1
|
Schleifer MC, Ruedenauer FA, Ziegler J, Leonhardt SD, Spaethe J. Perception, regulation, and effects on longevity of pollen fatty acids in the honey bee, Apis mellifera. PLoS One 2024; 19:e0309789. [PMID: 39570936 PMCID: PMC11581215 DOI: 10.1371/journal.pone.0309789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 11/24/2024] Open
Abstract
For successful cross-pollination, most flowering plants rely on insects as pollinators and attract them by offering rewards, predominantly nectar and pollen. Bees-a highly important pollinator group-are especially dependent on pollen as their main source of essential nutrients, including proteins, lipids, and sterols. Fatty acids (FAs) in particular play a pivotal role as fundamental energy source, contributing to membrane structure integrity, cellular homeostasis, and cognitive processes. However, overconsumption of FAs can have detrimental effects on fitness and survival. Thus, bees need to precisely modulate FA intake. To better understand how Apis mellifera, the globally predominant managed pollinator, regulate FA intake, we conducted controlled feeding experiments with newly hatched honey bee workers by providing pollen with different FA concentrations. We additionally investigated the honey bee's capacity to perceive individual FAs by means of chemotactile proboscis extension response (PER) conditioning. We tested both natural concentrations and concentrations exceeding those typically found in pollen. Given the dose-dependent importance of FAs observed in other bee species, we hypothesized that (i) a high FA concentration in pollen would reduce honey bee longevity, and (ii) honey bees are able to perceive individual FAs and differentiate between different FA concentrations via antennal sensation prior to consumption. Our study revealed that elevated FA concentrations in pollen resulted in reduced consumption rates and increased mortality in Apis mellifera. Workers can detect and discriminate between saturated and unsaturated FAs utilizing their antennae. Moreover, they were able to distinguish between individual FAs and also between different concentrations of the same FAs. Our results suggest a high sensitivity of A. mellifera towards both the concentration and composition of individual FAs, which greatly impacts their foraging decisions and fitness. These insights contribute to the growing evidence highlighting the importance of balanced nutrient ratios, in particular of FAs, for bees and other organisms.
Collapse
Affiliation(s)
- Marielle C. Schleifer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
- Plant-Insect Interactions, Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Fabian A. Ruedenauer
- Plant-Insect Interactions, Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Johanna Ziegler
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sara D. Leonhardt
- Plant-Insect Interactions, Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Finke V, Scheiner R, Giurfa M, Avarguès-Weber A. Individual consistency in the learning abilities of honey bees: cognitive specialization within sensory and reinforcement modalities. Anim Cogn 2023; 26:909-928. [PMID: 36609813 PMCID: PMC10066154 DOI: 10.1007/s10071-022-01741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
The question of whether individuals perform consistently across a variety of cognitive tasks is relevant for studies of comparative cognition. The honey bee (Apis mellifera) is an appropriate model to study cognitive consistency as its learning can be studied in multiple elemental and non-elemental learning tasks. We took advantage of this possibility and studied if the ability of honey bees to learn a simple discrimination correlates with their ability to solve two tasks of higher complexity, reversal learning and negative patterning. We performed four experiments in which we varied the sensory modality of the stimuli (visual or olfactory) and the type (Pavlovian or operant) and complexity (elemental or non-elemental) of conditioning to examine if stable correlated performances could be observed across experiments. Across all experiments, an individual's proficiency to learn the simple discrimination task was positively and significantly correlated with performance in both reversal learning and negative patterning, while the performances in reversal learning and negative patterning were positively, yet not significantly correlated. These results suggest that correlated performances across learning paradigms represent a distinct cognitive characteristic of bees. Further research is necessary to examine if individual cognitive consistency can be found in other insect species as a common characteristic of insect brains.
Collapse
Affiliation(s)
- Valerie Finke
- Zoologie II, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Ricarda Scheiner
- Zoologie II, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062, Toulouse, France.,Institut Universitaire de France, Paris, France
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
3
|
Scheiner R, Lim K, Meixner MD, Gabel MS. Comparing the Appetitive Learning Performance of Six European Honeybee Subspecies in a Common Apiary. INSECTS 2021; 12:insects12090768. [PMID: 34564208 PMCID: PMC8468525 DOI: 10.3390/insects12090768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This study is the first to compare the associative learning performance of six honeybee subspecies from different European regions in a common apiary. We quantified sucrose responsiveness prior to appetitive olfactory proboscis extension learning to dissociate effects of motivation and cognition. Our results show that Apis mellifera iberiensis displayed a significantly poorer learning performance compared to other Apis subspecies from across Europe, which did not differ from each other. Possible causes are discussed. Abstract The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous subspecies in its native range. How far adaptation to local habitats has affected the cognitive skills of the different subspecies is an intriguing question that we investigate in this study. Naturally mated queens of the following five subspecies from different parts of Europe were transferred to Southern Germany: A. m. iberiensis from Portugal, A. m. mellifera from Belgium, A. m. macedonica from Greece, A. m. ligustica from Italy, and A. m. ruttneri from Malta. We also included the local subspecies A. m. carnica in our study. New colonies were built up in a common apiary where the respective queens were introduced. Worker offspring from the different subspecies were compared in classical olfactory learning performance using the proboscis extension response. Prior to conditioning, we measured individual sucrose responsiveness to investigate whether possible differences in learning performances were due to differential responsiveness to the sugar water reward. Most subspecies did not differ in their appetitive learning performance. However, foragers of the Iberian honeybee, A. m. iberiensis, performed significantly more poorly, despite having a similar sucrose responsiveness. We discuss possible causes for the poor performance of the Iberian honeybees, which may have been shaped by adaptation to the local habitat.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (K.L.); (M.S.G.)
