1
|
Metabolomic Analysis of the Takifugu Obscurus Gill under Acute Hypoxic Stress. Animals (Basel) 2022; 12:ani12192611. [PMID: 36230352 PMCID: PMC9559691 DOI: 10.3390/ani12192611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Takifugu obscurus is an economically important aquaculture species in China. In recent years, the development of the domestic breeding industry of the globefish has been very rapid. However, oxygen fluctuations and nourishing substances in the aquaculture water have caused oxygen deprivation, which makes great economic losses in high-density farming. As the main respiratory organ of fish, gills are greatly affected by changes in dissolved oxygen. Therefore, in this study, we explored the molecular mechanism of hypoxia tolerance of pufferfish by analyzing the changes of metabolites in gill tissue under acute hypoxia. These data provide a scientific basis for the control of dissolved oxygen in the aquatic environment of T. obscurus, and also provide a reference for the breeding of the new varieties with low oxygen tolerance. Abstract Takifugu obscurus has relatively small gills and gill pores. Consequently, a relatively low respiratory capacity. This fish is thus easily negatively affected by the low levels of dissolved oxygen (DO) that are common in high-intensity aquaculture. In order to clarify the mechanisms underlying the hypoxia response of T. obscurus, we used liquid mass spectrometry (LC–MS) to identify and quantify the metabolites present in the T. obscurus gill under the following conditions: normoxia (DO, 7.0 ± 0.2 mg/L), hypoxia (DO, 0.9 ± 0.2 mg/L), and reoxygenation (4, 12, and 24 h after return to normoxia conditions). We identified a total of 821 and 383 metabolites in the gill in positive and negative ion modes, respectively. Of the metabolites identified in positive ion mode, 136 were differentially abundant between hypoxia and all other conditions; of the metabolites identified in negative ion mode, 34 were differentially abundant between hypoxia and all other conditions. The metabolites which were differentially abundant under hypoxia primarily included glycerol phospholipids, fatty acids, hormones, and amino acids as well as related compounds. The pathways which were significantly enriched in the differentially abundant metabolites included the lipid metabolism, amino acid metabolism, purine metabolism, FoxO signaling pathway, and mTOR signaling pathway. Our results help to clarify the mechanisms underlying hypoxia tolerance and to identify hypoxia-related metabolites, as well as to highlight potential research targets for the development of hypoxic-tolerant strains in the future.
Collapse
|
2
|
Jena S, Parker LL. Fluorescence Lifetime Imaging Probes for Cell-Based Measurements of Enzyme Activity. Methods Mol Biol 2022; 2394:133-162. [PMID: 35094326 PMCID: PMC10041689 DOI: 10.1007/978-1-0716-1811-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Posttranslational modification (PTM) enzymes are important modulators of protein structure and function. They typically act by chemically modifying amino acids, often on side chain functional groups, to change the physiochemical landscape of the protein and thus its biophysical behavior. In particular, protein kinases are enzymes that transfer phosphate from ATP to serine, threonine, or tyrosine in protein substrates. They are key regulators of vital cellular pathways such as survival, proliferation, and apoptosis, and their dysregulation in the context of cancer has been widely investigated for the purpose of development of anticancer drugs. However, several critical questions pertaining to their physiology, such as heterogeneity of kinase signaling within and between cells, and other factors that may play into the mechanisms of drug resistance, remain unanswered. Many of the current strategies to measure kinase activity lack the scope, subcellular resolution, and real-time monitoring ability needed to obtain the type of information needed about their dynamics and localization in cells. While FRET-based biosensors are capable of dynamic single cell imaging, their applications can be limited by difficulties in multiplexing and the inherent inadequacies of steady state measurements. In this chapter, we describe our fluorescence lifetime imaging microscopy (FLIM) probe technology in which peptide kinase substrates, linked to cell-penetrating peptides and labeled with small molecule fluorophores, are used to report kinase activity through time-resolved fluorescence imaging to visualize and quantify changes to the probe's fluorescence lifetime. These can be multiplexed for more than one kinase at a time, and interpretation is not affected by differences in local intensity due to probe uptake and distribution or photobleaching. With careful choice of peptide substrate(s), fluorophore label, and imaging set-up, high specificity and spatiotemporal resolution can be achieved. Due to the mechanism by which the lifetime change occurs, this approach is compatible with other PTMs (such as acetylation, methylation), and so the considerations for kinase FLIM probe design described in this chapter should be broadly applicable for other PTMs as well.
