1
|
Liao W, Lauga E. Axisymmetric thermoviscous and thermal expansion flows for microfluidics. JOURNAL OF ENGINEERING MATHEMATICS 2025; 152:6. [PMID: 40292008 PMCID: PMC12031818 DOI: 10.1007/s10665-025-10445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/22/2025] [Indexed: 04/30/2025]
Abstract
Recent microfluidic experiments have explored the precise positioning of micron-sized particles in liquid environments via laser-induced thermoviscous flow. From micro-robotics to biology at the subcellular scale, this versatile technique has found a broad range of applications. Through the interplay between thermal expansion and thermal viscosity changes, the repeated scanning of the laser along a scan path results in fluid flow and hence net transport of particles, without physical channels. Building on previous work focusing on two-dimensional microfluidic settings, we present an analytical, theoretical model for the thermoviscous and thermal expansion flows and net transport induced by a translating heat spot in three-dimensional, unconfined fluid. We first numerically solve for the temperature field due to a translating heat source in the experimentally relevant limit. Then, in our flow model, the small, localised temperature increase causes local changes in the mass density, shear viscosity and bulk viscosity of the fluid. We derive analytically the instantaneous flow generated during one scan and compute the net transport of passive tracers due to a full scan, up to quadratic order in the thermal expansion and thermal shear viscosity coefficients. We further show that the flow and transport are independent of bulk viscosity. In the far field, while the leading-order instantaneous flow is typically a three-dimensional source or sink, the leading-order average velocity of tracers is instead a source dipole, whose strength depends on the relative magnitudes of the thermal expansion and thermal shear viscosity coefficients. Our quantitative results reveal the potential for future three-dimensional net transport and manipulation of particles at the microscale.
Collapse
Affiliation(s)
- Weida Liao
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA UK
| |
Collapse
|
2
|
Barbosa DJ, Carvalho C, Costa I, Silva R. Molecular Motors in Myelination and Their Misregulation in Disease. Mol Neurobiol 2025; 62:4705-4723. [PMID: 39477877 PMCID: PMC11880050 DOI: 10.1007/s12035-024-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/21/2024] [Indexed: 03/05/2025]
Abstract
Molecular motors are cellular components involved in the intracellular transport of organelles and materials to ensure cell homeostasis. This is particularly relevant in neurons, where the synaptic components synthesized in the soma need to travel over long distances to their destination. They can walk on microtubules (kinesins and dyneins) or actin filaments (myosins), the major components of cell cytoskeleton. While kinesins mostly perform the anterograde transport of intracellular components toward the plus ends of microtubules located distally in cell processes, cytoplasmic dyneins allow the retrograde flux of intracellular cargo toward the minus ends of microtubules located at the cell soma. Axon myelination represents a major aspect of neuronal maturation and is essential for neuronal function, as it speeds up the transmission of electrical signals. Increasing evidence supports a role for molecular motors in the homeostatic control of myelination. This role includes the trafficking of myelin components along the processes of myelinating cells and local regulation of pathways that ensure axon wrapping. Dysfunctional control of the intracellular transport machinery has therefore been linked to several brain pathologies, including demyelinating diseases. These disorders include a broad spectrum of conditions characterized by pathological demyelination of axons within the nervous system, ultimately leading to axonal degeneration and neuronal death, with multiple sclerosis representing the most prevalent and studied condition. This review highlights the involvement of molecular motors in the homeostatic control of myelination. It also discusses studies that have yielded insights into the dysfunctional activity of molecular motors in the pathophysiology of multiple sclerosis.
Collapse
Affiliation(s)
- Daniel José Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Cátia Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
3
|
Htet PH, Lauga E. Analytical methods for cytoplasmic streaming in elongated cells. PNAS NEXUS 2025; 4:pgaf057. [PMID: 40104685 PMCID: PMC11914321 DOI: 10.1093/pnasnexus/pgaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Cytoplasmic streaming, the coherent flow of cytoplasm, plays a critical role in transport and mixing over large scales in eukaryotic cells. In many large cells, this process is driven by active forces at the cell boundary, such as cortical cytoskeletal contractions in Drosophila and Caenorhabiditis elegans embryos, or intracellular cargo transport in plant cells. These cytoplasmic flows are approximately Newtonian and governed by the Stokes equations. In this article, we use lubrication theory-a powerful technique for simplifying the fluid mechanics equations in elongated geometries-to derive a general solution for boundary-driven cytoplasmic flows. We apply this framework to predict cytoplasmic fluid dynamics and cortical stresses in four systems of biological significance: the Drosophila and C. elegans embryos (including pseudocleavage furrow formation), the pollen tube of seed plants, and plant root hair cells. Our results showcase the elegance and accuracy of asymptotic solutions in capturing the complex flows and stress patterns in diverse biological contexts, reinforcing its utility as a robust tool for cellular biophysics.
