1
|
Belyaev RI, Prilepskaya NE. The elephant backbone: Morphological differences, dorsostability, and vertebral fusions. J Anat 2025. [PMID: 40405373 DOI: 10.1111/joa.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/24/2025] Open
Abstract
The vertebral column of elephants has several unique features that distinguish them from all other modern-day mammals. In this study, we examine various aspects of the functional morphology and intervertebral mobility of the elephant backbone, comparing it to that of other large herbivorous mammals, as well as to extinct Mammuthus primigenius, M. trogontherii, and Mammut americanum. The elephant vertebral column is characterized by a high degree of dorsostability. All three directions of intervertebral mobility (sagittal and lateral bending, and axial rotation), in all backbone modules, demonstrate the lowest amplitudes of motion known for mammals. In elephants, neck mobility is largely replaced by the mobility of the proboscis; the axial rotation in the thoracic region is not used for maneuvering, and the sagittal flexibility of the lumbar region is practically absent during locomotion. The mobility of the elephant cervical region in the sagittal and frontal planes is low; however, it is still responsible for movements that require significant force, such as tournament fights and breaking tree branches. The lumbosacral joint characterized by sagittal hypermobility in most terrestrial mammals is even less mobile than the intralumbar joints in elephantids. The thoracic-lumbo-sacral region of proboscideans is arch-shaped in lateral view, resulting from the ventral-ward tapering of the vertebral centra (the length along the spinal canal is longer than the length at the ventral side of the centrum). This tapering is most pronounced in the posterior thoracic and lumbar vertebrae. In contrast, the vertebral centra in the middle part of the trunk (T8-T14) are almost rectangular in lateral view. This arch-shaped structure provides static support to the vertebral column, preventing sagging. The absolute length of the spinous processes in proboscideans is comparable to those of the largest bovines and exceeds the lengths of extant rhinoceroses. However, relative to the height of the vertebral centrum, the spinous processes in the withers area of elephants are 2-4 times shorter than those in bovines and rhinoceroses. The profile and inclination angle of the spinous processes differ drastically among different taxa. Despite these differences, we found no significant variations in the sagittal flexibility of the backbone among the different elephantids. We hypothesize that the observed differences may relate to how the arch shape of the backbone is maintained in the posterior part of the thoracolumbar region. In modern-day elephants, dorsostability is primarily supported by a strong supraspinous ligament with short intersegmental portions. In mammoths, this is probably maintained by the linea alba and the abdominal muscles.
Collapse
Affiliation(s)
- Ruslan I Belyaev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Natalya E Prilepskaya
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Law CJ, Hlusko LJ, Tseng ZJ. The Carnivoran Adaptive Landscape Reveals Trade-offs among Functional Traits in the Skull, Appendicular, and Axial Skeleton. Integr Org Biol 2025; 7:obaf001. [PMID: 39850959 PMCID: PMC11756339 DOI: 10.1093/iob/obaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
Analyses of form-function relationships are widely used to understand links between morphology, ecology, and adaptation across macroevolutionary scales. However, few have investigated functional trade-offs and covariance within and between the skull, limbs, and vertebral column simultaneously. In this study, we investigated the adaptive landscape of skeletal form and function in carnivorans to test how functional trade-offs among these skeletal regions contribute to ecological adaptations and the topology of the landscape. We found that morphological proxies of function derived from carnivoran skeletal regions exhibit trade-offs and covariation across their performance surfaces, particularly in the appendicular and axial skeletons. These functional trade-offs and covariation correspond as adaptations to different adaptive landscapes when optimized by various factors including phylogeny, dietary ecology, and, in particular, locomotor mode. Lastly, we found that the topologies of the optimized adaptive landscapes and underlying performance surfaces are largely characterized as a single gradual gradient rather than as rugged, multipeak landscapes with distinct zones. Our results suggest that carnivorans may already occupy a broad adaptive zone as part of a larger mammalian adaptive landscape that masks the form and function relationships of skeletal traits.
Collapse
Affiliation(s)
- C J Law
- Burke Museum and Department of Biology, University of Washington, Seattle, WA 91195, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - L J Hlusko
- National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | - Z J Tseng
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Jones KE, Angielczyk KD, Pierce SE. Origins of mammalian vertebral function revealed through digital bending experiments. Proc Biol Sci 2024; 291:20240820. [PMID: 38981526 PMCID: PMC11335002 DOI: 10.1098/rspb.2024.0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
Unravelling the functional steps that underlie major transitions in the fossil record is a significant challenge for biologists owing to the difficulties of interpreting functional capabilities of extinct organisms. New computational modelling approaches provide exciting avenues for testing function in the fossil record. Here, we conduct digital bending experiments to reconstruct vertebral function in non-mammalian synapsids, the extinct forerunners of mammals, to provide insights into the functional underpinnings of the synapsid-mammal transition. We estimate range of motion and stiffness of intervertebral joints in eight non-mammalian synapsid species alongside a comparative sample of extant tetrapods, including salamanders, reptiles and mammals. We show that several key aspects of mammalian vertebral function evolved outside crown Mammalia. Compared to early diverging non-mammalian synapsids, cynodonts stabilized the posterior trunk against lateroflexion, while evolving axial rotation in the anterior trunk. This was later accompanied by posterior sagittal bending in crown mammals, and perhaps even therians specifically. Our data also support the prior hypothesis that functional diversification of the mammalian trunk occurred via co-option of existing morphological regions in response to changing selective demands. Thus, multiple functional and evolutionary steps underlie the origin of remarkable complexity in the mammalian backbone.
Collapse
Affiliation(s)
- Katrina E. Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA02138, USA
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, ManchesterM13 9PL, UK
| | - Kenneth D. Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL60605-2496, USA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA02138, USA
| |
Collapse
|
4
|
Taewcharoen N, Norris R, Sherratt E. Small- to medium-sized mammals show greater morphological disparity in cervical than lumbar vertebrae across different terrestrial modes of locomotion. Ecol Evol 2024; 14:e11478. [PMID: 38835523 PMCID: PMC11148397 DOI: 10.1002/ece3.11478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
During mammalian terrestrial locomotion, body flexibility facilitated by the vertebral column is expected to be correlated with observed modes of locomotion, known as gait (e.g., sprawl, trot, hop, bound, gallop). In small- to medium-sized mammals (average weight up to 5 kg), the relationship between locomotive mode and vertebral morphology is largely unexplored. Here we studied the vertebral column from 46 small- to medium-sized mammals. Nine vertebrae across cervical, thoracic, and lumbar regions were chosen to represent the whole vertebral column. Vertebra shape was analysed using three-dimensional geometric morphometrics with the phylogenetic comparative method. We also applied the multi-block method, which can consider all vertebrae as a single structure for analysis. We calculated morphological disparity, phylogenetic signal, and evaluated the effects of allometry and gait on vertebral shape. We also investigated the pattern of integration in the column. We found the cervical vertebrae show the highest degree of morphological disparity, and the first thoracic vertebra shows the highest phylogenetic signal. A significant effect of gait type on vertebrae shape was found, with the lumbar vertebrae having the strongest correlation; but this effect was not significant after taking phylogeny into account. On the other hand, allometry has a significant effect on all vertebrae regardless of the contribution from phylogeny. The regions showed differing degrees of integration, with cervical vertebrae most strongly correlated. With these results, we have revealed novel information that cannot be captured from study of a single vertebra alone: although the lumbar vertebrae are the most correlated with gait, the cervical vertebrae are more morphologically diverse and drive the diversity among species when considering whole column shape.
Collapse
Affiliation(s)
- Nuttakorn Taewcharoen
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| | - Rachel Norris
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy South Australia Australia
| | - Emma Sherratt
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
5
|
Kort AE, Jones KE. Function of revolute zygapophyses in the lumbar vertebrae of early placental mammals. Anat Rec (Hoboken) 2024; 307:1918-1929. [PMID: 37712919 DOI: 10.1002/ar.25323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
The unique morphology of mammalian lumbar vertebrae allows the spine to flex and extend in the sagittal plane during locomotion. This movement increases stride length and allows mammals to efficiently breathe while running with an asymmetric gait. In extant mammals, the amount of flexion that occurs varies across different locomotor styles, with dorsostable runners relying more on movement of long limbs to run and dorsomobile runners incorporating more flexion of the back. Although long limbs and a stabilized lumbar region are commonly associated with each other in extant mammals, many "archaic" placental mammals with short limbs had lumbar vertebrae with revolute zygapophyses. These articulations with an interlocking S-shape are found only in artiodactyls among extant mammals and have been hypothesized to stabilize against flexion of the back. This would suggest that archaic placental mammals may not have incorporated dorsoventral flexion into locomotion to the same extent as extant mammals with similar proportions. We tested the relative mobility of fossil lumbar vertebrae from two early placental mammals, the creodonts Patriofelis and Limnocyon, to see how these vertebrae may have functioned. We compared range of motion (ROM) between the original vertebrae, with revolute morphology and digitally altered vertebrae with a flat morphology. We found that the revolute morphology had relatively little effect on dorsoventral flexion and instead that it likely prevented disarticulation due to shear forces on the spine. These results show that flexion of the spine has been an important part of mammalian locomotion for at least 50 million years.