- Correspondence:
| | - Kayun Lim
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (K.L.); (M.S.G.)
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Marina D. Meixner
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, Erlenstraße 9, 35274 Kirchhain, Germany;
| | - Martin S. Gabel
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (K.L.); (M.S.G.)
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, Erlenstraße 9, 35274 Kirchhain, Germany;
| |
Collapse
|
4
|
Peng T, Derstroff D, Maus L, Bauer T, Grüter C. Forager age and foraging state, but not cumulative foraging activity, affect biogenic amine receptor gene expression in the honeybee mushroom bodies. GENES BRAIN AND BEHAVIOR 2021; 20:e12722. [PMID: 33325617 DOI: 10.1111/gbb.12722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 01/17/2023]
Abstract
Foraging behavior is crucial for the development of a honeybee colony. Biogenic amines are key mediators of learning and the transition from in-hive tasks to foraging. Foragers vary considerably in their behavior, but whether and how this behavioral diversity depends on biogenic amines is not yet well understood. For example, forager age, cumulative foraging activity or foraging state may all be linked to biogenic amine signaling. Furthermore, expression levels may fluctuate depending on daytime. We tested if these intrinsic and extrinsic factors are linked to biogenic amine signaling by quantifying the expression of octopamine, dopamine and tyramine receptor genes in the mushroom bodies, important tissues for learning and memory. We found that older foragers had a significantly higher expression of Amdop1, Amdop2, AmoctαR1, and AmoctβR1 compared to younger foragers, whereas Amtar1 showed the opposite pattern. Surprisingly, our measures of cumulative foraging activity were not related to the expression of the same receptor genes in the mushroom bodies. Furthermore, we trained foragers to collect sucrose solution at a specific time of day and tested if the foraging state of time-trained foragers affected receptor gene expression. Bees engaged in foraging had a higher expression of Amdop1 and AmoctβR3/4 than inactive foragers. Finally, the expression of Amdop1, Amdop3, AmoctαR1, and Amtar1 also varied with daytime. Our results show that receptor gene expression in forager mushroom bodies is complex and depends on both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China.,Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Dennis Derstroff
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Lea Maus
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Timo Bauer
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Finkelstein AB, Amdam GV. Aversive Foraging Conditions Modulate Downstream Social Food Sharing. Sci Rep 2018; 8:17764. [PMID: 30531822 PMCID: PMC6288118 DOI: 10.1038/s41598-018-35910-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Eusocial insects divide their labour so that individuals working inside the nest are affected by external conditions through a cascade of social interactions. Honey bees (Apis mellifera) transfer food and information via mouth-to-mouth social feeding, ie trophallaxis, a process known to be modulated by the rate of food flow at feeders and familiarity of food's scent. Little is understood about how aversive foraging conditions such as predation and con-specific competition affect trophallaxis. We hypothesized that aversive conditions have an impact on food transfer inside the colony. Here we explore the effect of foragers' aversive experience on downstream trophallaxis in a cage paradigm. Each cage contained one group of bees that was separated from feeders by mesh and allowed to feed only through trophallaxis, and another group that had access to feeders and self-specialized to either forage or distribute food. Our results show that aversive foraging conditions increase non-foragers' trophallaxis with bees restricted from feeder access when food is scented, and have the opposite effect when food is unscented. We discuss potential behavioural mechanisms and implications for the impact of aversive conditions such as malaise inducing toxins, predation, and con-specific competition.
Collapse
Affiliation(s)
- Abby Basya Finkelstein
- School of Life Sciences, Arizona State University, Tempe, USA. .,Psychological and Brain Sciences, Boston University, Massachusetts, USA.
| | - Gro V Amdam
- School of Life Sciences, Arizona State University, Tempe, USA.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
6
|
Shah AK, Kreibich CD, Amdam GV, Münch D. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response. PLoS One 2018; 13:e0198322. [PMID: 29927967 PMCID: PMC6013123 DOI: 10.1371/journal.pone.0198322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/17/2018] [Indexed: 12/03/2022] Open
Abstract
The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.
Collapse
Affiliation(s)
- Ashish K. Shah
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Claus D. Kreibich
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Gro V. Amdam
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Daniel Münch
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- * E-mail:
| |
Collapse
|
7
|
Cabirol A, Cope AJ, Barron AB, Devaud JM. Relationship between brain plasticity, learning and foraging performance in honey bees. PLoS One 2018; 13:e0196749. [PMID: 29709023 PMCID: PMC5927457 DOI: 10.1371/journal.pone.0196749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Brain structure and learning capacities both vary with experience, but the mechanistic link between them is unclear. Here, we investigated whether experience-dependent variability in learning performance can be explained by neuroplasticity in foraging honey bees. The mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning tasks such as reversal learning. Using radio frequency identification technology, we assessed the effects of natural variation in foraging activity, and the age when first foraging, on both performance in reversal learning and on synaptic connectivity in the MBs. We found that reversal learning performance improved at foraging onset and could decline with greater foraging experience. If bees started foraging before the normal age, as a result of a stress applied to the colony, the decline in learning performance with foraging experience was more severe. Analyses of brain structure in the same bees showed that the total number of synaptic boutons at the MB input decreased when bees started foraging, and then increased with greater foraging intensity. At foraging onset MB structure is therefore optimized for bees to update learned information, but optimization of MB connectivity deteriorates with foraging effort. In a computational model of the MBs sparser coding of information at the MB input improved reversal learning performance. We propose, therefore, a plausible mechanistic relationship between experience, neuroplasticity, and cognitive performance in a natural and ecological context.