Collapse
Affiliation(s)
- Pyae Hein Htet
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
4
|
Bulychev AA, Krupenina NA. Microfluidic communications in characean internodes at neutral and alkaline external pH. PHYSIOLOGIA PLANTARUM 2025; 177:e70211. [PMID: 40207707 DOI: 10.1111/ppl.70211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Intracellular communications mediated by cytoplasmic streaming compensate for the slowness of diffusion on large scale distances. In characean internodes, cyclosis serves to smooth concentration gradients related to local structural distinctions, irregular spotted illumination, and patterned profiles of external pH. In dimly lit Chara cells, the fluidic transmission of reducing equivalents from the spot of bright light incidence to a remote analyzed area transiently elevates the actual yield of chlorophyll fluorescence (F') under natural acidic zones with little effect on F' under alkaline bands. Here, the natural formation of alkaline zones was imitated by placing the internodal cell part into a solution with a pH of 9.5. Using PAM microfluorometry, we found that chloroplasts located under an alkaline solution retained the perception of reducing equivalents transported with the fluid flow but, in addition, became responsive to another transportable metabolite that promoted strong quenching of both F'm and F' fluorescence. The superposition of oppositely directed F' responses to distinct cyclosis-transported metabolites resulted in the seeming suppression of microfluidic interactions between distant chloroplasts. The action potential generation did not affect F'm fluorescence (an indicator of non-photochemical quenching, NPQ) when the cell was bathed at neutral pH but induced strong NPQ in the high pH solution. We propose that the restricted CO2 supply at high external pH induces the rearrangement of electron transport to alternative pathways, which elevates the background level of NPQ-promoting metabolite (supposedly H2O2), thus enhancing the chloroplast sensitivity to H2O2 portions delivered with the fluid flow from the region subjected to intense local light.
Collapse
Affiliation(s)
- Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A Krupenina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Akenuwa OH, Abel SM. Polarity sorting of actin filaments by motor-driven cargo transport. Biophys J 2025; 124:704-716. [PMID: 39827370 PMCID: PMC11900188 DOI: 10.1016/j.bpj.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
During the active transport of cellular cargo, forces generated by cargo-associated molecular motors propel the cargo along cytoskeletal tracks. However, the forces impact not only the cargo, but also the underlying cytoskeletal filaments. To better understand the interplay between cargo transport and the organization of cytoskeletal filaments, we employ coarse-grained computer simulations to study actin filaments interacting with cargo-anchored myosin motors in a confined domain. We show that cargo transport can lead to the segregation of filaments into domains of preferred filament polarity separated by clusters of aggregated cargoes. The formation of polarity-sorted filament domains is enhanced by larger numbers of cargoes, more motors per cargo, and longer filaments. Analysis of individual trajectories reveals dynamic and heterogeneous behavior, including locally stable aggregates of cargoes that undergo rapid coalescence into larger clusters when sufficiently close. Our results provide insight into the impact of motor-driven organelle transport on actin filaments, which is relevant both in cells and in synthetic environments.
Collapse
Affiliation(s)
- Oghosa H Akenuwa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
6
|
Petridou NI. Flow, sense and divide. Nat Cell Biol 2025; 27:176-177. [PMID: 39890955 DOI: 10.1038/s41556-024-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
7
|
Balachandra S, Amodeo AA. Bellymount-pulsed tracking: a novel approach for real-time in vivo imaging of Drosophila abdominal tissues. G3 (BETHESDA, MD.) 2025; 15:jkae271. [PMID: 39556480 PMCID: PMC11708215 DOI: 10.1093/g3journal/jkae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Quantitative live imaging is a valuable tool that offers insights into cellular dynamics. However, many fundamental biological processes are incompatible with current live-imaging modalities. Drosophila oogenesis is a well-studied system that has provided molecular insights into a range of cellular and developmental processes. The length of the oogenesis, coupled with the requirement for inputs from multiple tissues, has made long-term culture challenging. Here, we have developed Bellymount-pulsed tracking (Bellymount-PT), which allows continuous, noninvasive live imaging of Drosophila oogenesis inside the female abdomen for up to 16 h. Bellymount-PT improves upon the existing Bellymount technique by adding pulsed anesthesia with periods of feeding that support the long-term survival of flies during imaging. Using Bellymount-PT, we measure key events of oogenesis, including egg chamber growth, yolk uptake, and transfer of specific proteins to the oocyte during nurse cell dumping with high spatiotemporal precision within the abdomen of a live female.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
8
|
Donovan GM, Lin C, Sparkes I, Ashwin P. Emergence and stability of endoplasmic reticulum network streaming in plant cells. J Theor Biol 2024; 595:111954. [PMID: 39343133 DOI: 10.1016/j.jtbi.2024.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin-myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.