Collapse
Affiliation(s)
- Anne E Kort
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Katrina E Jones
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Wang R, Xiao H, Quan X, Gao J, Fukuda T, Shi Q. Bioinspired Soft Spine Enables Small-Scale Robotic Rat to Conquer Challenging Environments. Soft Robot 2024; 11:70-84. [PMID: 37477672 DOI: 10.1089/soro.2022.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
For decades, it has been difficult for small-scale legged robots to conquer challenging environments. To solve this problem, we propose the introduction of a bioinspired soft spine into a small-scale legged robot. By capturing the motion mechanism of rat erector spinae muscles and vertebrae, we designed a cable-driven centrally symmetric soft spine under limited volume and integrated it into our previous robotic rat SQuRo. We called this newly updated robot SQuRo-S. Because of the coupling compliant spine bending and leg locomotion, the environmental adaptability of SQuRo-S significantly improved. We conducted a series of experiments on challenging environments to verify the performance of SQuRo-S. The results demonstrated that SQuRo-S crossed an obstacle of 1.07 body height, thereby outperforming most small-scale legged robots. Remarkably, SQuRo-S traversed a narrow space of 0.86 body width. To the best of our knowledge, SQuRo-S is the first quadruped robot of this scale that is capable of traversing a narrow space with a width smaller than its own width. Moreover, SQuRo-S demonstrated stable walking on mud-sand, pipes, and slopes (20°), and resisted strong external impact and repositioned itself in various body postures. This work provides a new paradigm for enhancing the flexibility and adaptability of small-scale legged robots with spine in challenging environments, and can be easily generalized to the design and development of legged robots with spine of different scales.
Collapse
Affiliation(s)
- Ruochao Wang
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Xiao
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China
| | - Xiaolong Quan
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Junhui Gao
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Toshio Fukuda
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qing Shi
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China
| |
Collapse
|
7
|
Belyaev RI, Nikolskaia P, Bushuev AV, Panyutina AA, Kozhanova DA, Prilepskaya NE. Running, jumping, hunting, and scavenging: Functional analysis of vertebral mobility and backbone properties in carnivorans. J Anat 2024; 244:205-231. [PMID: 37837214 PMCID: PMC10780164 DOI: 10.1111/joa.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/15/2023] Open
Abstract
Carnivorans are well-known for their exceptional backbone mobility, which enables them to excel in fast running and long jumping, leading to them being among the most successful predators amongst terrestrial mammals. This study presents the first large-scale analysis of mobility throughout the presacral region of the vertebral column in carnivorans. The study covers representatives of 6 families, 24 genera and 34 species. We utilized a previously developed osteometry-based method to calculate available range of motion, quantifying all three directions of intervertebral mobility: sagittal bending (SB), lateral bending (LB), and axial rotation (AR). We observed a strong phylogenetic signal in the structural basis of the vertebral column (vertebral and joint formulae, length proportions of the backbone modules) and an insignificant phylogenetic signal in most characteristics of intervertebral mobility. This indicates that within the existing structure (stabilization of which occurred rather early in different phylogenetic lineages), intervertebral mobility in carnivorans is quite flexible. Our findings reveal that hyenas and canids, which use their jaws to seize prey, are characterized by a noticeably elongated cervical region and significantly higher SB and LB mobility of the cervical joints compared to other carnivorans. In representatives of other carnivoran families, the cervical region is very short, but the flexibility of the neck (both SB and LB) is significantly higher than that of short-necked odd-toed and even-toed ungulates. The lumbar region of the backbone in carnivorans is dorsomobile in the sagittal plane, being on average ~23° more mobile than in artiodactyls and ~38° more mobile than in perissodactyls. However, despite the general dorsomobility, only some representatives of Canidae, Felidae, and Viverridae are superior in lumbar flexibility to the most dorsomobile ungulates. The most dorsomobile artiodactyls are equal or even superior to carnivorans in their ability to engage in dorsal extension during galloping. In contrast, carnivorans are far superior to ungulates in their ability to engage ventral flexion. The cumulative SB in the lumbar region in carnivorans largely depends on the mode of running and hunting. Thus, adaptation to prolonged and enduring pursuit of prey in hyenas is accompanied by markedly reduced SB flexibility in the lumbar region. A more dorsostable run is also a characteristic of the Ursidae, and the peculiar maned wolf. Representatives of Felidae and Canidae have significantly more available SB mobility in the lumbar region. However, they fully engage it only occasionally at key moments of the hunt associated with the direct capture of the prey or when running in a straight line at maximum speed.
Collapse
Affiliation(s)
- Ruslan I. Belyaev
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| | - Polina Nikolskaia
- Geological InstituteRussian Academy of SciencesMoscowRussian Federation
| | - Andrey V. Bushuev
- Department of Vertebrate Zoology, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussian Federation
| | | | - Darya A. Kozhanova
- Department of Paleontology, Faculty of GeologyLomonosov Moscow State UniversityMoscowRussian Federation
| | - Natalya E. Prilepskaya
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
8
|
Kinoshita Y, Hirasaki E. Range of rotation of thoracolumbar vertebrae in Japanese macaques. Anat Rec (Hoboken) 2024; 307:223-232. [PMID: 37289013 DOI: 10.1002/ar.25273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In humans, the range of thoracic vertebral rotation is known to be greater than that of the lumbar vertebrae due to their zygapophyseal orientation and soft tissue structure. However, little is known regarding vertebral movements in non-human primate species, which are primarily quadrupedal walkers. To understand the evolutionary background of human vertebral movements, this study estimated the range of axial rotation of the thoracolumbar spine in macaque monkeys. First, computed tomography (CT) was performed while passively rotating the trunk of whole-body cadavers of Japanese macaques, after which the motion of each thoracolumbar vertebra was estimated. Second, to evaluate the influence of the shoulder girdle and surrounding soft tissues, specimens with only bones and ligaments were prepared, after which the rotation of each vertebra was estimated using an optical motion tracking system. In both conditions, the three-dimensional coordinates of each vertebra were digitized, and the axial rotational angles between adjacent vertebrae were calculated. In the whole-body condition, the lower thoracic vertebrae had a greater range of rotation than did the other regions, similar to that observed in humans. In addition, absolute values for the range of rotation were similar between humans and macaques. However, in the bone-ligament preparation condition, the upper thoracic vertebrae had a range of rotation similar to that of the lower thoracic vertebrae. Contrary to previous speculations, our results showed that the mechanical restrictions by the ribs were not as significant; rather, the shoulder girdle largely restricted the rotation of the upper thoracic vertebrae, at least, in macaques.
Collapse
Affiliation(s)
- Yuki Kinoshita
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| | - Eishi Hirasaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| |
Collapse
|
9
|
Hamidi K, Matin MM, Pérez MJ, Kilpatrick CW, Darvish J. Postcranial skeleton of Goodwin's brush-tailed mouse (Calomyscus elburzensis Goodwin, 1939) (Rodentia: Calomyscidae): Shape, size, function, and locomotor adaptation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1059-1101. [PMID: 37698162 DOI: 10.1002/jez.2755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Goodwin's brush-tailed mouse (Calomyscus elburzensis Goodwin, 1939) is a poorly known small rodent that occupies rocky habitats in Iran, Turkmenistan, Afghanistan, Pakistan, Azerbaijan, and Syria. Herein, a detailed description of the shape, size, and function of the postcranial skeleton of this species is presented for the first time. Trapping was carried out in eastern Iran between the years 2013 and 2015. Skeletal parts of 24 adult male specimens were removed using the papain digestion protocol, and several postcranial morphological characteristics and measurements were examined. We attempted to achieve a morpho-functional characterization of Goodwin's brush-tailed mouse and to match morphological specializations with previous information on the ecology, behavior, and phylogenetic inferences of this rodent. Goodwin's brush-tailed mouse has extended transverse processes and long zygapophyses in the first five caudal vertebrae along with a good innervation of the caudal vertebrae, which has resulted in a well-developed basal musculature of the tail. It has extended forelimb, long ilium, and short post-acetabular part of the innominate bone, loose hip joint with high degree of lateral movement of the hindlimb, and long distal elements of the hindlimb. These features have resulted in fast terrestrial movements in open microhabitats, including climbing and jumping. Although superficial scratching of the ground is observed, the species is incapable of digging burrows. Evaluation of postcranial morphological characteristics and character states further indicated the basal radiation of the genus Calomyscus among other Muroidea. Findings constitute a source of information for morpho-functional and phylogenetic comparisons between Calomyscidae and other mouse-like muroids.
Collapse
Affiliation(s)
- Kordiyeh Hamidi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Julieta Pérez
- Instituto de Investigaciones de Biodiversidad Argentina (PIDBA) y Programa de Conservación de los Murciélagos de Argentina (PCMA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | - Jamshid Darvish
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Research Group of Rodentology, Institute of Applied Zoology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Esteban JM, Martín-Serra A, Pérez-Ramos A, Mulot B, Jones K, Figueirido B. The impact of the land-to-sea transition on evolutionary integration and modularity of the pinniped backbone. Commun Biol 2023; 6:1141. [PMID: 37949962 PMCID: PMC10638317 DOI: 10.1038/s42003-023-05512-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
In this study, we investigate how the terrestrial-aquatic transition influenced patterns of axial integration and modularity in response to the secondary adaptation to a marine lifestyle. We use 3D geometric morphometrics to quantify shape covariation among presacral vertebrae in pinnipeds (Carnivora; Pinnipedia) and to compare with patterns of axial integration and modularity in their close terrestrial relatives. Our results indicate that the vertebral column of pinnipeds has experienced a decrease in the strength of integration among all presacral vertebrae when compared to terrestrial carnivores (=fissipeds). However, separate integration analyses among the speciose Otariidae (i.e., sea lions and fur seals) and Phocidae (i.e., true seals) also suggests the presence of different axial organizations in these two groups of crown pinnipeds. While phocids present a set of integrated "thoracic" vertebrae, the presacral vertebrae of otariids are characterized by the absence of any set of vertebrae with high integration. We hypothesize that these differences could be linked to their specific modes of aquatic locomotion -i.e., pelvic vs pectoral oscillation. Our results provide evidence that the vertebral column of pinnipeds has been reorganized from the pattern observed in fissipeds but is more complex than a simple "homogenization" of the modular pattern of their close terrestrial relatives.