Collapse
Affiliation(s)
- Amélie Cabirol
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
- * E-mail: (AC); (ABB)
| | - Alex J. Cope
- Department of Computer Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- * E-mail: (AC); (ABB)
| | - Jean-Marc Devaud
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
| |
Collapse
|
8
|
Scheiner R, Entler BV, Barron AB, Scholl C, Thamm M. The Effects of Fat Body Tyramine Level on Gustatory Responsiveness of Honeybees ( Apis mellifera) Differ between Behavioral Castes. Front Syst Neurosci 2017; 11:55. [PMID: 28848405 PMCID: PMC5550709 DOI: 10.3389/fnsys.2017.00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/17/2017] [Indexed: 11/13/2022] Open
Abstract
Division of labor is a hallmark of social insects. In the honeybee (Apis mellifera) each sterile female worker performs a series of social tasks. The most drastic changes in behavior occur when a nurse bee, who takes care of the brood and the queen in the hive, transitions to foraging behavior. Foragers provision the colony with pollen, nectar or water. Nurse bees and foragers differ in numerous behaviors, including responsiveness to gustatory stimuli. Differences in gustatory responsiveness, in turn, might be involved in regulating division of labor through differential sensory response thresholds. Biogenic amines are important modulators of behavior. Tyramine and octopamine have been shown to increase gustatory responsiveness in honeybees when injected into the thorax, thereby possibly triggering social organization. So far, most of the experiments investigating the role of amines on gustatory responsiveness have focused on the brain. The potential role of the fat body in regulating sensory responsiveness and division of labor has large been neglected. We here investigated the role of the fat body in modulating gustatory responsiveness through tyramine signaling in different social roles of honeybees. We quantified levels of tyramine, tyramine receptor gene expression and the effect of elevating fat body tyramine titers on gustatory responsiveness in both nurse bees and foragers. Our data suggest that elevating the tyramine titer in the fat body pharmacologically increases gustatory responsiveness in foragers, but not in nurse bees. This differential effect of tyramine on gustatory responsiveness correlates with a higher natural gustatory responsiveness of foragers, with a higher tyramine receptor (Amtar1) mRNA expression in fat bodies of foragers and with lower baseline tyramine titers in fat bodies of foragers compared to those of nurse bees. We suggest that differential tyramine signaling in the fat body has an important role in the plasticity of division of labor through changing gustatory responsiveness.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Brian V Entler
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Christina Scholl
- Behavioral Physiology and Sociobiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology, Biocenter, University of WürzburgWürzburg, Germany
| |
Collapse
|
9
|
Scheiner R, Reim T, Søvik E, Entler BV, Barron AB, Thamm M. Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. ACTA ACUST UNITED AC 2017; 220:1443-1450. [PMID: 28167800 DOI: 10.1242/jeb.152496] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/30/2017] [Indexed: 01/12/2023]
Abstract
Honeybees are well known for their complex division of labor. Each bee sequentially performs a series of social tasks during its life. The changes in social task performance are linked to gross differences in behavior and physiology. We tested whether honeybees performing different social tasks (nursing versus foraging) would differ in their gustatory responsiveness and associative learning behavior in addition to their daily tasks in the colony. Further, we investigated the role of the biogenic amine tyramine and its receptors in the behavior of nurse bees and foragers. Tyramine is an important insect neurotransmitter, which has long been neglected in behavioral studies as it was believed to only act as the metabolic precursor of the better-known amine octopamine. With the increasing number of characterized tyramine receptors in diverse insects, we need to understand the functions of tyramine on its own account. Our findings suggest an important role for tyramine and its two receptors in regulating honeybee gustatory responsiveness, social organization and learning behavior. Foragers, which were more responsive to gustatory stimuli than nurse bees and performed better in appetitive learning, also differed from nurse bees in their tyramine brain titers and in the mRNA expression of a tyramine receptor in the brain. Pharmacological activation of tyramine receptors increased gustatory responsiveness of nurse bees and foragers and improved appetitive learning in nurse bees. These data suggest that a large part of the behavioral differences between honeybees may be directly linked to tyramine signaling in the brain.
Collapse
Affiliation(s)
- Ricarda Scheiner
- University of Würzburg, Behavioral Physiology & Sociobiology, Biocenter, Am Hubland, Würzburg 97074, Germany .,University of Potsdam, Institute for Biochemistry and Biology, Potsdam 14476, Germany
| | - Tina Reim
- University of Potsdam, Institute for Biochemistry and Biology, Potsdam 14476, Germany
| | - Eirik Søvik
- Macquarie University, Department of Biological Sciences, Sydney, NSW 2109, Australia.,Volda University College, Department of Science and Mathematics, Volda 6100, Norway
| | - Brian V Entler
- Macquarie University, Department of Biological Sciences, Sydney, NSW 2109, Australia
| | - Andrew B Barron
- Macquarie University, Department of Biological Sciences, Sydney, NSW 2109, Australia
| | - Markus Thamm
- University of Würzburg, Behavioral Physiology & Sociobiology, Biocenter, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
10
|
Avarguès-Weber A, Mota T. Advances and limitations of visual conditioning protocols in harnessed bees. ACTA ACUST UNITED AC 2016; 110:107-118. [PMID: 27998810 DOI: 10.1016/j.jphysparis.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
de Verges J, Nehring V. A critical look at proximate causes of social insect senescence: damage accumulation or hyperfunction? CURRENT OPINION IN INSECT SCIENCE 2016; 16:69-75. [PMID: 27720053 DOI: 10.1016/j.cois.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 06/06/2023]
Abstract
Social insects have received attention for their extreme lifespan variation and reversal of the fecundity/longevity trade-off. However, proximate causes of senescence in general are disputed, and social insects often fail to meet the predictions of prevailing models. We present evidence for and against the long-held free radical theory of aging in social insects, and consider the application of the competing hyperfunction theory. Current results present problems for both theories, and a more complex picture of the biological processes involved emerges. The eusocial life style might allow colonies to allocate damage in ways that create seemingly senescence-free life histories. Only experimental approaches characterizing multiple senescence factors simultaneously will shed light on how social insects defy the conventions of senescence.