Collapse
|
3
|
Stanic B, Petrovic J, Basica B, Kaisarevic S, Schirmer K, Andric N. Characterization of the ERK1/2 phosphorylation profile in human and fish liver cells upon exposure to chemicals of environmental concern. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103749. [PMID: 34547448 DOI: 10.1016/j.etap.2021.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
We developed phospho-ERK1/2 ELISA for human and rainbow trout liver cells, employing HepG2 and RTL-W1 cell lines as models. The assay was applied to detect changes in ERK1/2 activity for nine chemicals, added over a wide concentration range and time points. Cell viability was measured to separate ERK1/2 regulation from cytotoxicity. Perfluorooctane sulfonate and carbendazim did not change ERK1/2 activity; influence on ERK1/2 due to cytotoxicity was indicated for tributyltin and cypermethrin. Mancozeb, benzo[a]pyrene, and bisphenol A stimulated ERK1/2 up to ∼2- (HepG2) and 1.5 (RTL-W1)-fold, though the kinetics differed between chemicals and cell lines. Bisphenol A and benzo[a]pyrene were the most potent concentration-wise, altering ERK1/2 activity in pM (HepG2) to nM (RTL-W1) range. While atrazine and ibuprofen increased ERK1/2 activity by ∼2-fold in HepG2, they did not initiate an appreciable response in RTL-W1. This assay proved to be a sensitive, medium- to high-throughput tool for detecting unrecognized ERK1/2-disrupting chemicals.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Jelena Petrovic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Branka Basica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Sonja Kaisarevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
4
|
Specific Roles of HSP27 S15 Phosphorylation Augmenting the Nuclear Function of HER2 to Promote Trastuzumab Resistance. Cancers (Basel) 2020; 12:cancers12061540. [PMID: 32545363 PMCID: PMC7352409 DOI: 10.3390/cancers12061540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Trastuzumab (TZMB) is widely used as first line therapy for breast cancer (BC) patients overexpressing human epidermal growth factor receptor 2 (HER2). Despite its clinical benefits, many patients suffer from primary or secondary resistance to this drug within one year. As diverse molecular mechanisms occur contemporaneously during the resistance development, we focused on elucidating the role of heat shock protein 27 (HSP27) in TZMB-resistance, as this protein simultaneously regulates the function of diverse client molecules that are involved in the resistance mechanism. By extensively utilizing TZMB-refractory breast cancer cell lines transduced with diverse phosphovariants of HSP27, our study newly revealed that specific phosphorylation of HSP27 at S15 promoted its S78 phosphorylation and served as key mediator to promote direct interactions that increase the stability of HER2 and protein kinase B (AKT). This phosphorylation promoted nuclear translocation of HER2, enhancing the distinct nuclear function of HER2 that promoted AKT activation and cyclin D1 expression. Co-administration of TZMB and a functional inhibitor of HSP27, J2, significantly reduced the S15/78 phosphorylation of HSP27, which downregulated HER2 and its downstream signals, sensitizing TZMB-refractory cell, and JIMT1-xenograft mouse models to TZMB. Collectively, p-HSP27S15 could serve as a valuable predictive marker and also a therapeutic target for TZMB-resistance.
Collapse
|
5
|
Tian Y, Wen H, Qi X, Zhang X, Li Y. Identification of mapk gene family in Lateolabrax maculatus and their expression profiles in response to hypoxia and salinity challenges. Gene 2019; 684:20-29. [DOI: 10.1016/j.gene.2018.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
6
|
The exon junction complex senses energetic stress and regulates contractility and cell architecture in cardiac myocytes. Biosci Rep 2017; 37:BSR20170707. [PMID: 28566540 PMCID: PMC6434082 DOI: 10.1042/bsr20170707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
The exon junction complex (EJC) is the main mechanism by which cells select specific mRNAs for translation into protein. We hypothesized that the EJC is involved in the regulation of gene expression during the stress response in cardiac myocytes, with implications for the failing heart. In cultured rat neonatal myocytes, we examined the cellular distribution of two EJC components eukaryotic translation initiation factor 4A isoform 3 (eIF4A3) and mago nashi homologue (Mago) in response to metabolic stress. There was significant relocalization of eIF4A3 and Mago from the nucleus to cytoplasm following 18 h of hypoxia. Treating myocytes with 50 mM NaN3 for 4 h to mimic the metabolic stress induced by hypoxia also resulted in significant relocalization of eIF4A3 and Mago to the cytoplasm. To examine whether the effects of metabolic stress on the EJC proteins were dependent on the metabolic sensor AMP kinase (AMPK), we treated myocytes with 1 μM dorsomorphin (DM) in combination with NaN3 DM augmented the translocation of Mago and eIF4A3 from the nucleus to the cytoplasm. Knockdown of eIF4A3 resulted in cessation of cell contractility 96 h post-treatment and a significant reduction in the number of intact sarcomeres. Cell area was significantly reduced by both hypoxia and eIF4A3 knockdown, whilst eIF4A3 knockdown also significantly reduced nuclear size. The reduction in nuclear size is unlikely to be related to apoptosis as it was reversed in combination with hypoxia. These data suggest for the first time that eIF4A3 and potentially other EJC members play an important role in the myocyte stress response, cell contractility and morphology.