Collapse
Affiliation(s)
- Juan Miguel Esteban
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Baptiste Mulot
- ZooParc de Beauval & Beauval Nature, 41110, Saint-Aignan, France
| | - Katrina Jones
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
11
|
Matsumoto O, Tanaka H, Kawasetsu T, Hosoda K. High-speed running quadruped robot with a multi-joint spine adopting a 1DoF closed-loop linkage. Front Robot AI 2023; 10:1148816. [PMID: 37051260 PMCID: PMC10084478 DOI: 10.3389/frobt.2023.1148816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Improving the mobility of robots is an important goal for many real-world applications and implementing an animal-like spine structure in a quadruped robot is a promising approach to achieving high-speed running. This paper proposes a feline-like multi-joint spine adopting a one-degree-of-freedom closed-loop linkage for a quadruped robot to realize high-speed running. We theoretically prove that the proposed spine structure can realize 1.5 times the horizontal range of foot motion compared to a spine structure with a single joint. Experimental results demonstrate that a robot with the proposed spine structure achieves 1.4 times the horizontal range of motion and 1.9 times the speed of a robot with a single-joint spine structure.
Collapse
|
12
|
Molnar J, Watanabe A. Morphological and functional regionalization of trunk vertebrae as an adaptation for arboreal locomotion in chameleons. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221509. [PMID: 36998764 PMCID: PMC10049746 DOI: 10.1098/rsos.221509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Regionalization of the vertebral column can help animals adapt to different kinds of locomotion, including arboreal locomotion. Although functional axial regionalization has been described in both chameleons and arboreal mammals, no morphological basis for this functional regionalization in chameleons has been proposed. However, recent studies have described regionalization in the presacral vertebral column of other extant squamates. To investigate possible morphological regionalization in the vertebral column of chameleons, we took morphometric measurements from the presacral vertebrae of 28 chameleon species representing all extant chameleon genera, both fully arboreal and ground-dwelling, and performed comparative analyses. Our results support chameleons exhibiting three or four presacral morphological regions that correspond closely to those in other sauropsids, but we detected evolutionary shifts in vertebral traits occurring in only arboreal chameleons. Specifically, the anterior dorsal region in arboreal chameleons has more vertically oriented zygapophyseal joints, predicting decreased mediolateral flexibility. This shift is functionally significant because stiffening of the anterior thoracic vertebral column has been proposed to help bridge gaps between supports in primates. Thus, specialization of existing morphological regions in the vertebral column of chameleons may have played an important role in the evolution of extreme arboreal locomotion, paralleling the adaptations of arboreal primates.
Collapse
Affiliation(s)
- Julia Molnar
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Akinobu Watanabe
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
- Life Sciences Department, Natural History Museum, London, SW7 5BD UK
| |
Collapse
|
13
|
Analysis of Kinematic Characteristics of Saanen Goat Spine under Multi-Slope. Biomimetics (Basel) 2022; 7:biomimetics7040181. [PMID: 36412709 PMCID: PMC9680311 DOI: 10.3390/biomimetics7040181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
In order to improve the slope movement stability and flexibility of quadruped robot, a theoretical design method of a flexible spine of a robot that was based on bionics was proposed. The kinematic characteristics of the spine were analyzed under different slopes with a Saanen goat as the research object. A Qualisys track manager (QTM) gait analysis system was used to obtain the trunk movement of goats under multiple slopes, and linear time normalization (LTN) was used to calibrate and match typical gait cycles to characterize the goat locomotion gait under slopes. Firstly, the spatial angle changes of cervical thoracic vertebrae, thoracolumbar vertebrae, and lumbar vertebrae were compared and analyzed under 0°, 5°, 10°, and 15° slopes, and it was found that the rigid and flexible coupling structure between the thoraco-lumbar vertebrae played an obvious role when moving on the slope. Moreover, with the increase in slope, the movement of the spine changed to the coupling movement of thoraco-lumbar coordination movement and a flexible swing of lumbar vertebrae. Then, the Gaussian mixture model (GMM) clustering algorithm was used to analyze the changes of the thoraco-lumbar vertebrae and lumbar vertebrae in different directions. Combined with anatomical knowledge, it was found that the motion of the thoraco-lumbar vertebrae and lumbar vertebrae in the goat was mainly manifested as a left-right swing in the coronal plane. Finally, on the basis of the analysis of the maximin and variation range of the thoraco-lumbar vertebrae and lumbar vertebrae in the coronal plane, it was found that the coupling motion of the thoraco-lumbar cooperative motion and flexible swing of the lumbar vertebrae at the slope of 10° had the most significant effect on the motion stability. SSE, R2, adjusted-R2, and RMSE were used as evaluation indexes, and the general equations of the spatial fitting curve of the goat spine were obtained by curve fitting of Matlab software. Finally, Origin software was used to obtain the optimal fitting spatial equations under eight movements of the goat spine with SSE and adjusted-R2 as indexes. The research will provide an idea for the bionic spine design with variable stiffness and multi-direction flexible bending, as well as a theoretical reference for the torso design of a bionic quadruped robot.
Collapse
|
14
|
Belyaev RI, Kuznetsov AN, Prilepskaya NE. From dorsomobility to dorsostability: A study of lumbosacral joint range of motion in artiodactyls. J Anat 2022; 241:420-436. [PMID: 35616615 PMCID: PMC9296042 DOI: 10.1111/joa.13688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
This study is the first analysis of mobility in the lumbosacral joint of even-toed ungulates covering the full range of body masses and running forms. In this study, we modified a previously developed osteometry-based method to calculate the available range of motion (aROM) in the lumbosacral joint in artiodactyls. We quantified all three directions of intervertebral mobility: sagittal bending (SB), lateral bending (LB), and axial rotation (AR). This research covers extant artiodactyls from 10 families, 57 genera, and 78 species. The lumbosacral joint in artiodactyls is on average almost twice as mobile in SB as the average intralumbar joint (aROM 15.68° vs 8.22°). In all artiodactyls, the first sacral prezygapophyses are equipped with postfacet fossae determining the available range of lumbosacral hyperextension. SB aROM in the lumbosacral joint in artiodactyls varies almost sevenfold (from 4.53° to 31.19°) and is closely related to the body mass and running form. An allometric equation was developed for the first time, for the joint angular amplitude of motion, exemplified by the artiodactyl lumbosacral SB aROMs, as a power function of body mass, the power coefficient value being close to -0.15. High SB aROM at the lumbosacral joint is characteristic of artiodactyls with at least one of the following characteristics: high cumulative and average SB aROM in the lumbar region (Pearson r = 0.467-0.617), small body mass (r = -0.531), saltatorial or saltatorial-cursorial running form (mean = 16.91-18.63°). The highest SB aROM in the lumbosacral joint is typical for small antelopes and Moschidae (mean = 20.24-20.27°). Among these artiodactyls SB aROMs in the lumbosacral joint are on par with various carnivores. Large and robust artiodactyls, adapted predominantly to mediportal and stilt (running on extremely tall limbs) running forms, have 2-3 times smaller SB aROMs in the lumbosacral joint. Adaptation to endurance galloping in open landscapes (cursorial running form) is accompanied by smaller lumbar and lumbosacral SB aROMs compared to that in saltatorial-cursorial artiodactyls of the same body mass. The wide range of species studied makes it possible to significantly expand the knowledge of relations of the mobility of the lumbosacral joint in artiodactyls to body mass and running form.
Collapse
Affiliation(s)
- Ruslan I. Belyaev
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| | - Alexander N. Kuznetsov
- Borissiak Paleontological Institute, Russian Academy of SciencesMoscowRussian Federation
| | - Natalya E. Prilepskaya
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
15
|
Effects of spinal structure on quadruped bounding gait. ROBOTICA 2022. [DOI: 10.1017/s0263574722000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
This paper proposes a robot model with multiple spines and investigates its effects on the bounding gait of quadruped robot. Contrastive tests, carried out by adding an active driving joint (ADJ) and changing the number of passive driving joints, were divided between simulation and physical. The results reveal that the spinal structure (one ADJ and several passive driving joints) is closely related to the performance parameters. Increasing the number of passive driving joints can improve the velocity and energy efficiency. This structure may have significant guidance for designing a quadruped robot.
Collapse
|
16
|
Scheidt A, Ditzel PC, Geiger SM, Wagner FC, Mülling CKW, Nyakatura JA. A therian mammal with sprawling kinematics? Gait and 3D forelimb X-ray motion analysis in tamanduas. J Exp Biol 2022; 225:275397. [PMID: 35554550 DOI: 10.1242/jeb.243625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Therian mammals are known to move their forelimbs in a parasagittal plane, retracting the mobilised scapula during stance phase. Non-cursorial therian mammals often abduct the elbow out of the shoulder-hip parasagittal plane. This is especially prominent in Tamandua (Xenarthra), which suggests they employ aspects of sprawling (e.g., lizard-like-) locomotion. Here, we test if tamanduas use sprawling forelimb kinematics, i.e., a largely immobile scapula with pronounced lateral spine bending and long-axis rotation of the humerus. We analyse high speed videos and use X-ray motion analysis of tamanduas walking and balancing on branches of varying inclinations and provide a quantitative characterization of gaits and forelimb kinematics. Tamanduas displayed lateral sequence lateral-couplets gaits on flat ground and horizontal branches, but increased diagonality on steeper in- and declines, resulting in lateral sequence diagonal-couplets gaits. This result provides further evidence for high diagonality in arboreal species, likely maximising stability in arboreal environments. Further, the results reveal a mosaic of sprawling and parasagittal kinematic characteristics. The abducted elbow results from a constantly internally rotated scapula about its long axis and a retracted humerus. Scapula retraction contributes considerably to stride length. However, lateral rotation in the pectoral region of the spine (range: 21°) is higher than reported for other therian mammals. Instead, it is similar to skinks and alligators, indicating an aspect generally associated with sprawling locomotion is characteristic for forelimb kinematics of tamanduas. Our study contributes to a growing body of evidence of highly variable non-cursorial therian mammal locomotor kinematics.