Collapse
Affiliation(s)
- Jane de Verges
- University of Freiburg, Biology I, Evolution & Ecology, Hauptstraße 1, D-79104 Freiburg, Germany
| | - Volker Nehring
- University of Freiburg, Biology I, Evolution & Ecology, Hauptstraße 1, D-79104 Freiburg, Germany.
| |
Collapse
|
12
|
Ushitani T, Perry CJ, Cheng K, Barron AB. Accelerated behavioural development changes fine-scale search behaviour and spatial memory in honey bees (Apis mellifera L.). ACTA ACUST UNITED AC 2015; 219:412-8. [PMID: 26596532 DOI: 10.1242/jeb.126920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022]
Abstract
Normally, worker honey bees (Apis mellifera) begin foraging when more than 2 weeks old as adults, but if individual bees or the colony is stressed, bees often begin foraging precociously. Here, we examined whether bees that accelerated their behavioural development to begin foraging precociously differed from normal-aged foragers in cognitive performance. We used a social manipulation to generate precocious foragers from small experimental colonies and tested their performance in a free-flight visual reversal learning task, and a test of spatial memory. To assess spatial memory, bees were trained to learn the location of a small sucrose feeder within an array of three landmarks. In tests, the feeder and one landmark were removed and the search behaviour of the bees was recorded. Performance of precocious and normal-aged foragers did not differ in a visual reversal learning task, but the two groups showed a clear difference in spatial memory. Flight behaviour suggested normal-aged foragers were better able to infer the position of the removed landmark and feeder relative to the remaining landmarks than precocious foragers. Previous studies have documented the cognitive decline of old foragers, but this is the first suggestion of a cognitive deficit in young foragers. These data imply that worker honey bees continue their cognitive development during the adult stage. These findings may also help to explain why precocious foragers perform quite poorly as foragers and have a higher than normal loss rate.
Collapse
Affiliation(s)
- Tomokazu Ushitani
- Department of Cognitive and Information Sciences, Faculty of Letters, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Clint J Perry
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
13
|
Speth MT, Kreibich CD, Amdam GV, Münch D. Aging- and task-related resilience decline is linked to food responsiveness in highly social honey bees. Exp Gerontol 2015; 65:46-52. [DOI: 10.1016/j.exger.2015.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 01/11/2023]
|
14
|
Reim T, Scheiner R. Division of labour in honey bees: age- and task-related changes in the expression of octopamine receptor genes. INSECT MOLECULAR BIOLOGY 2014; 23:833-841. [PMID: 25187440 DOI: 10.1111/imb.12130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The honey bee (Apis mellifera L.) has developed into an important ethological model organism for social behaviour and behavioural plasticity. Bees perform a complex age-dependent division of labour with the most pronounced behavioural differences occurring between in-hive bees and foragers. Whereas nurse bees, for example, stay inside the hive and provide the larvae with food, foragers leave the hive to collect pollen and nectar for the entire colony. The biogenic amine octopamine appears to play a major role in division of labour but the molecular mechanisms involved are unknown. We here investigated the role of two characterized octopamine receptors in honey bee division of labour. AmOctαR1 codes for a Ca(2+) -linked octopamine receptor. AmOctβR3/4 codes for a cyclic adenosine monophosphate-coupled octopamine receptor. Messenger RNA expression of AmOctαR1 in different brain neuropils correlates with social task, whereas expression of AmOctβR3/4 changes with age rather than with social role per se. Our results for the first time link the regulatory role of octopamine in division of labour to specific receptors and brain regions. They are an important step forward in our understanding of complex behavioural organization in social groups.
Collapse
Affiliation(s)
- T Reim
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
15
|
Pamir E, Szyszka P, Scheiner R, Nawrot MP. Rapid learning dynamics in individual honeybees during classical conditioning. Front Behav Neurosci 2014; 8:313. [PMID: 25309366 PMCID: PMC4164006 DOI: 10.3389/fnbeh.2014.00313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023] Open
Abstract
Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla–Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.
Collapse
Affiliation(s)
- Evren Pamir
- Bernstein Center for Computational Neuroscience Berlin, Germany ; Neuroinformatics and Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin Germany ; Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Paul Szyszka
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Ricarda Scheiner
- Department of Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg Würzburg, Germany
| | - Martin P Nawrot
- Bernstein Center for Computational Neuroscience Berlin, Germany ; Neuroinformatics and Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin Germany
| |
Collapse
|
16
|
Junca P, Carcaud J, Moulin S, Garnery L, Sandoz JC. Genotypic influence on aversive conditioning in honeybees, using a novel thermal reinforcement procedure. PLoS One 2014; 9:e97333. [PMID: 24828422 PMCID: PMC4020857 DOI: 10.1371/journal.pone.0097333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive.