Collapse
|
7
|
Gu SH, Chen CH. Injury-induced rapid activation of MAPK signaling in dechorionated eggs and larvae of the silkworm Bombyx mori. INSECT SCIENCE 2017; 24:248-258. [PMID: 26619971 DOI: 10.1111/1744-7917.12301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Previous study showed that diapause in Bombyx mori eggs can be terminated by dechorionation and that activation in the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) in dechorionated cultured eggs is involved in diapause termination. In the present study, the possible mechanism underlying activation of ERK upon dechorionation was further investigated. Results showed that mechanical injury of diapause eggs without medium incubation also resulted in rapid increase in the phospho-ERK levels and that injury increased the phospho-ERK levels at different stages of both diapause eggs and eggs in which diapause initiation was prevented by HCl. Effects of anaerobiosis on dechorionation-stimulated phospho-ERK levels showed that the mechanical injury itself but not the dramatic increase in oxygen uptake upon injury is involved in a rapid activation of ERK. Chemical anaerobiosis on dechorionation-stimulated phospho-ERK levels and the in vivo effect of anaerobiosis showed that the supply of oxygen also plays a role in ERK signaling. In addition, injury induced the phosphorylation of c-jun N-terminal kinases (JNKs) and p38 kinase, components of two parallel MAPK pathways. A kinase assay showed a dramatic increase in JNK kinase activity in egg lysates upon injury. When newly hatched first instar larvae were injured, an increase in the phospho-ERK levels similar to that in dechorionated eggs was observed. From the results, we hypothesize that the injury-induced rapid activation of MAPK signaling, which serves as a natural signal for embryonic development, is related to diapause termination in dechorionated eggs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, China
| | | |
Collapse
|
8
|
Nilsson GE, Vaage J, Stensløkken KO. Oxygen- and temperature-dependent expression of survival protein kinases in crucian carp (Carassius carassius) heart and brain. Am J Physiol Regul Integr Comp Physiol 2015; 308:R50-61. [PMID: 25377478 DOI: 10.1152/ajpregu.00094.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Living without oxygen is limited to very few vertebrates, one species being the fresh water fish crucian carp (Carassius carassius), which can survive months of anoxia at low temperatures. Mammalian heart and brain are particularly intolerant to oxygen deprivation, yet these organs can be conditioned to display increased resistance, possibly due to activation of several protein kinases. We hypothesized increased phosphorylation status of these kinases in hypoxic and anoxic crucian carp heart and brain. Moreover, we wanted to investigate whether the kinases showing the strongest phosphorylation during hypoxia/anoxia, ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ, also had increased expression and phosphorylation at cold temperatures, to better cope with the anoxic periods during winter. We found small differences in the phosphorylation status of ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ during 10 days of severe hypoxia in both heart and brain (0.3 mg O₂/l) and varying responses to reoxygenation. In contrast, 7 days of anoxia (<0.01 mg O₂/l) markedly increased phosphorylation of ERK 1/2, p38-MAPK, JNK in the heart, and p38-MAPK and PKCε in the brain. Similarly, varying acclimation temperature between 4, 10 and 20°C induced large changes in phosphorylation status. Total protein expression in heart and brain neither changed during different oxygen regimes nor with different acclimation temperatures, except for ERK 1/2, which slightly decreased in the heart at 4°C compared with 20°C. A phylogenetic analysis confirmed that these protein kinases are evolutionarily conserved across a wide range of vertebrate species. Our findings indicate important roles of several protein kinases during oxygen deprivation.