Collapse
Affiliation(s)
- Adrian Scheidt
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Paulo C Ditzel
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Sandra M Geiger
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Franziska C Wagner
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Christoph K W Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
17
|
Kamimura T, Sato K, Aoi S, Higurashi Y, Wada N, Tsuchiya K, Sano A, Matsuno F. Three Characteristics of Cheetah Galloping Improve Running Performance Through Spinal Movement: A Modeling Study. Front Bioeng Biotechnol 2022; 10:825638. [PMID: 35497345 PMCID: PMC9049215 DOI: 10.3389/fbioe.2022.825638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cheetahs are the fastest land animal. Their galloping shows three characteristics: small vertical movement of their center of mass, small whole-body pitching movement, and large spine bending movement. We hypothesize that these characteristics lead to enhanced gait performance in cheetahs, including higher gait speed. In this study, we used a simple model with a spine joint and torsional spring, which emulate the body flexibility, to verify our hypothesis from a dynamic perspective. Specifically, we numerically searched periodic solutions and evaluated what extent each solution shows the three characteristics. We then evaluated the gait performance and found that the solutions with the characteristics achieve high performances. This result supports our hypothesis. Furthermore, we revealed the mechanism for the high performances through the dynamics of the spine movement. These findings extend the current understanding of the dynamic mechanisms underlying high-speed locomotion in cheetahs.
Collapse
Affiliation(s)
- Tomoya Kamimura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Aichi, Japan
- *Correspondence: Tomoya Kamimura, ; Shinya Aoi,
| | - Kaho Sato
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Aichi, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- *Correspondence: Tomoya Kamimura, ; Shinya Aoi,
| | - Yasuo Higurashi
- Laboratory of System Physiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Naomi Wada
- Laboratory of System Physiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akihito Sano
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Aichi, Japan
| | - Fumitoshi Matsuno
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Smith SM, Angielczyk KD. A Shrewd Inspection of Vertebral Regionalization in Large Shrews (Soricidae: Crocidurinae). Integr Org Biol 2022; 4:obac006. [PMID: 35291671 PMCID: PMC8915212 DOI: 10.1093/iob/obac006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The regionalization of the mammalian spinal column is an important evolutionary, developmental, and functional hallmark of the clade. Vertebral column regions are usually defined using transitions in external bone morphology, such as the presence of transverse foraminae or rib facets, or measurements of vertebral shape. Yet the internal structure of vertebrae, specifically the trabecular (spongy) bone, plays an important role in vertebral function, and is subject to the same variety of selective, functional, and developmental influences as external bone morphology. Here, we investigated regionalization of external and trabecular bone morphology in the vertebral column of a group of shrews (family Soricidae). The primary goals of this study were to: (1) determine if vertebral trabecular bone morphology is regionalized in large shrews, and if so, in what configuration relative to external morphology; (2) assess correlations between trabecular bone regionalization and functional or developmental influences; and (3) determine if external and trabecular bone regionalization patterns provide clues about the function of the highly modified spinal column of the hero shrew Scutisorex. Trabecular bone is regionalized along the soricid vertebral column, but the configuration of trabecular bone regions does not match that of the external vertebral morphology, and is less consistent across individuals and species. The cervical region has the most distinct and consistent trabecular bone morphology, with dense trabeculae indicative of the ability to withstand forces in a variety of directions. Scutisorex exhibits an additional external morphology region compared to unmodified shrews, but this region does not correspond to a change in trabecular architecture. Although trabecular bone architecture is regionalized along the soricid vertebral column, and this regionalization is potentially related to bone functional adaptation, there are likely aspects of vertebral functional regionalization that are not detectable using trabecular bone morphology. For example, the external morphology of the Scutisorex lumbar spine shows signs of an extra functional region that is not apparent in trabecular bone analyses. It is possible that body size and locomotor mode affect the degree to which function is manifest in trabecular bone, and broader study across mammalian size and ecology is warranted to understand the relationship between trabecular bone morphology and other measures of vertebral function such as intervertebral range of motion.
Collapse
Affiliation(s)
- Stephanie M Smith
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 S DuSable Lake Shore Drive, Chicago IL 60605, USA
| | - Kenneth D Angielczyk
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 S DuSable Lake Shore Drive, Chicago IL 60605, USA
| |
Collapse
|
19
|
Belyaev RI, Kuznetsov AN, Prilepskaya NE. How the even-toed ungulate vertebral column works: Comparison of intervertebral mobility in 33 genera. J Anat 2021; 239:1370-1399. [PMID: 34365661 PMCID: PMC8602029 DOI: 10.1111/joa.13521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, we used a previously developed osteometry-based method to calculate available range of motion in presacral intervertebral joints in artiodactyls. We have quantified all three directions of intervertebral mobility: sagittal bending (SB), lateral bending (LB), and axial rotation (AR). This research covers 10 extant families of artiodactyls from 33 genera and 39 species. The cervical region in artiodactyls is the most mobile region of the presacral vertebral column in SB and LB. Mobility is unevenly distributed throughout the joints of the neck. The posterior neck joints (C4-C7) are significantly more mobile (on average by 2.5-3.5°) to anterior joints (C2-C4) and to the neck-thorax joint (C7-T1) in SB and LB. An increase in the relative length of the cervical region in artiodactyls is accompanied by an increase in the bending amplitudes (SB: Pearson r = 0.781; LB: r = 0.884). Animals with the most mobile necks (representative of Giraffidae and Camelidae) are 2-3 times more mobile in SB and LB compared to species with the least mobile necks. The thoracic region in artiodactyls, as in other mammals, is characterized by the greatest amplitudes of AR due to the tangential orientation of the zygapophyseal articular facets. The lowest AR values in the thoracic region are typical for the heaviest artiodactyls-Hippopotamidae. The highest AR values are typical for such agile runners as cervids, musk deer, pronghorn, as well as large and small antelopes. SB mobility in the posterior part of the thoracic region can be used by artiodactyls during galloping. The highest values of SB aROM in the posterior part of the thoracic region are typical for small animals with high SB mobility in the lumbar region. The lumbar region in mammals is adapted for efficient SB. Both the cumulative and average SB values in the lumbar region showed correspondence to the running type employed by an artiodactyl. The greatest SB amplitudes in the lumbar region are typical for small animals, which use saltatorial and saltatorial-cursorial running. An increase in body size also corresponds to a decrease in lumbar SB amplitudes. The lowest SB amplitudes are typical for species using the so-called mediportal running. Adaptation to endurance galloping in open landscapes is accompanied by a decrease in lumbar SB amplitudes in artiodactyls. The consistency of the approach used and the wide coverage of the studied species make it possible to significantly expand and generalize the knowledge of the biomechanics of the vertebral column in artiodactyls.
Collapse
Affiliation(s)
- Ruslan I. Belyaev
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| | | | - Natalya E. Prilepskaya
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
20
|
Jones KE, Brocklehurst RJ, Pierce SE. AutoBend: An Automated Approach for Estimating Intervertebral Joint Function from Bone-Only Digital Models. Integr Org Biol 2021; 3:obab026. [PMID: 34661062 PMCID: PMC8514422 DOI: 10.1093/iob/obab026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Deciphering the biological function of rare or extinct species is key to understanding evolutionary patterns across the tree of life. While soft tissues are vital determinants of joint function, they are rarely available for study. Therefore, extracting functional signals from skeletons, which are more widely available via museum collections, has become a priority for the field of comparative biomechanics. While most work has focused on the limb skeleton, the axial skeleton plays a critical role in body support, respiration, and locomotion, and is therefore of central importance for understanding broad-scale functional evolution. Here, we describe and experimentally validate AutoBend, an automated approach to estimating intervertebral joint function from bony vertebral columns. AutoBend calculates osteological range of motion (oROM) by automatically manipulating digitally articulated vertebrae while incorporating multiple constraints on motion, including both bony intersection and the role of soft tissues by restricting excessive strain in both centrum and zygapophyseal articulations. Using AutoBend and biomechanical data from cadaveric experiments on cats and tegus, we validate important modeling parameters required for oROM estimation, including the degree of zygapophyseal disarticulation, and the location of the center of rotation. Based on our validation, we apply a model with the center of rotation located within the vertebral disk, no joint translation, around 50% strain permitted in both zygapophyses and disks, and a small amount of vertebral intersection permitted. Our approach successfully reconstructs magnitudes and craniocaudal patterns of motion obtained from ex vivo experiments, supporting its potential utility. It also performs better than more typical methods that rely solely on bony intersection, emphasizing the importance of accounting for soft tissues. We estimated the sensitivity of the analyses to vertebral model construction by varying joint spacing, degree of overlap, and the impact of landmark placement. The effect of these factors was small relative to biological variation craniocaudally and between bending directions. We also present a new approach for estimating joint stiffness directly from oROM and morphometric measurements that can successfully reconstruct the craniocaudal patterns, but not magnitudes, derived from experimental data. Together, this work represents a significant step forward for understanding vertebral function in difficult-to-study (e.g., rare or extinct) species, paving the way for a broader understanding of patterns of functional evolution in the axial skeleton.
