and vision loss. Uniquely, PEXG is a form of open angle glaucoma that has variable penetrance, is difficult to treat and does not respond well to common IOP-lowering pharmaceuticals. Therefore, understanding modulators of disease severity will aid in targeted therapies for PEXG. Genome-wide association studies have identified polymorphisms in the long non-coding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) as a risk factor for PEXG. Risk alleles, oxidative stress and mechanical stretch all alter LOXL1-AS1 expression. As a long non-coding RNA, LOXL1-AS1 binds hnRNPL and regulates global gene expression. In this study, we focus on the role of LOXL1-AS1 in the ocular cells (trabecular meshwork and Schlemm's canal) that regulate IOP. We show that selective knockdown of LOXL1-AS1 leads to cell-type-specific changes in gene expression, ECM homeostasis, signaling and morphology. These results implicate LOXL1-AS1 as a modulator of cellular homeostasis, altering cell contractility and ECM turnover, both of which are well-known contributors to PEXG. These findings support LOXL1-AS1 as a key target for modifying the disease.
Collapse
Affiliation(s)
- Heather M Schmitt
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kristyn M Hake
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Brandon M Lê
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Maria F Suarez
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Rashad S Rahman
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - William M Johnson
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Michael A Hauser
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| |
Collapse
|