Collapse
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand.
| | - Congping Lin
- School of Mathematics and Statistics, Center for Mathematical Sciences & Hubei Key Lab of Engineering Modelling and Scientific, Huazhong University of Science and Technology, Wuhan, China
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Peter Ashwin
- Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
9
|
Balaghi N, Fernandez-Gonzalez R. Waves of change: Dynamic actomyosin networks in embryonic development. Curr Opin Cell Biol 2024; 91:102435. [PMID: 39378575 DOI: 10.1016/j.ceb.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
As animals develop, molecules, cells, and cell ensembles move in beautifully orchestrated choreographies. Movement at each of these scales requires generation of mechanical force. In eukaryotic cells, the actomyosin cytoskeleton generates mechanical forces. Continuous advances in in vivo microscopy have enabled visualization and quantitative assessment of actomyosin dynamics and force generation, within and across cells, in living embryos. Recent studies reveal that actomyosin networks can form periodic waves in vivo. Here, we highlight contributions of actomyosin waves to molecular transport, cell movement, and cell coordination in developing embryos.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada. https://twitter.com/negberry
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
10
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 PMCID: PMC12050087 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B. Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
11
|
Chakrabarti B, Rachh M, Shvartsman SY, Shelley MJ. Cytoplasmic stirring by active carpets. Proc Natl Acad Sci U S A 2024; 121:e2405114121. [PMID: 39012825 PMCID: PMC11287282 DOI: 10.1073/pnas.2405114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Large cells often rely on cytoplasmic flows for intracellular transport, maintaining homeostasis, and positioning cellular components. Understanding the mechanisms of these flows is essential for gaining insights into cell function, developmental processes, and evolutionary adaptability. Here, we focus on a class of self-organized cytoplasmic stirring mechanisms that result from fluid-structure interactions between cytoskeletal elements at the cell cortex. Drawing inspiration from streaming flows in late-stage fruit fly oocytes, we propose an analytically tractable active carpet theory. This model deciphers the origins and three-dimensional spatiotemporal organization of such flows. Through a combination of simulations and weakly nonlinear theory, we establish the pathway of the streaming flow to its global attractor: a cell-spanning vortical twister. Our study reveals the inherent symmetries of this emergent flow, its low-dimensional structure, and illustrates how complex fluid-structure interaction aligns with classical solutions in Stokes flow. This framework can be easily adapted to elucidate a broad spectrum of self-organized, cortex-driven intracellular flows.
Collapse
Affiliation(s)
- Brato Chakrabarti
- Center for Computational Biology, Flatiron Institute, New York, NY10010
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru560089, India
| | - Manas Rachh
- Center for Computational Mathematics, Flatiron Institute, New York, NY10010
| | - Stanislav Y. Shvartsman
- Center for Computational Biology, Flatiron Institute, New York, NY10010
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Michael J. Shelley
- Center for Computational Biology, Flatiron Institute, New York, NY10010
- The Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| |
Collapse
|
12
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
13
|
Balachandra S, Amodeo AA. Bellymount-Pulsed Tracking: A Novel Approach for Real-Time In vivo Imaging of Drosophila Abdominal Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587498. [PMID: 38617254 PMCID: PMC11014545 DOI: 10.1101/2024.03.31.587498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Quantitative live imaging is a valuable tool that offers insights into cellular dynamics. However, many fundamental biological processes are incompatible with current live imaging modalities. Drosophila oogenesis is a well-studied system that has provided molecular insights into a range of cellular and developmental processes. The length of the oogenesis coupled with the requirement for inputs from multiple tissues has made long-term culture challenging. Here, we have developed Bellymount-Pulsed Tracking (Bellymount-PT), which allows continuous, non-invasive live imaging of Drosophila oogenesis inside the female abdomen for up to 16 hours. Bellymount-PT improves upon the existing Bellymount technique by adding pulsed anesthesia with periods of feeding that support the long-term survival of flies during imaging. Using Bellymount-PT we measure key events of oogenesis including egg chamber growth, yolk uptake, and transfer of specific proteins to the oocyte during nurse cell dumping with high spatiotemporal precision within the abdomen of a live female.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