Collapse
Affiliation(s)
- K E Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - R J Brocklehurst
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - S E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Boonsri B, Nganvongpanit K, Buddhachat K, Punyapornwithaya V, Kongtueng P, Kaewmong P, Kittiwattanawong K. Morphometric analysis of cervical vertebrae in some marine and land mammals. Anat Histol Embryol 2021; 50:812-825. [PMID: 34272750 DOI: 10.1111/ahe.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Bones or skeletal remains can be used to answer a number of questions related to species, sex, age or cause of death. However, studies involving vertebrae have been limited as most were performed on skulls or long bones. Here, we have stated the hypothesis that the morphometry of cervical vertebrae can be used for species identification and body size estimation among marine and land mammals. The cervical vertebrae from eight and 14 species of marine and land mammals were used to collect morphometric data. Cluster dendrogram, principal component analysis, discriminant analysis and linear regression were used to analyse the data. The results indicate that, based on an index of C4 to C7, there were 13 out of 22 species for which identity could be correctly predicted in 100% of the cases. The correlations between cervical vertebrae parameters (height, width and length of centrum) in marine (average R2 = 0.87, p < .01) and land (average R2 = 0.51, p < .01) mammals were observed. These results indicate that vertebral morphometrics could be used for species prediction and verification of body weight in both marine and land mammals.
Collapse
Affiliation(s)
- Burin Boonsri
- Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Korakot Nganvongpanit
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piyamat Kongtueng
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | |
Collapse
|
22
|
Figueirido B, Martín-Serra A, Pérez-Ramos A, Velasco D, Pastor FJ, Benson RJ. Serial disparity in the carnivoran backbone unveils a complex adaptive role in metameric evolution. Commun Biol 2021; 4:863. [PMID: 34267313 PMCID: PMC8282787 DOI: 10.1038/s42003-021-02346-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/20/2021] [Indexed: 11/09/2022] Open
Abstract
Organisms comprise multiple interacting parts, but few quantitative studies have analysed multi-element systems, limiting understanding of phenotypic evolution. We investigate how disparity of vertebral morphology varies along the axial column of mammalian carnivores — a chain of 27 subunits — and the extent to which morphological variation have been structured by evolutionary constraints and locomotory adaptation. We find that lumbars and posterior thoracics exhibit high individual disparity but low serial differentiation. They are pervasively recruited into locomotory functions and exhibit relaxed evolutionary constraint. More anterior vertebrae also show signals of locomotory adaptation, but nevertheless have low individual disparity and constrained patterns of evolution, characterised by low-dimensional shape changes. Our findings demonstrate the importance of the thoracolumbar region as an innovation enabling evolutionary versatility of mammalian locomotion. Moreover, they underscore the complexity of phenotypic macroevolution of multi-element systems and that the strength of ecomorphological signal does not have a predictable influence on macroevolutionary outcomes. Figueirido et al. use a 3D geometric morphometric approach to study functional among-species disparity in the vertebral column of Carnivora, as well as assessing the effect of different sampling methods on homology. Disparity is generally higher in more caudal regions, compared to more cranial regions, but recruitment for locomotor function is pervasive throughout the whole studied column.
Collapse
Affiliation(s)
- Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - David Velasco
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco J Pastor
- Departamento de Anatomía y Radiología, Museo de Anatomía, Universidad de Valladolid, Valladolid, Spain
| | - Roger J Benson
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Hederstedt S, McGowan C, Essner A. The Immediate Effect of Parachute-Resisted Gallop on Heart Rate, Running Speed and Stride Frequency in Dogs. Animals (Basel) 2021; 11:ani11071983. [PMID: 34359110 PMCID: PMC8300255 DOI: 10.3390/ani11071983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Physical fitness is needed for canine athletes and working dogs to optimize their performance in various disciplines. Application of resistance on movements causes biomechanical and cardiorespiratory responses to physical exercise. However, there is still a lack of research on the effects of high-intensity resistance exercise on cardiorespiratory fitness components such as heart rate in canine athletes. In this article, we investigate the short-term effects of parachute-resisted galloping on heart rate, running speed and stride frequency. Healthy dogs of various breeds were extensively studied in five experimental single cases. The dogs ran on a straight 200 m course with and without resistive drag force applied by a parachute attached to their harness while heart rate, running speed and stride frequency were measured. Subsequently, the measurements were compared to baseline phases at rest. In the present trials we found that heart rate increases similarly with and without parachute-resistance while dogs galloped at lower speeds and with increased stride frequency with applied drag force. Our findings lead us to suggest that parachute-resisted galloping is a clinically applicable exercise in healthy dogs to achieve instant cardiorespiratory response. Abstract Physical fitness is required for canine athletes and working dogs to optimize performance in various disciplines. There is a lack of research on the effects of resistance exercise on cardiorespiratory variables in dogs. The aim of this study was to investigate the immediate effects of parachute-resisted (PR) gallop on heart rate, running speed and stride frequency compared to unresisted (UR) gallop in dogs. Five N-of-1 trials RCTs with alternating interventions were implemented. Dogs ran on a 200 m course with and without resistive force applied by a parachute attached to their harness while cardiac inter-beat intervals (IBI), running speed and stride frequency were measured. The results were visually displayed and interpreted in graphs and percentage of non-overlapping data estimated effect size. Both interventions showed large effects on heart rate compared to resting values. Mean IBI increased (10–17%) during PR gallop compared to UR gallop although this change was small relative to decreased running speed (19–40%) and increased stride frequency (18–63%). Minimum IBI showed no difference between interventions indicating similar maximum heartbeat per minute. In conclusion, parachute-resistance resulted in dogs galloping at lower speeds at the same cardiorespiratory level of intensity, which may be useful in canine physical rehabilitation and fitness training.
Collapse
Affiliation(s)
- Sandra Hederstedt
- AniCura Falu Djursjukhus, Samueldalsvägen 2B, SE-791 61 Falun, Sweden;
- School of Veterinary Science, The University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK;
| | - Catherine McGowan
- School of Veterinary Science, The University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK;
| | - Ann Essner
- IVC Evidensia Djurkliniken Gefle, Norra Gatan 1, SE-803 21 Gävle, Sweden
- Department of Neuroscience, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden
- Correspondence: or
| |
Collapse
|
24
|
Kraatz B, Belabbas R, Fostowicz-Frelik Ł, Ge DY, Kuznetsov AN, Lang MM, López-Torres S, Mohammadi Z, Racicot RA, Ravosa MJ, Sharp AC, Sherratt E, Silcox MT, Słowiak J, Winkler AJ, Ruf I. Lagomorpha as a Model Morphological System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to their global distribution, invasive history, and unique characteristics, European rabbits are recognizable almost anywhere on our planet. Although they are members of a much larger group of living and extinct mammals [Mammalia, Lagomorpha (rabbits, hares, and pikas)], the group is often characterized by several well-known genera (e.g., Oryctolagus, Sylvilagus, Lepus, and Ochotona). This representation does not capture the extraordinary diversity of behavior and form found throughout the order. Model organisms are commonly used as exemplars for biological research, but there are a limited number of model clades or lineages that have been used to study evolutionary morphology in a more explicitly comparative way. We present this review paper to show that lagomorphs are a strong system in which to study macro- and micro-scale patterns of morphological change within a clade that offers underappreciated levels of diversity. To this end, we offer a summary of the status of relevant aspects of lagomorph biology.
Collapse
|
25
|
Kamimura T, Aoi S, Higurashi Y, Wada N, Tsuchiya K, Matsuno F. Dynamical determinants enabling two different types of flight in cheetah gallop to enhance speed through spine movement. Sci Rep 2021; 11:9631. [PMID: 33953253 PMCID: PMC8099890 DOI: 10.1038/s41598-021-88879-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Cheetahs use a galloping gait in their fastest speed range. It has been reported that cheetahs achieve high-speed galloping by performing two types of flight through spine movement (gathered and extended). However, the dynamic factors that enable cheetahs to incorporate two types of flight while galloping remain unclear. To elucidate this issue from a dynamical viewpoint, we developed a simple analytical model. We derived possible periodic solutions with two different flight types (like cheetah galloping), and others with only one flight type (unlike cheetah galloping). The periodic solutions provided two criteria to determine the flight type, related to the position and magnitude of ground reaction forces entering the body. The periodic solutions and criteria were verified using measured cheetah data, and provided a dynamical mechanism by which galloping with two flight types enhances speed. These findings extend current understanding of the dynamical mechanisms underlying high-speed locomotion in cheetahs.
Collapse
Affiliation(s)
- Tomoya Kamimura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasuo Higurashi
- Laboratory of System Physiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Naomi Wada
- Laboratory of System Physiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Fumitoshi Matsuno
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Günther M, Rockenfeller R, Weihmann T, Haeufle DFB, Götz T, Schmitt S. Rules of nature's Formula Run: Muscle mechanics during late stance is the key to explaining maximum running speed. J Theor Biol 2021; 523:110714. [PMID: 33862096 DOI: 10.1016/j.jtbi.2021.110714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
The maximum running speed of legged animals is one evident factor for evolutionary selection-for predators and prey. Therefore, it has been studied across the entire size range of animals, from the smallest mites to the largest elephants, and even beyond to extinct dinosaurs. A recent analysis of the relation between animal mass (size) and maximum running speed showed that there seems to be an optimal range of body masses in which the highest terrestrial running speeds occur. However, the conclusion drawn from that analysis-namely, that maximum speed is limited by the fatigue of white muscle fibres in the acceleration of the body mass to some theoretically possible maximum speed-was based on coarse reasoning on metabolic grounds, which neglected important biomechanical factors and basic muscle-metabolic parameters. Here, we propose a generic biomechanical model to investigate the allometry of the maximum speed of legged running. The model incorporates biomechanically important concepts: the ground reaction force being counteracted by air drag, the leg with its gearing of both a muscle into a leg length change and the muscle into the ground reaction force, as well as the maximum muscle contraction velocity, which includes muscle-tendon dynamics, and the muscle inertia-with all of them scaling with body mass. Put together, these concepts' characteristics and their interactions provide a mechanistic explanation for the allometry of maximum legged running speed. This accompanies the offering of an explanation for the empirically found, overall maximum in speed: In animals bigger than a cheetah or pronghorn, the time that any leg-extending muscle needs to settle, starting from being isometric at about midstance, at the concentric contraction speed required for running at highest speeds becomes too long to be attainable within the time period of a leg moving from midstance to lift-off. Based on our biomechanical model, we, thus, suggest considering the overall speed maximum to indicate muscle inertia being functionally significant in animal locomotion. Furthermore, the model renders possible insights into biological design principles such as differences in the leg concept between cats and spiders, and the relevance of multi-leg (mammals: four, insects: six, spiders: eight) body designs and emerging gaits. Moreover, we expose a completely new consideration regarding the muscles' metabolic energy consumption, both during acceleration to maximum speed and in steady-state locomotion.