Collapse
Affiliation(s)
- Pierre Junca
- Evolution, Genomes et Speciation Lab (LEGS – UPR 9034), CNRS, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes et Speciation Lab (LEGS – UPR 9034), CNRS, Gif-sur-Yvette, France
| | - Sibyle Moulin
- Evolution, Genomes et Speciation Lab (LEGS – UPR 9034), CNRS, Gif-sur-Yvette, France
| | - Lionel Garnery
- Evolution, Genomes et Speciation Lab (LEGS – UPR 9034), CNRS, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes et Speciation Lab (LEGS – UPR 9034), CNRS, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
17
|
Mitochondrial DNA integrity changes with age but does not correlate with learning performance in honey bees. Exp Gerontol 2014; 49:12-8. [DOI: 10.1016/j.exger.2013.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 11/23/2022]
|
18
|
Münch D, Kreibich CD, Amdam GV. Aging and its modulation in a long-lived worker caste of the honey bee. ACTA ACUST UNITED AC 2013; 216:1638-49. [PMID: 23596282 DOI: 10.1242/jeb.078915] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly social animals provide alternative aging models in which vastly different lifespan patterns are flexible, and linked to social caste. Research in these species aims to reveal how environment, including social cues, can shape the transition between short-lived and extremely long-lived phenotypes with negligible senescence. Among honey bee workers, short to intermediate lifespans are typical for summer castes, while the winter caste can live up to 10 times longer. For summer castes, experimental interventions could predictably accelerate, slow or revert functional senescence. In contrast, little is known about the partic ular conditions under which periods of negligible senescence in winter castes can be disrupted or sustained. We asked how manipulation of social environment in colonies with long-lived winter bees might alter the pace of functional senescence, measured as learning performance, as well as of cellular senescence, measured as lipofuscin accumulation. We show that behavioral senescence becomes rapidly detectable when the winter state is disrupted, and changes in social task behaviors and social environment (brood) are induced. Likewise, we found that cellular senescence was induced by such social intervention. However, cellular senescence showed marked regional differences, suggesting that particular brain regions age slower than others. Finally, by preventing post-winter colonies from brood rearing, behavioral senescence became undetectable, even after transition to the usually short-lived phenotypes had occurred. We envision that social regulation of negligible functional senescence and highly dynamic accumulation of a universal symptom of cellular aging (lipofuscin) offers rewarding perspectives to target proximate mechanisms of slowed aging.
Collapse
Affiliation(s)
- Daniel Münch
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway.
| | | | | |
Collapse
|
19
|
Flatt T, Amdam GV, Kirkwood TBL, Omholt SW. Life-history evolution and the polyphenic regulation of somatic maintenance and survival. QUARTERLY REVIEW OF BIOLOGY 2013; 88:185-218. [PMID: 24053071 DOI: 10.1086/671484] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.
Collapse
Affiliation(s)
- Thomas Flatt
- Institut für Populationsgenetik, Vetmeduni Vienna, A-1210 Vienna, Austria.
| | | | | | | |
Collapse
|
20
|
Münch D, Baker N, Rasmussen EMK, Shah AK, Kreibich CD, Heidem LE, Amdam GV. Obtaining specimens with slowed, accelerated and reversed aging in the honey bee model. J Vis Exp 2013. [PMID: 24022601 DOI: 10.3791/50550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Societies of highly social animals feature vast lifespan differences between closely related individuals. Among social insects, the honey bee is the best established model to study how plasticity in lifespan and aging is explained by social factors. The worker caste of honey bees includes nurse bees, which tend the brood, and forager bees, which collect nectar and pollen. Previous work has shown that brain functions and flight performance senesce more rapidly in foragers than in nurses. However, brain functions can recover, when foragers revert back to nursing tasks. Such patterns of accelerated and reversed functional senescence are linked to changed metabolic resource levels, to alterations in protein abundance and to immune function. Vitellogenin, a yolk protein with adapted functions in hormonal control and cellular defense, may serve as a major regulatory element in a network that controls the different aging dynamics in workers. Here we describe how the emergence of nurses and foragers can be monitored, and manipulated, including the reversal from typically short-lived foragers into longer-lived nurses. Our representative results show how individuals with similar chronological age differentiate into foragers and nurse bees under experimental conditions. We exemplify how behavioral reversal from foragers back to nurses can be validated. Last, we show how different cellular senescence can be assessed by measuring the accumulation of lipofuscin, a universal biomarker of senescence. For studying mechanisms that may link social influences and aging plasticity, this protocol provides a standardized tool set to acquire relevant sample material, and to improve data comparability among future studies.
Collapse
Affiliation(s)
- Daniel Münch
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences
| | | | | | | | | | | | | |
Collapse
|
21
|
Oostindjer M, Amdam GV. Systems integrity in health and aging - an animal model approach. LONGEVITY & HEALTHSPAN 2013; 2:2. [PMID: 24472488 PMCID: PMC3922947 DOI: 10.1186/2046-2395-2-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Human lifespan is positively correlated with childhood intelligence, as measured by psychometric (IQ) tests. The strength of this correlation is similar to the negative effect that smoking has on the life course. This result suggests that people who perform well on psychometric tests in childhood may remain healthier and live longer. The correlation, however, is debated: is it caused exclusively by social-environmental factors or could it also have a biological component? Biological traits of systems integrity that might result in correlations between brain function and lifespan have been suggested but are not well-established, and it is questioned what useful knowledge can come from understanding such mechanisms. In a recent study, we found a positive correlation between brain function and longevity in honey bees. Honey bees are highly social, but relevant social-environmental factors that contribute to cognition-survival correlations in humans are largely absent from insect colonies. Our results, therefore, suggest a biological explanation for the correlation in the bee. Here, we argue that individual differences in stress handling (coping) mechanisms, which both affect the bees' performance in tests of brain function and their survival could be a trait of systems integrity. Individual differences in coping are much studied in vertebrates, and several species provide attractive models. Here, we discuss how pigs are an interesting model for studying behavioural, physiological and molecular mechanisms that are recruited during stress and that can drive correlations between health, cognition and longevity traits. By revealing biological factors that make individuals susceptible to stress, it might be possible to alleviate health and longevity disparities in people.