Collapse
Affiliation(s)
- Göran E Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo Hospital, Oslo, Norway; and
| | | |
Collapse
|
9
|
Zhu CD, Wang ZH, Yan B. Strategies for hypoxia adaptation in fish species: a review. J Comp Physiol B 2013; 183:1005-13. [PMID: 23660827 DOI: 10.1007/s00360-013-0762-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
Aquatic environments exhibit wide temporal and spatial variations in oxygen levels compared to terrestrial environments. Fish are an excellent model for elucidating the underlying mechanisms of hypoxia adaptation. Over the past decade, several hypoxia-related proteins have been reported to act in concert to convey oxygen change information to downstream signaling effectors. Some signaling pathways, such as redox status, AMPK, MAPK and IGF/PI3K/Akt, are known to play a central role in hypoxia adaptation. These networks regulate oxygen-sensitive transcription factors which, in turn, affect the expression of hypoxia adaptation-related genes. This review summarizes current insights into hypoxia adaptation-related proteins and signaling pathways in fish.
Collapse
Affiliation(s)
- Chang-Dong Zhu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | | | | |
Collapse
|
10
|
Rathore K, Choudhary S, Odoi A, Wang HCR. Green tea catechin intervention of reactive oxygen species-mediated ERK pathway activation and chronically induced breast cell carcinogenesis. Carcinogenesis 2011; 33:174-83. [PMID: 22045026 DOI: 10.1093/carcin/bgr244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-term exposure to low doses of environmental carcinogens contributes to sporadic human breast cancers. Epidemiologic and experimental studies indicate that green tea catechins (GTCs) may intervene with breast cancer development. We have been developing a chronically induced breast cell carcinogenesis model wherein we repeatedly expose non-cancerous, human breast epithelial MCF10A cells to bioachievable picomolar concentrations of environmental carcinogens, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), to progressively induce cellular acquisition of cancer-associated properties, as measurable end points. The model is then used as a target to identify non-cytotoxic preventive agents effective in suppression of cellular carcinogenesis. Here, we demonstrate, for the first time, a two-step strategy that initially used end points that were transiently induced by short-term exposure to NNK and B[a]P as targets to detect GTCs capable of blocking the acquisition of cancer-associated properties and subsequently used end points constantly induced by long-term exposure to carcinogens as targets to verify GTCs capable of suppressing carcinogenesis. We detected that short-term exposure to NNK and B[a]P resulted in elevation of reactive oxygen species (ROS), leading to Raf-independent extracellular signal-regulated kinase (ERK) pathway activation and subsequent induction of cell proliferation and DNA damage. These GTCs, at non-cytotoxic levels, were able to suppress chronically induced cellular carcinogenesis by blocking carcinogen-induced ROS elevation, ERK activation, cell proliferation and DNA damage in each exposure cycle. Our model may help accelerate the identification of preventive agents to intervene in carcinogenesis induced by long-term exposure to environmental carcinogens, thereby safely and effectively reducing the health risk of sporadic breast cancer.
Collapse
Affiliation(s)
- Kusum Rathore
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
11
|
Liu L, Zhang H, Sun L, Gao Y, Jin H, Liang S, Wang Y, Dong M, Shi Y, Li Z, Fan D. ERK/MAPK activation involves hypoxia-induced MGr1-Ag/37LRP expression and contributes to apoptosis resistance in gastric cancer. Int J Cancer 2010; 127:820-829. [PMID: 19998339 DOI: 10.1002/ijc.25098] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We previously demonstrated that hypoxia increased the hypoxia-inducible factor (HIF-1)-dependent MGr1-Ag/37LRP expression, which enhanced adhesion of gastric cancer cells to laminin, inhibited drug-induced apoptosis and caused cell adhesion-mediated drug resistance (CAM-DR). Here, we investigated the role of extracellular-regulated kinase (ERK) 1/2 in the signaling mechanisms underlying these events. We found that hypoxia activated ERK activity in vitro and in vivo. Overexpression of mitogen-activated protein kinase (MAPK) kinase (MEK), which preferentially activated ERK, mimics, in a nonadditive way, hypoxia-induced activity of MGr1-Ag/37LRP promoter and expression of MGr1-Ag/37LRP. Furthermore, U0126, the MEK inhibitor, inhibited hypoxia- and MEK-induced MGr1-Ag/37LRP promoter activity in a dose-dependent manner. MEK inhibition also reversed hypoxia- and MEK-induced HIF-1 protein and its activity in a dose-dependent manner. We also investigated reactive oxygen