Collapse
Affiliation(s)
- Michael Günther
- Computational Biophysics and Biorobotics, Institute for Modelling and Simulation of Biomechanical Systems, Universität Stuttgart, Nobelstraße 15, 70569 Stuttgart, Germany; Friedrich-Schiller-Universität, 07737 Jena, Germany.
| | - Robert Rockenfeller
- Mathematisches Institut, Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Tom Weihmann
- Institut für Zoologie, Universität zu Köln, Zülpicher Straße 47b, 50674 Köln, Germany
| | - Daniel F B Haeufle
- Computational Biophysics and Biorobotics, Institute for Modelling and Simulation of Biomechanical Systems, Universität Stuttgart, Nobelstraße 15, 70569 Stuttgart, Germany; Multi-level Modeling in Motor Control and Rehabilitation Robotics, Hertie-Institute for Clinical Brain Research, Eberhard-Karls-Universität, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Thomas Götz
- Mathematisches Institut, Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Syn Schmitt
- Computational Biophysics and Biorobotics, Institute for Modelling and Simulation of Biomechanical Systems, Universität Stuttgart, Nobelstraße 15, 70569 Stuttgart, Germany; Stuttgart Center for Simulation Science (SC SimTech), Universität Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
| |
Collapse
|
27
|
Martín-Serra A, Pérez-Ramos A, Pastor FJ, Velasco D, Figueirido B. Phenotypic integration in the carnivoran backbone and the evolution of functional differentiation in metameric structures. Evol Lett 2021; 5:251-264. [PMID: 34136273 DOI: 10.1002/evl3.224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 11/06/2022] Open
Abstract
Explaining the origin and evolution of a vertebral column with anatomically distinct regions that characterizes the tetrapod body plan provides understanding of how metameric structures become repeated and how they acquire the ability to perform different functions. However, despite many decades of inquiry, the advantages and costs of vertebral column regionalization in anatomically distinct blocks, their functional specialization, and how they channel new evolutionary outcomes are poorly understood. Here, we investigate morphological integration (and how this integration is structured [modularity]) between all the presacral vertebrae of mammalian carnivorans to provide a better understanding of how regionalization in metameric structures evolves. Our results demonstrate that the subunits of the presacral column are highly integrated. However, underlying to this general pattern, three sets of vertebrae are recognized as presacral modules-the cervical module, the anterodorsal module, and the posterodorsal module-as well as one weakly integrated vertebra (diaphragmatic) that forms a transition between both dorsal modules. We hypothesize that the strength of integration organizing the axial system into modules may be associated with motion capability. The highly integrated anterior dorsal module coincides with a region with motion constraints to avoid compromising ventilation, whereas for the posterior dorsal region motion constraints avoid exceeding extension of the posterior back. On the other hand, the weakly integrated diaphragmatic vertebra belongs to the "Diaphragmatic joint complex"-a key region of the mammalian column of exceedingly permissive motion. Our results also demonstrate that these modules do not match with the traditional morphological regions, and we propose natural selection as the main factor shaping this pattern to stabilize some regions and to allow coordinate movements in others.
Collapse
Affiliation(s)
- Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Francisco J Pastor
- Departmento de Anatomía y Radiología, Museo de Anatomía Universidad de Valladolid Valladolid 47002 Spain
| | - David Velasco
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| |
Collapse
|
28
|
Netto TFDS, Tavares WC. Historical, allometric and ecological effects on the shape of the lumbar vertebrae of spiny rats (Rodentia: Echimyidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In mammals, the lumbar vertebrae are important for sustaining the trunk, for allowing the trunk to flex and extend, and, during locomotion, for transferring forces from the sacroiliac region to the anterior region of the body. The Echimyidae is a group that comprises spiny rats, the coypu and hutias. It is the caviomorph rodent family with the greatest ecological diversity and species richness, as well as having a wide variation in body mass. Thus, echimyid rodents provide a promising model for understanding how phylogenetic, allometric and ecological factors associated with locomotion affect the evolution of the post-cranial skeleton. To assess the effect of these three factors on the morphology of the lumbar vertebrae, the penultimate lumbar vertebra of 26 echimyid species was photographed under five views and submitted to phylogenetically informed comparative analysis using 2D geometric morphometrics. Vertebral shape variation showed a low correlation with body mass and vertebral size, and a low to moderate phylogenetic signal. Remarkably, locomotory habit had a strong influence on lumbar morphology, particularly when analysed in lateral view. Our results indicate that the echimyid penultimate lumbar vertebra is potentially useful for future ecomorphological studies on living and fossil small mammals.
Collapse
Affiliation(s)
- Thomas Furtado Da Silva Netto
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - William Corrêa Tavares
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, Km 104,5, Santa Cruz da Serra, Duque de Caxias, RJ, Brazil
| |
Collapse
|
29
|
Jones KE, Dickson BV, Angielczyk KD, Pierce SE. Adaptive landscapes challenge the "lateral-to-sagittal" paradigm for mammalian vertebral evolution. Curr Biol 2021; 31:1883-1892.e7. [PMID: 33657406 DOI: 10.1016/j.cub.2021.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
The evolution of mammals from their extinct forerunners, the non-mammalian synapsids, is one of the most iconic locomotor transitions in the vertebrate fossil record. In the limb skeleton, the synapsid-mammal transition is traditionally characterized by a shift from a sprawling limb posture, resembling that of extant reptiles and amphibians, to more adducted limbs, as seen in modern-day mammals. Based on proposed postural similarities between early synapsids and extant reptiles, this change is thought to be accompanied by a shift from ancestral reptile-like lateral bending to mammal-like sagittal bending of the vertebral column. To test this "lateral-to-sagittal" evolutionary paradigm, we used combinatorial optimization to produce functionally informed adaptive landscapes and determined the functional trade-offs associated with evolutionary changes in vertebral morphology. We show that the synapsid adaptive landscape is different from both extant reptiles and mammals, casting doubt on the reptilian model for early synapsid axial function, or indeed for the ancestral condition of amniotes more broadly. Further, the synapsid-mammal transition is characterized by not only increasing sagittal bending in the posterior column but also high stiffness and increasing axial twisting in the anterior column. Therefore, we refute the simplistic lateral-to-sagittal hypothesis and instead suggest the synapsid-mammal locomotor transition involved a more complex suite of functional changes linked to increasing regionalization of the backbone. These results highlight the importance of fossil taxa for understanding major evolutionary transitions.
Collapse
Affiliation(s)
- Katrina E Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK.
| | - Blake V Dickson
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Evolutionary Anthropology, Duke University, Biological Sciences Building, 130 Science Drive, Durham, NC 27708, USA
| | - Kenneth D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
Belyaev RI, Kuznetsov AN, Prilepskaya NE. A mechanistic approach for the calculation of intervertebral mobility in mammals based on vertebrae osteometry. J Anat 2021; 238:113-130. [PMID: 32951205 PMCID: PMC7754917 DOI: 10.1111/joa.13300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
In this paper, we develop and validate an osteometry-based mechanistic approach to calculation of available range of motion (aROM) in presacral intervertebral joints in sagittal bending (SB), lateral bending (LB), and axial rotation (AR). Our basic assumption was the existence of a mechanistic interrelation between the geometry of zygapophysial articular facets and aROM. Trigonometric formulae are developed for aROM calculation, of which the general principle is that the angle of rotation is given by the ratio of the arc length of motion to the radius of this arc. We tested a number of alternative formulae against available in vitro data to identify the most suitable geometric ratios and coefficients for accurate calculation. aROM values calculated with the developed formulae show significant correlation with in vitro data in SB, LB, and AR (Pearson r = 0.900) in the reference mammals (man, sheep, pig, cow). It was found that separate formulae for different zygapophysial facet types (radial (Rf), tangential (Tf), radial with a lock (RfL)) give significantly greater accuracy in aROM calculation than the formulae for the presacral spine as a whole and greater accuracy than the separate formulae for different spine regions (cervical, thoracic, lumbar). The advantage of the facet-specific formulae over the region-specific ones shows that the facet type is a more reliable indicator of the spine mobility than the presence or absence of ribs. The greatest gain in calculation accuracy with the facet-specific formulae is characteristic in AR aROM. The most important theoretical outcome is that the evolutionary differentiation of the zygapophysial facets in mammals, that is the emergence of Tf joints in the rib cage area of the spine, was more likely associated with the development of AR rather than with SB mobility and, hence, with cornering rather than with forward galloping. The AR aROM can be calculated with the formulae common for man, sheep, pig, and cow. However, the SB aROM of the human spine is best calculated with different coefficient values in the formulae than those for studied artiodactyls. The most suitable coefficient values indicate that the zygapophysial articular facets tend to slide past each other to a greater extent in the human thoracolumbar spine rather than in artiodactyls. Due to this, artiodactyls retain relatively greater facet overlap in extremely flexed and extremely extended spine positions, which may be more crucial for their quadrupedal gallop than for human bipedal locomotion. The SB, LB, and AR aROMs are quite separate in respect of the formulae structure in the cervical region (radial facet type). However, throughout the thoracolumbar spine (tangential and radial with lock facets), the formulae for LB and AR are basically similar differing in coefficient values only. This means that, in the thoracolumbar spine, the greater the LB aROM, the greater the AR aROM, and vice versa. The approach developed promises a wide osteological screening of extant and extinct mammals to study the sex, age, geographical variations, and disorders.