Collapse
Affiliation(s)
- Marije Oostindjer
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
| | - Gro V Amdam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
- School of Life Sciences, Arizona State University, PO Box 874501, 85287, Tempe, AZ, USA
| |
Collapse
|
22
|
|
23
|
Dobrin SE, Fahrbach SE. Visual associative learning in restrained honey bees with intact antennae. PLoS One 2012; 7:e37666. [PMID: 22701575 PMCID: PMC3368934 DOI: 10.1371/journal.pone.0037666] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/27/2012] [Indexed: 11/19/2022] Open
Abstract
A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER). Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee.
Collapse
Affiliation(s)
- Scott E Dobrin
- Neuroscience Program, Wake Forest University Graduate School of Arts and Sciences, Winston-Salem, North Carolina, United States of America.
| | | |
Collapse
|
24
|
Age-related learning deficits can be reversible in honeybees Apis mellifera. Exp Gerontol 2012; 47:764-72. [PMID: 22626973 DOI: 10.1016/j.exger.2012.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 01/12/2023]
Abstract
Many animals are characterized by declining brain function at advanced ages, including honeybees (Apis mellifera). Variation in honeybee social development, moreover, results in individual differences in the progression of aging that may be accelerated, delayed, and sometimes reversed by changes in behavior. Here, we combine manipulations of social development with a measurement of sensory sensitivity, Pavlovian (associative) learning, and a proteomic technique to study the brain of aged honeybees. First, we confirm that sensory sensitivity can remain intact during aging, and that age-associated learning deficits are specific to bees that forage, a behavior typically expressed after a period of nursing activity. These initial data go beyond previous findings by showing how foragers age in social groups of different age compositions and sizes. Thereafter, we establish that learning ability can recover in aged foragers that revert to nursing tasks. Finally, we use liquid chromatography coupled to tandem mass spectrometry (LC-MS(2)) to describe proteomic differences between central brains, from reverted former foragers that varied in recovery of learning performance, and from nurse bees that varied in learning ability but never foraged. We find that recovery is positively associated with levels of stress response/cellular maintenance proteins in the central brain, while variation in learning before aging is negatively associated with the amounts of metabolic enzymes in the brain tissue. Our work provides the strongest evidence, thus far, for reversibility of learning deficits in aged honeybees, and indicates that recovery-related brain plasticity is connected to cellular stress resilience, maintenance and repair processes.
Collapse
|
25
|
Behrends A, Scheiner R. Octopamine improves learning in newly emerged bees but not in old foragers. J Exp Biol 2012; 215:1076-83. [DOI: 10.1242/jeb.063297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SUMMARY
Honey bees (Apis mellifera) are well known for their excellent learning abilities. Although most age groups learn quickly to associate an odor with a sucrose reward, newly emerged bees and old foragers often perform poorly. For a long time, the reason for the poor learning performance of these age groups was unclear. We show that reduced sensitivity for sucrose is the cause for poor associative learning in newly emerged bees but not in old foragers. By increasing the sensitivity for sucrose through octopamine, we selectively improved the learning performance of insensitive newly emerged bees. Interestingly, the learning performance of foragers experiencing the same treatment remained low, despite the observed increase in sensitivity for the reward. We thus demonstrate that increasing sensitivity for the reward can improve the associative learning performance of bees when they are young but not when they had foraged for a long time. Importantly, octopamine can have very different effects on bees, depending on their initial sensory sensitivity. These differential effects of octopamine have important consequences for interpreting the action of biogenic amines on insect behavior.
Collapse
Affiliation(s)
- Andreas Behrends
- Technische Universität Berlin, Institut für Ökologie, 10587 Berlin, Germany
| | - Ricarda Scheiner
- Technische Universität Berlin, Institut für Ökologie, 10587 Berlin, Germany
- Universität Potsdam, Institut für Biochemie und Biologie, Zoophysiologie, 14476 Potsdam, Germany
| |
Collapse
|
26
|
|
27
|
Tolfsen CC, Baker N, Kreibich C, Amdam GV. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing. ACTA ACUST UNITED AC 2011; 214:1322-32. [PMID: 21430210 DOI: 10.1242/jeb.049155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism.
Collapse
Affiliation(s)
- Christina C Tolfsen
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, N-1432 Aas, Norway.
| | | | | | | |
Collapse
|
28
|
Abstract
Positive social contact is an important factor in healthy aging, but our understanding of how social interactions influence senescence is incomplete. As life expectancy continues to increase because of reduced death rates among elderly, the beneficial role of social relationships is emerging as a cross-cutting theme in research on aging and healthspan. There is a need to improve knowledge on how behavior shapes, and is shaped by, the social environment, as well as needs to identify and study biological mechanisms that can translate differences in the social aspects of behavioral efforts, relationships, and stress reactivity (the general physiological and behavioral response-pattern to harmful, dangerous or unpleasant situations) into variation in aging. Honey bees (Apis mellifera) provide a genetic model in sociobiology, behavioral neuroscience, and gerontology that is uniquely sensitive to social exchange. Different behavioral contact between these social insects can shorten or extend lifespan more than 10-fold, and some aspects of their senescence are reversed by social cues that trigger aged individuals to express youthful repertoires of behavior. Here, I summarize how variation in social interactions contributes to this plasticity of aging and explain how beneficial and detrimental roles of social relationships can be traced from environmental and biological effects on honey bee physiology and behavior, to the expression of recovery-related plasticity, stress reactivity, and survival during old age. This system provides intriguing opportunities for research on aging.