species signaling this response. Exogenous addition of H(2)O(2) was sufficient to activate ERK in a dose-dependent profile. Reactive oxygen species scavengers of H(2)O(2) significantly inhibited hypoxia-induced ERK or HIF-1 activation and sequential expression of MGr1-Ag/37LRP. We also investigated the signaling in hypoxia-induced cell adhesion and apoptosis induced by vincristine. Hypoxia significantly enhanced adhesion of SGC7901 cells to laminin in a time-dependent manner, which might be inhibited by the MEK inhibitor U0126 and MGr1-Ag/37LRP siRNA. Consistent with results of adhesion assay, hypoxia-resistant apoptosis might be reversed by U0126 in a dose-dependent manner. Our results suggest that hypoxia-elicited MGr1-Ag/37LRP expression activated by HIF-1 depends on ERK activation. These events are dependent of reactive oxygen intermediates.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Apoptosis
- Blotting, Western
- Butadienes/pharmacology
- Cell Adhesion
- Cell Movement
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Humans
- Hydrogen Peroxide/pharmacology
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/physiology
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/physiology
- Nitriles/pharmacology
- Oxidants/pharmacology
- Phosphorylation
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lili Liu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wulff T, Hoffmann EK, Roepstorff P, Jessen F. Comparison of two anoxia models in rainbow trout cells by a 2-DE and MS/MS-based proteome approach. Proteomics 2008; 8:2035-44. [DOI: 10.1002/pmic.200700944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Wulff T, Jessen F, Roepstorff P, Hoffmann EK. Long term anoxia in rainbow trout investigated by 2-DE and MS/MS. Proteomics 2008; 8:1009-18. [DOI: 10.1002/pmic.200700460] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Junttila MR, Li S, Westermarck J. Phosphatase‐mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2007; 22:954-65. [PMID: 18039929 DOI: 10.1096/fj.06-7859rev] [Citation(s) in RCA: 623] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Melissa R. Junttila
- Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Song‐Ping Li
- Institute of BiomedicineDepartment of Molecular MedicineUniversity of Helsinki, and National Public Health Institute (KTL)BiomedicumHelsinkiFinland
| | - Jukka Westermarck
- Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Institute of Medical TechnologyUniversity of Tampere and University Hospital of TampereTampereFinland
| |
Collapse
|
15
|
Rentsch ML, Ossum CG, Hoffmann EK, Pedersen SF. Roles of Na+/H+ exchange in regulation of p38 mitogen-activated protein kinase activity and cell death after chemical anoxia in NIH3T3 fibroblasts. Pflugers Arch 2007; 454:649-62. [PMID: 17334779 DOI: 10.1007/s00424-007-0233-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 01/24/2007] [Accepted: 02/08/2007] [Indexed: 01/31/2023]
Abstract
Activation of Na(+)/H(+) exchange (NHE) plays a major role in cell death following ischemia/hypoxia in many cell types, yet counteracts apoptotic cell death after other stimuli. To address the role of NHE activity in regulation of cell death/survival, we examined the causal relationship between NHE, p38 mitogen-activated protein kinase (MAPK), ERK1/2, p53, and Akt activity, and cell death, after chemical anoxia in NIH3T3 fibroblasts. The NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (EIPA) (5 muM), as well as removal of extracellular Na(+) [replaced by N-methyl-D: -glucamine (NMDG(+))], prevented recovery of intracellular pH (pH(i)) during chemical anoxia (10 mM NaN(3) +/- 10 mM glucose), indicating that activation of NHE was the dominating mechanism of pH(i) regulation under these conditions. NHE activation by chemical anoxia was unaffected by inhibitors of p38 MAPK (SB203580) and extracellular signal-regulated kinase (ERK) (PD98059). In contrast, chemical anoxia activated p38 MAPK in an NHE-dependent manner, while ERK1/2 activity was unaffected. Anoxia-induced cell death was caspase-3-independent, mildly attenuated by EIPA, potently exacerbated by SB203580, and unaffected by PD98059. Ser(15) phosphorylation of p53 was increased by anoxia in an NHE- and p38 MAPK-independent manner, while Akt activity was unaffected. It is suggested that after chemical anoxia in NIH3T3 fibroblasts, NHE activity is required for activation of p38 MAPK, which in turn protects the cells against anoxia-induced death. In spite of this, NHE inhibition slightly attenuates anoxia-induced cell death, likely due to the involvement of NHE in other anoxia-induced death pathways.
Collapse
Affiliation(s)
- Maria L Rentsch
- Department of Biochemistry, Institute for Molecular Biology and Physiology, University of Copenhagen, 13 Universitetsparken, 2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|