Collapse
Affiliation(s)
- Ruslan I. Belyaev
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| | | | - Natalya E. Prilepskaya
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
31
|
Jones KE, Gonzalez S, Angielczyk KD, Pierce SE. Regionalization of the axial skeleton predates functional adaptation in the forerunners of mammals. Nat Ecol Evol 2020; 4:470-478. [PMID: 32015524 DOI: 10.1038/s41559-020-1094-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/02/2020] [Indexed: 11/10/2022]
Abstract
The evolution of semi-independent modules is hypothesized to underlie the functional diversification of serially repeating (metameric) structures. The mammal vertebral column is a classic example of a metameric structure that is both modular, with well-defined morphological regions, and functionally differentiated. How the evolution of regions is related to their functional differentiation in the forerunners of mammals remains unclear. Here we gathered morphometric and biomechanical data on the presacral vertebrae of two extant species that bracket the synapsid-mammal transition and use the relationship between form and function to predict functional differentiation in extinct non-mammalian synapsids. The origin of vertebral functional diversity does not correlate with the evolution of new regions but appears late in synapsid evolution. This decoupling of regions from functional diversity implies that an adaptive trigger is needed to exploit existing modularity. We propose that the release of axial respiratory constraints, combined with selection for novel mammalian behaviours in Late Triassic cynodonts, drove the functional divergence of pre-existing morphological regions.
Collapse
Affiliation(s)
- Katrina E Jones
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Cambridge, MA, USA.
| | - Sarah Gonzalez
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Cambridge, MA, USA
| | - Kenneth D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Stephanie E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Cambridge, MA, USA.
| |
Collapse
|
32
|
Toeda M, Aoi S, Fujiki S, Funato T, Tsuchiya K, Yanagihara D. Gait Generation and Its Energy Efficiency Based on Rat Neuromusculoskeletal Model. Front Neurosci 2020; 13:1337. [PMID: 32009870 PMCID: PMC6978804 DOI: 10.3389/fnins.2019.01337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/27/2019] [Indexed: 01/20/2023] Open
Abstract
Changing gait is crucial for adaptive and smooth animal locomotion. Although it remains unclear what makes animals decide on a specific gait, energy efficiency is an important factor. It has been reported that the relationship of oxygen consumption with speed is U-shaped for each horse gait and that different gaits have different speeds at which oxygen consumption is minimized. This allows the horse to produce energy-efficient locomotion in a wide speed range by changing gait. However, the underlying mechanisms causing oxygen consumption to be U-shaped and the speeds for the minimum consumption to be different between different gaits are unclear. In the present study, we used a neuromusculoskeletal model of the rat to examine the mechanism from a dynamic viewpoint. Specifically, we constructed the musculoskeletal part of the model based on empirical anatomical data on rats and the motor control model based on the physiological concepts of the spinal central pattern generator and muscle synergy. We also incorporated the posture and speed regulation models at the levels of the brainstem and cerebellum. Our model achieved walking through forward dynamic simulation, and the simulated joint kinematics and muscle activities were compared with animal data. Our model also achieved trotting by changing only the phase difference of the muscle-synergy-based motor commands between the forelimb and hindlimb. Furthermore, the speed of each gait varied by changing only the extension phase duration and amplitude of the muscle synergy-based motor commands and the reference values for the regulation models. The relationship between cost of transport (CoT) and speed was U-shaped for both the generated walking and trotting, and the speeds for the minimum CoT were different for the two gaits, as observed in the oxygen consumption of horses. We found that the resonance property and the posture and speed regulations contributed to the CoT shape and difference in speeds for the minimum CoT. We further discussed the energy efficiency of gait based on the simulation results.
Collapse
Affiliation(s)
- Misaki Toeda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Soichiro Fujiki
- Department of Physiology and Biological Information, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Jones KE, Angielczyk KD, Pierce SE. Stepwise shifts underlie evolutionary trends in morphological complexity of the mammalian vertebral column. Nat Commun 2019; 10:5071. [PMID: 31699978 PMCID: PMC6838112 DOI: 10.1038/s41467-019-13026-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/11/2019] [Indexed: 11/09/2022] Open
Abstract
A fundamental concept in evolutionary biology is that life tends to become more complex through geologic time, but empirical examples of this phenomenon are controversial. One debate is whether increasing complexity is the result of random variations, or if there are evolutionary processes which actively drive its acquisition, and if these processes act uniformly across clades. The mammalian vertebral column provides an opportunity to test these hypotheses because it is composed of serially-repeating vertebrae for which complexity can be readily measured. Here we test seven competing hypotheses for the evolution of vertebral complexity by incorporating fossil data from the mammal stem lineage into evolutionary models. Based on these data, we reject Brownian motion (a random walk) and uniform increasing trends in favor of stepwise shifts for explaining increasing complexity. We hypothesize that increased aerobic capacity in non-mammalian cynodonts may have provided impetus for increasing vertebral complexity in mammals.
Collapse
Affiliation(s)
- Katrina E Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Kenneth D Angielczyk
- Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605-2496, USA
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
34
|
Phan LT, Lee YH, Lee YH, Lee H, Kang H, Choi HR. Study on effects of spinal joint for running quadruped robots. INTEL SERV ROBOT 2019. [DOI: 10.1007/s11370-019-00297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Williams SA, Spear JK, Petrullo L, Goldstein DM, Lee AB, Peterson AL, Miano DA, Kaczmarek EB, Shattuck MR. Increased variation in numbers of presacral vertebrae in suspensory mammals. Nat Ecol Evol 2019; 3:949-956. [DOI: 10.1038/s41559-019-0894-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 11/09/2022]
|
36
|
Jones KE, Benitez L, Angielczyk KD, Pierce SE. Adaptation and constraint in the evolution of the mammalian backbone. BMC Evol Biol 2018; 18:172. [PMID: 30445907 PMCID: PMC6240174 DOI: 10.1186/s12862-018-1282-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/30/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The axial skeleton consists of repeating units (vertebrae) that are integrated through their development and evolution. Unlike most tetrapods, vertebrae in the mammalian trunk are subdivided into distinct thoracic and lumbar modules, resulting in a system that is constrained in terms of count but highly variable in morphology. This study asks how thoracolumbar regionalization has impacted adaptation and evolvability across mammals. Using geometric morphometrics, we examine evolutionary patterns in five vertebral positions from diverse mammal species encompassing a broad range of locomotor ecologies. We quantitatively compare the effects of phylogenetic and allometric constraints, and ecological adaptation between regions, and examine their impact on evolvability (disparity and evolutionary rate) of serially-homologous vertebrae. RESULTS Although phylogenetic signal and allometry are evident throughout the trunk, the effect of locomotor ecology is partitioned between vertebral positions. Lumbar vertebral shape correlates most strongly with ecology, differentiating taxa based on their use of asymmetric gaits. Similarly, disparity and evolutionary rates are also elevated posteriorly, indicating a link between the lumbar region, locomotor adaptation, and evolvability. CONCLUSION Vertebral regionalization in mammals has facilitated rapid evolution of the posterior trunk in response to selection for locomotion and static body support.
Collapse
Affiliation(s)
- Katrina E. Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138 USA
| | - Lorena Benitez
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138 USA
| | - Kenneth D. Angielczyk
- Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605-2496 USA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138 USA
| |
Collapse
|
37
|
Wang W, Ji A, Manoonpong P, Shen H, Hu J, Dai Z, Yu Z. Lateral undulation of the flexible spine of sprawling posture vertebrates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:707-719. [PMID: 29974192 DOI: 10.1007/s00359-018-1275-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Sprawling posture vertebrates have a flexible spine that bends the trunk primarily in the horizontal plane during locomotion. By coordinating cyclical lateral trunk flexion and limb movements, these animals are very mobile and show extraordinary maneuverability. The dynamic and static stability displayed in complex and changing environments are highly correlated with such lateral bending patterns. The axial dynamics of their compliant body can also be critical for achieving energy-efficient locomotion at high velocities. In this paper, lateral undulation is used to characterize the bending pattern. The production of ground reaction forces (GRFs) and the related center of mass (COM) dynamics during locomotion are the fundamental mechanisms to be considered. Mainly based on research on geckos, which show unrestricted movement in three-dimensional space, we review current knowledge on the trunk flexibility and waveforms of lateral trunk movement. We investigate locomotion dynamics and mechanisms underlying the lateral undulation pattern. This paper also provides insights into the roles of this pattern in obtaining flexible and efficient walking, running, and climbing. Finally, we discuss the potential application of lateral undulation patterns to bio-inspired robotics.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China.,College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Aihong Ji
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China.