Collapse
Affiliation(s)
- Gro V Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| |
Collapse
|
29
|
Münch D, Baker N, Kreibich CD, Bråten AT, Amdam GV. In the laboratory and during free-flight: old honey bees reveal learning and extinction deficits that mirror mammalian functional decline. PLoS One 2010; 5:e13504. [PMID: 20976061 PMCID: PMC2957435 DOI: 10.1371/journal.pone.0013504] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 09/22/2010] [Indexed: 12/22/2022] Open
Abstract
Loss of brain function is one of the most negative and feared aspects of aging. Studies of invertebrates have taught us much about the physiology of aging and how this progression may be slowed. Yet, how aging affects complex brain functions, e.g., the ability to acquire new memory when previous experience is no longer valid, is an almost exclusive question of studies in humans and mammalian models. In these systems, age related cognitive disorders are assessed through composite paradigms that test different performance tasks in the same individual. Such studies could demonstrate that afflicted individuals show the loss of several and often-diverse memory faculties, and that performance usually varies more between aged individuals, as compared to conspecifics from younger groups. No comparable composite surveying approaches are established yet for invertebrate models in aging research. Here we test whether an insect can share patterns of decline similar to those that are commonly observed during mammalian brain aging. Using honey bees, we combine restrained learning with free-flight assays. We demonstrate that reduced olfactory learning performance correlates with a reduced ability to extinguish the spatial memory of an abandoned nest location (spatial memory extinction). Adding to this, we show that learning performance is more variable in old honey bees. Taken together, our findings point to generic features of brain aging and provide the prerequisites to model individual aspects of learning dysfunction with insect models.
Collapse
Affiliation(s)
- Daniel Münch
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | | | | | | | | |
Collapse
|
30
|
Mujagic S, Sarkander J, Erber B, Erber J. Sucrose acceptance and different forms of associative learning of the honey bee (apis mellifera L.) in the field and laboratory. Front Behav Neurosci 2010; 4:46. [PMID: 20700522 PMCID: PMC2916673 DOI: 10.3389/fnbeh.2010.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/29/2010] [Indexed: 11/20/2022] Open
Abstract
The experiments analyze different forms of learning and 24-h retention in the field and in the laboratory in bees that accept sucrose with either low (=3%) or high (>/=30% or >/=50%) concentrations. In the field we studied color learning at a food site and at the hive entrance. In the laboratory olfactory conditioning of the proboscis extension response (PER) was examined. In the color learning protocol at a feeder, bees with low sucrose acceptance thresholds (=3%) show significantly faster and better acquisition than bees with high thresholds (>/=50%). Retention after 24 h is significantly different between the two groups of bees and the choice reactions converge. Bees with low and high acceptance thresholds in the field show no differences in the sucrose sensitivity PER tests in the laboratory. Acceptance thresholds in the field are thus a more sensitive behavioral measure than PER responsiveness in the laboratory. Bees with low acceptance thresholds show significantly better acquisition and 24-h retention in olfactory learning in the laboratory compared to bees with high thresholds. In the learning protocol at the hive entrance bees learn without sucrose reward that a color cue signals an open entrance. In this experiment, bees with high sucrose acceptance thresholds showed significantly better learning and reversal learning than bees with low thresholds. These results demonstrate that sucrose acceptance thresholds affect only those forms of learning in which sucrose serves as the reward. The results also show that foraging behavior in the field is a good predictor for learning behavior in the field and in the laboratory.
Collapse
Affiliation(s)
- Samir Mujagic
- Institut für Ökologie, Technische Universität BerlinBerlin, Germany
| | - Jana Sarkander
- Institut für Ökologie, Technische Universität BerlinBerlin, Germany
| | - Barbara Erber
- Institut für Ökologie, Technische Universität BerlinBerlin, Germany
| | - Joachim Erber
- Institut für Ökologie, Technische Universität BerlinBerlin, Germany
| |
Collapse
|
31
|
Behrends A, Scheiner R. Learning at old age: a study on winter bees. Front Behav Neurosci 2010; 4:15. [PMID: 20428511 PMCID: PMC2859878 DOI: 10.3389/fnbeh.2010.00015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/24/2010] [Indexed: 11/24/2022] Open
Abstract
Ageing is often accompanied by a decline in learning and memory abilities across the animal kingdom. Understanding age-related changes in cognitive abilities is therefore a major goal of current research. The honey bee is emerging as a novel model organism for age-related changes in brain function, because learning and memory can easily be studied in bees under controlled laboratory conditions. In addition, genetically similar workers naturally display life expectancies from 6 weeks (summer bees) to 6 months (winter bees). We studied whether in honey bees, extreme longevity leads to a decline in cognitive functions. Six-month-old winter bees were conditioned either to odours or to tactile stimuli. Afterwards, long-term memory and discrimination abilities were analysed. Winter bees were kept under different conditions (flight/no flight opportunity) to test for effects of foraging activity on learning performance. Despite their extreme age, winter bees did not display an age-related decline in learning or discrimination abilities, but had a slightly impaired olfactory long-term memory. The opportunity to forage indoors led to a slight decrease in learning performance. This suggests that in honey bees, unlike in most other animals, age per se does not impair associative learning. Future research will show which mechanisms protect winter bees from age-related deficits in learning.