15
|
Nikalayevich E, Letort G, de Labbey G, Todisco E, Shihabi A, Turlier H, Voituriez R, Yahiatene M, Pollet-Villard X, Innocenti M, Schuh M, Terret ME, Verlhac MH. Aberrant cortex contractions impact mammalian oocyte quality. Dev Cell 2024; 59:841-852.e7. [PMID: 38387459 DOI: 10.1016/j.devcel.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
The cortex controls cell shape. In mouse oocytes, the cortex thickens in an Arp2/3-complex-dependent manner, ensuring chromosome positioning and segregation. Surprisingly, we identify that mouse oocytes lacking the Arp2/3 complex undergo cortical actin remodeling upon division, followed by cortical contractions that are unprecedented in mammalian oocytes. Using genetics, imaging, and machine learning, we show that these contractions stir the cytoplasm, resulting in impaired organelle organization and activity. Oocyte capacity to avoid polyspermy is impacted, leading to a reduced female fertility. We could diminish contractions and rescue cytoplasmic anomalies. Similar contractions were observed in human oocytes collected as byproducts during IVF (in vitro fertilization) procedures. These contractions correlate with increased cytoplasmic motion, but not with defects in spindle assembly or aneuploidy in mice or humans. Our study highlights a multiscale effect connecting cortical F-actin, contractions, and cytoplasmic organization and affecting oocyte quality, with implications for female fertility.
Collapse
Affiliation(s)
- Elvira Nikalayevich
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Ghislain de Labbey
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Elena Todisco
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anastasia Shihabi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Laboratoire Jean Perrin, CNRS, Sorbonne Université, Paris, France
| | - Mohamed Yahiatene
- Centre Assistance Médicale à la Procréation Nataliance, Groupe Mlab, Pôle Santé Oréliance, Saran, France
| | - Xavier Pollet-Villard
- Centre Assistance Médicale à la Procréation Nataliance, Groupe Mlab, Pôle Santé Oréliance, Saran, France
| | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Melina Schuh
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| |
Collapse
|
16
|
Bulychev AA, Strelets TS. Oscillations of chlorophyll fluorescence after plasma membrane excitation in Chara originate from nonuniform composition of signaling metabolites in the streaming cytoplasm. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149019. [PMID: 37924923 DOI: 10.1016/j.bbabio.2023.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Excitable cells of higher plants and characean algae respond to stressful stimuli by generating action potentials (AP) whose regulatory influence on chlorophyll (Chl) fluorescence and photosynthesis extends over tens of minutes. Unlike plant leaves where the efficiency of photosystem II reaction (YII) undergoes a separate reversible depression after an individual AP, characean algae exhibit long-lasting oscillations of YII after firing AP, provided that Chl fluorescence is measured on microscopic cell regions. Internodal cells of charophytes feature an extremely fast cytoplasmic streaming that stops immediately during the spike and recovers within ~10 min after AP. In this study a possibility was examined that multiple oscillations of YII and Chl fluorescence parameters (F', Fm') result from the combined influence of metabolic rearrangements in chloroplasts and the cyclosis cessation-recovery cycle induced by the Ca2+ influx during AP. It is shown that the AP-induced Fm' and YII oscillations disappear when the fluidic communications between the analyzed area (AOI) and surrounding cell regions are restricted or eliminated. The microfluidic signaling was manipulated in two ways: by narrowing the illuminated cell area and by arresting the cytoplasmic streaming with cytochalasin D (CD). The inhibition of Fm' and YII oscillations was not caused by the loss of cell excitability, since CD-treated cells retained the capacity of AP generation. The mechanism of AP-induced oscillations of YII and Chl fluorescence seems to involve the lateral microfluidic transport of signaling substances in combination with the distribution pattern of these substances that was enhanced during the period of streaming cessation.