| | - Poramate Manoonpong
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China.,Embodied AI and Neurorobotics Lab, Centre for Biorobotics, Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
| | - Huan Shen
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China.,College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jie Hu
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| | - Zhendong Dai
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| | - Zhiwei Yu
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| |
Collapse
|
38
|
Costa FR, Clerici GP, Lobo-Ribeiro L, Rosa PS, Rocha-Barbosa O. Analysis of the spatio-temporal parameters of gaits in Dasypus novemcinctus
(Xenarthra: Dasypodidae). ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Thompson NE, Almécija S. The evolution of vertebral formulae in Hominoidea. J Hum Evol 2017; 110:18-36. [DOI: 10.1016/j.jhevol.2017.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 01/06/2023]
|
40
|
Karantanis N, Rychlik L, Herrel A, Youlatos D. Arboreality in acacia rats (
Thallomys paedulcus
; Rodentia, Muridae): gaits and gait metrics. J Zool (1987) 2017. [DOI: 10.1111/jzo.12473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N.‐E. Karantanis
- Department of Zoology School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
| | - L. Rychlik
- Department of Systematic Zoology Institute of Environmental Biology Faculty of Biology Adam Mickiewicz University Poznań Poland
| | - A. Herrel
- Département d'Ecologie et de Gestion de la Biodiversité Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle Paris France
| | - D. Youlatos
- Department of Zoology School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
41
|
Karantanis NE, Rychlik L, Herrel A, Youlatos D. Arboreal Locomotion in Eurasian Harvest Mice Micromys Minutus (Rodentia: Muridae): The Gaits of Small Mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:38-52. [PMID: 28332310 DOI: 10.1002/jez.2068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 11/11/2022]
Abstract
Body size imposes significant constraints on arboreal locomotion. Despite the wealth of research in larger arboreal mammals, there is a lack of data on arboreal gaits of small mammals. In this context, the present study explores arboreal locomotion in one of the smallest rodents, the Eurasian harvest mice Micromys minutus (∼10 g). We examined gait metrics (i.e., diagonality, duty factor [DF], DF index, velocity, stride length, and stride frequency) of six adult male mice on simulated arboreal substrates of different sizes (2, 5, 10, and 25 mm) and inclinations (00 and 450 ). Micromys minutus employed slow, lateral sequence symmetrical gaits on the smaller substrates, which shifted to progressively faster symmetrical gaits of higher diagonality on larger substrates. Both ascents and descents were associated with a higher diagonality, and ascents with a higher DF index compared to horizontal locomotion, underscoring the role of the grasping hind feet. Velocity increase was brought about primarily by an increase in stride frequency, a pattern often encountered in other small mammals, with a secondary and significant contribution of stride length. These findings indicate that, except for velocity and the way it is regulated, there are no significant differences in gait metrics between larger and smaller arboreal mammals. Moreover, the locomotor adaptations of Eurasian harvest mice represent behavioral mechanisms that promote stable, safe, and continuous navigation along slender substrates and ultimately contribute to the successful exploitation of the arboreal milieu.
Collapse
Affiliation(s)
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Paris Cedex 5, France
| | - Dionisios Youlatos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
42
|
Karantanis NE, Rychlik L, Herrel A, Youlatos D. Arboreal gaits in three sympatric rodents Apodemus agrarius, Apodemus flavicollis (Rodentia, Muridae) and Myodes glareolus (Rodentia, Cricetidae). Mamm Biol 2017. [DOI: 10.1016/j.mambio.2016.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Jones KE. New insights on equid locomotor evolution from the lumbar region of fossil horses. Proc Biol Sci 2017; 283:rspb.2015.2947. [PMID: 27122554 DOI: 10.1098/rspb.2015.2947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 11/12/2022] Open
Abstract
The specialization of equid limbs for cursoriality is a classic case of adaptive evolution, but the role of the axial skeleton in this famous transition is not well understood. Extant horses are extremely fast and efficient runners, which use a stiff-backed gallop with reduced bending of the lumbar region relative to other mammals. This study tests the hypothesis that stiff-backed running in horses evolved in response to evolutionary increases in body size by examining lumbar joint shape from a broad sample of fossil equids in a phylogenetic context. Lumbar joint shape scaling suggests that stability of the lumbar region does correlate with size through equid evolution. However, scaling effects were dampened in the posterior lumbar region, near the sacrum, which suggests strong selection for sagittal mobility in association with locomotor-respiratory coupling near the lumbosacral joint. I hypothesize that small-bodied fossil horses may have used a speed-dependent running gait, switching between stiff-backed and flex-backed galloping as speed increased.
Collapse
Affiliation(s)
- Katrina Elizabeth Jones
- Center for Functional Anatomy and Evolution, Johns Hopkins University, 1830 East Monument St., Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Wang C, Zhang T, Wei X, Long Y, Wang S. Dynamic characteristics and stability criterion of rotary galloping gait with an articulated passive spine joint. Adv Robot 2016. [DOI: 10.1080/01691864.2016.1256230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chunlei Wang
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- College of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xiaohui Wei
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Yongjun Long
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Shigang Wang
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Kinugasa R, Usami Y. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running. Front Bioeng Biotechnol 2016; 4:56. [PMID: 27446911 PMCID: PMC4928019 DOI: 10.3389/fbioe.2016.00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion.
Collapse
Affiliation(s)
- Ryuta Kinugasa
- Department of Human Sciences, Kanagawa University , Yokohama , Kanagawa, Japan
| | - Yoshiyuki Usami
- Institute of Physics, Kanagawa University , Yokohama , Kanagawa, Japan
| |
Collapse
|
46
|
Riskin DK, Kendall CJ, Hermanson JW. The crouching of the shrew: Mechanical consequences of limb posture in small mammals. PeerJ 2016; 4:e2131. [PMID: 27413633 PMCID: PMC4933088 DOI: 10.7717/peerj.2131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022] Open
Abstract
An important trend in the early evolution of mammals was the shift from a sprawling stance, whereby the legs are held in a more abducted position, to a parasagittal one, in which the legs extend more downward. After that transition, many mammals shifted from a crouching stance to a more upright one. It is hypothesized that one consequence of these transitions was a decrease in the total mechanical power required for locomotion, because side-to-side accelerations of the body have become smaller, and thus less costly with changes in limb orientation. To test this hypothesis we compared the kinetics of locomotion in two mammals of body size close to those of early mammals (< 40 g), both with parasagittally oriented limbs: a crouching shrew (Blarina brevicauda; 5 animals, 17 trials) and a more upright vole (Microtus pennsylvanicus; 4 animals, 22 trials). As predicted, voles used less mechanical power per unit body mass to perform steady locomotion than shrews did (P = 0.03). However, while lateral forces were indeed smaller in voles (15.6 ± 2.0% body weight) than in shrews (26.4 ± 10.9%; P = 0.046), the power used to move the body from side-to-side was negligible, making up less than 5% of total power in both shrews and voles. The most power consumed for both species was that used to accelerate the body in the direction of travel, and this was much larger for shrews than for voles (P = 0.01). We conclude that side-to-side accelerations are negligible for small mammals–whether crouching or more upright–compared to their sprawling ancestors, and that a more upright posture further decreases the cost of locomotion compared to crouching by helping to maintain the body’s momentum in the direction of travel.
Collapse
Affiliation(s)
- Daniel K Riskin
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University,IthacaNY, United States; Current affiliation: Department of Biology, University of Toronto Missisauga,Mississauga, Ontario, Canada
| | - Corinne J Kendall
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University,IthacaNY, United States; Current affiliation: North Carolina Zoo,Asheboro, NC, United States
| | - John W Hermanson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca NY , United States
| |
Collapse
|
47
|
Shapiro LJ, Kemp AD, Young JW. Effects of Substrate Size and Orientation on Quadrupedal Gait Kinematics in Mouse Lemurs (
Microcebus murinus
). ACTA ACUST UNITED AC 2016; 325:329-43. [DOI: 10.1002/jez.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Liza J. Shapiro
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Addison D. Kemp
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| |
Collapse
|
48
|
Wachs K, Fischer M, Schilling N. Three-dimensional movements of the pelvis and the lumbar intervertebral joints in walking and trotting dogs. Vet J 2016; 210:46-55. [DOI: 10.1016/j.tvjl.2015.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022]
|
49
|
Gunji M, Endo H. Functional cervicothoracic boundary modified by anatomical shifts in the neck of giraffes. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150604. [PMID: 26998330 PMCID: PMC4785981 DOI: 10.1098/rsos.150604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Here we examined the kinematic function of the morpho- logically unique first thoracic vertebra in giraffes. The first thoracic vertebra of the giraffe displayed similar shape to the seventh cervical vertebra in general ruminants. The flexion experiment using giraffe carcasses demonstrated that the first thoracic vertebra exhibited a higher dorsoventral mobility than other thoracic vertebrae. Despite the presence of costovertebral joints, restriction in the intervertebral movement imposed by ribs is minimized around the first thoracic vertebra by subtle changes of the articular system between the vertebra and ribs. The attachment area of musculus longus colli, mainly responsible for ventral flexion of the neck, is partly shifted posteriorly in the giraffe so that the force generated by muscles is exerted on the cervical vertebrae and on the first thoracic vertebra. These anatomical modifications allow the first thoracic vertebra to adopt the kinematic function of a cervical vertebra in giraffes. The novel movable articulation in the thorax functions as a fulcrum of neck movement and results in a large displacement of reachable space in the cranial end of the neck. The unique first thoracic vertebra in giraffes provides higher flexibility to the neck and may provide advantages for high browsing and/or male competition behaviours specific to giraffes.
Collapse
Affiliation(s)
- Megu Gunji
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
50
|
Williams SA, Middleton ER, Villamil CI, Shattuck MR. Vertebral numbers and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 159:S19-36. [DOI: 10.1002/ajpa.22901] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Scott A. Williams
- Department of Anthropology; Center for the Study of Human Origins, New York University; New York NY 10003
- New York Consortium in Evolutionary Primatology; New York NY
| | - Emily R. Middleton
- Department of Anthropology; Center for the Study of Human Origins, New York University; New York NY 10003
- New York Consortium in Evolutionary Primatology; New York NY
| | - Catalina I. Villamil
- Department of Anthropology; Center for the Study of Human Origins, New York University; New York NY 10003
- New York Consortium in Evolutionary Primatology; New York NY
| | - Milena R. Shattuck
- Department of Anthropology; Center for the Study of Human Origins, New York University; New York NY 10003
- New York Consortium in Evolutionary Primatology; New York NY
| |
Collapse
|