Collapse
Affiliation(s)
- Andreas Behrends
- Institut für Okologie, Technische Universität Berlin Berlin, Germany
| | | |
Collapse
|
32
|
The curious case of aging plasticity in honey bees. FEBS Lett 2010; 584:2496-503. [PMID: 20385132 DOI: 10.1016/j.febslet.2010.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/29/2010] [Accepted: 04/07/2010] [Indexed: 01/01/2023]
Abstract
As in all advanced insect societies, colony-organization in honey bees emerges through a structured division of labor between essentially sterile helpers called workers. Worker bees are sisters that conduct all social tasks except for egg-laying, for example nursing brood and foraging for food. Curiously, aging progresses slowly in workers that engage in nursing and even slower when bees postpone nursing during unfavorable periods. We, therefore, seek to understand how senescence can emerge as a function of social task performance. The alternative utilization of a common yolk precursor protein (vitellogenin) in nursing and somatic maintenance can link behavior and aging plasticity in worker bees. Beneficial effects of vitellogenin may also be mediated by inhibitory action on juvenile hormone and insulin-like signaling.
Collapse
|
33
|
Amdam GV, Fennern E, Baker N, Rascón B. Honeybee associative learning performance and metabolic stress resilience are positively associated. PLoS One 2010; 5:e9740. [PMID: 20305818 PMCID: PMC2840029 DOI: 10.1371/journal.pone.0009740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/22/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Social-environmental influences can affect animal cognition and health. Also, human socio-economic status is a covariate factor connecting psychometric test-performance (a measure of cognitive ability), educational achievement, lifetime health, and survival. The complimentary hypothesis, that mechanisms in physiology can explain some covariance between the same traits, is disputed. Possible mechanisms involve metabolic biology affecting integrity and stability of physiological systems during development and ageing. Knowledge of these relationships is incomplete, and underlying processes are challenging to reveal in people. Model animals, however, can provide insights into connections between metabolic biology and physiological stability that may aid efforts to reduce human health and longevity disparities. RESULTS We document a positive correlation between a measure of associative learning performance and the metabolic stress resilience of honeybees. This relationship is independent of social factors, and may provide basic insights into how central nervous system (CNS) function and metabolic biology can be associated. Controlling for social environment, age, and learning motivation in each bee, we establish that learning in Pavlovian conditioning to an odour is positively correlated with individual survival time in hyperoxia. Hyperoxia induces oxidative metabolic damage, and provides a measure of metabolic stress resistance that is often related to overall lifespan in laboratory animals. The positive relationship between Pavlovian learning ability and stress resilience in the bee is not equally established in other model organisms so far, and contrasts with a genetic cost of improved associative learning found in Drosophila melanogaster. CONCLUSIONS Similarities in the performances of different animals need not reflect common functional principles. A correlation of honeybee Pavlovian learning and metabolic stress resilience, thereby, is not evidence of a shared biology that will give insight about systems integrity in people. Yet, the means to resolve difficult research questions often come from findings in distant areas of science while the model systems that turn out to be valuable are sometimes the least predictable. Our results add to recent findings indicating that honeybees can become instrumental to understanding how metabolic biology influences life outcomes.
Collapse
Affiliation(s)
- Gro V Amdam
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America.
| | | | | | | |
Collapse
|
34
|
Wolschin F, Münch D, Amdam GV. Structural and proteomic analyses reveal regional brain differences during honeybee aging. ACTA ACUST UNITED AC 2010; 212:4027-32. [PMID: 19946081 DOI: 10.1242/jeb.033845] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among insects, learning is particularly well studied in the fruit fly Drosophila melanogaster and the honeybee Apis mellifera. A senescence-dependent decline in classic pavlovian conditioning is demonstrated for both species. To understand how aging affects learning, genetic approaches used with Drosophila can benefit from complementary studies in Apis. Specifically, honeybees have a larger brain size allowing for compartment-specific approaches, and a unique life-history plasticity. They usually perform within-nest tasks early in life (nest bees) and later they collect food (foragers). Senescence of learning performance is a function of the bees' foraging duration but underlying causes are poorly understood. As cognitive aging is commonly associated with structural and biochemical changes in the brain, we hypothesized that brain areas implicated in learning change in synaptic and biochemical composition with increased foraging duration. First, we used synapse-specific immunohistochemistry and proteomics to screen for alterations in the calyx region of the mushroom body, a key structure for memory formation. Using proteomics, we next profiled the central brain, which comprises all higher-order integration centers. We show that, with increased foraging duration, levels of kinases, synaptic- and neuronal growth-related proteins decline in the central brain while the calyx region remains intact both in structure and biochemistry. We suggest that proteome-level changes within major anatomical sites of memory formation other than the calyx region could be central to learning dysfunction. These include large compartments of the central brain, such as the mushroom body's output regions and the antennal lobes. Our data provide novel information toward heterogeneity in the aging insect brain, and demonstrate advantages of the honeybee for invertebrate neurogerontological research.
Collapse
Affiliation(s)
- F Wolschin
- Department of Chemistry, Biotechnology and Food Science, University of Life Sciences, N-1432 As, Norway.
| | | | | |
Collapse
|
35
|
Knight K. BEES' ROLES AFFECT THEIR MEMORIES. J Exp Biol 2009. [DOI: 10.1242/jeb.031021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|