Collapse
|
17
|
Htet PH, Lauga E. Cortex-driven cytoplasmic flows in elongated cells: fluid mechanics and application to nuclear transport in Drosophila embryos. J R Soc Interface 2023; 20:20230428. [PMID: 37963561 PMCID: PMC10645513 DOI: 10.1098/rsif.2023.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
The Drosophila melanogaster embryo, an elongated multi-nucleated cell, is a classical model system for eukaryotic development and morphogenesis. Recent work has shown that bulk cytoplasmic flows, driven by cortical contractions along the walls of the embryo, enable the uniform spreading of nuclei along the anterior-posterior axis necessary for proper embryonic development. Here, we propose two mathematical models to characterize cytoplasmic flows driven by tangential cortical contractions in elongated cells. Assuming Newtonian fluid flow at low Reynolds number in a spheroidal cell, we first compute the flow field exactly, thereby bypassing the need for numerical computations. We then apply our results to recent experiments on nuclear transport in cell cycles 4-6 of Drosophila embryo development. By fitting the cortical contractions in our model to measurements, we reveal that experimental cortical flows enable near-optimal axial spreading of nuclei. A second mathematical approach, applicable to general elongated cell geometries, exploits a long-wavelength approximation to produce an even simpler solution, with errors below [Formula: see text] compared with the full model. An application of this long-wavelength result to transport leads to fully analytical solutions for the nuclear concentration that capture the essential physics of the system, including optimal axial spreading of nuclei.
Collapse
Affiliation(s)
- Pyae Hein Htet
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| |
Collapse
|
18
|
Lu W, Lakonishok M, Gelfand VI. The dynamic duo of microtubule polymerase Mini spindles/XMAP215 and cytoplasmic dynein is essential for maintaining Drosophila oocyte fate. Proc Natl Acad Sci U S A 2023; 120:e2303376120. [PMID: 37722034 PMCID: PMC10523470 DOI: 10.1073/pnas.2303376120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023] Open
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster, 16 interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for maintenance of the oocyte specification. mRNA encoding Msps is transported and concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, ensuring oocyte fate maintenance by promoting high microtubule polymerization activity in the oocyte, and enhancing dynein-dependent nurse cell-to-oocyte transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
19
|
Dutta S, Farhadifar R, Lu W, Kabacaoğlu G, Blackwell R, Stein DB, Lakonishok M, Gelfand VI, Shvartsman SY, Shelley MJ. Self-organized intracellular twisters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.534476. [PMID: 37066165 PMCID: PMC10104069 DOI: 10.1101/2023.04.04.534476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Life in complex systems, such as cities and organisms, comes to a standstill when global coordination of mass, energy, and information flows is disrupted. Global coordination is no less important in single cells, especially in large oocytes and newly formed embryos, which commonly use fast fluid flows for dynamic reorganization of their cytoplasm. Here, we combine theory, computing, and imaging to investigate such flows in the Drosophila oocyte, where streaming has been proposed to spontaneously arise from hydrodynamic interactions among cortically anchored microtubules loaded with cargo-carrying molecular motors. We use a fast, accurate, and scalable numerical approach to investigate fluid-structure interactions of 1000s of flexible fibers and demonstrate the robust emergence and evolution of cell-spanning vortices, or twisters. Dominated by a rigid body rotation and secondary toroidal components, these flows are likely involved in rapid mixing and transport of ooplasmic components.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Reza Farhadifar
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Robert Blackwell
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - David B Stein
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ
- Center of Computational Biology, Flatiron Institute, New York, NY
- Department of Molecular Biology and Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ
| | - Michael J Shelley
- Center of Computational Biology, Flatiron Institute, New York, NY
- Courant Institute of Mathematical Sciences, New York University, New York, NY
| |
Collapse
|
20
|
Nakamura M, Hui J, Parkhurst SM. Bending actin filaments: twists of fate. Fac Rev 2023; 12:7. [PMID: 37081903 PMCID: PMC10111394 DOI: 10.12703/r/12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
21
|
Lu W, Lakonishok M, Gelfand VI. Drosophila oocyte specification is maintained by the dynamic duo of microtubule polymerase Mini spindles/XMAP215 and dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531953. [PMID: 36945460 PMCID: PMC10028982 DOI: 10.1101/2023.03.09.531953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster , 16-cell interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for the oocyte fate determination. mRNA encoding Msps is concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, enhancing dynein-dependent nurse cell-to-oocyte transport and transforming a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Significance statement Oocyte determination in Drosophila melanogaster provides a valuable model for studying cell fate specification. We describe the crucial role of the duo of microtubule polymerase Mini spindles (Msps) and cytoplasmic dynein in this process. We show that Msps is essential for oocyte fate determination. Msps concentration in the oocyte is achieved through dynein-dependent transport of msps mRNA along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, further enhancing nurse cell-to-oocyte transport by dynein. This creates a positive feedback loop that transforms a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Our findings provide important insights into the mechanisms of oocyte specification and have implications for understanding the development of multicellular organisms.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|