1
|
Cicconardi F, Morris BJ, Martelossi J, Ray DA, Montgomery SH. Novel Sex-Specific Genes and Diverse Interspecific Expression in the Antennal Transcriptomes of Ithomiine Butterflies. Genome Biol Evol 2024; 16:evae218. [PMID: 39373182 PMCID: PMC11500719 DOI: 10.1093/gbe/evae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones. In this study, we investigate chemosensory evolution across six Ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses, we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesize may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behavior. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. In this study, we investigate the antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behavior, adaptation, and speciation.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Billy J Morris
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
2
|
Lackey ACR, Murray AC, Mirza NA, Powell THQ. The role of sexual isolation during rapid ecological divergence: Evidence for a new dimension of isolation in Rhagoletis pomonella. J Evol Biol 2023. [PMID: 37173822 DOI: 10.1111/jeb.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/15/2023]
Abstract
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures - apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.
Collapse
Affiliation(s)
- Alycia C R Lackey
- University of Louisville, Louisville, Kentucky, USA
- Binghamton University, Binghamton, New York, USA
| | | | | | | |
Collapse
|
3
|
Kharva H, Feder JL, Hahn DA, Olsson SB. Rapid brain development and reduced neuromodulator titres correlate with host shifts in Rhagoletis pomonella. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220962. [PMID: 36117862 PMCID: PMC9449811 DOI: 10.1098/rsos.220962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Host shifts are considered a key generator of insect biodiversity. For insects, adaptation to new host plants often requires changes in larval/pupal development and adult behavioural preference toward new hosts. Neurochemicals play key roles in both development and behaviour and therefore provide a potential source for such synchronization. Here, we correlated life-history timing, brain development and corresponding levels of 14 neurochemicals in Rhagoletis pomonella (Diptera: Tephritidae), a species undergoing ecological speciation through an ongoing host shift from hawthorn to apple fruit. These races exhibit differences in pupal diapause timing as well as adult behavioural preference with respect to their hosts. This difference in behavioural preference is coupled with differences in neurophysiological response to host volatiles. We found that apple race pupae exhibited adult brain morphogenesis three weeks faster after an identical simulated winter than the hawthorn race, which correlated with significantly lower titres of several neurochemicals. In some cases, particularly biogenic amines, differences in titres were reflected in the mature adult stage, when host preference is exhibited. In summary, life-history timing, neurochemical titre and brain development can be coupled in this speciating system, providing new hypotheses for the origins of new species through host shifts.
Collapse
Affiliation(s)
- Hinal Kharva
- Naturalist-Inspired Chemical Ecology lab, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
- School of Life Sciences, The University of Trans-Disciplinary Health Sciences and Technology, 74/2, Jarakabande Kaval, Post Attur via Yelahanka, Bangalore 560064, India
| | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Daniel A. Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Shannon B. Olsson
- Naturalist-Inspired Chemical Ecology lab, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
4
|
Odor preferences in hybrid chickadees: implications for reproductive isolation and asymmetric introgression. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Van Huynh A, Rice AM. Conspecific olfactory preferences and interspecific divergence in odor cues in a chickadee hybrid zone. Ecol Evol 2019; 9:9671-9683. [PMID: 31534684 PMCID: PMC6745874 DOI: 10.1002/ece3.5497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/11/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding how mating cues promote reproductive isolation upon secondary contact is important in describing the speciation process in animals. Divergent chemical cues have been shown to act in reproductive isolation across many animal taxa. However, such cues have been overlooked in avian speciation, particularly in passerines, in favor of more traditional signals such as song and plumage. Here, we aim to test the potential for odor to act as a mate choice cue, and therefore contribute to premating reproductive isolation between the black-capped (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in eastern Pennsylvania hybrid zone populations. Using gas chromatography-mass spectrometry, we document significant species differences in uropygial gland oil chemistry, especially in the ratio of ester to nonester compounds. We also show significant preferences for conspecific over heterospecific odor cues in wild chickadees using a Y-maze design. Our results suggest that odor may be an overlooked but important mating cue in these chickadees, potentially promoting premating reproductive isolation. We further discuss several promising avenues for future research in songbird olfactory communication and speciation.
Collapse
Affiliation(s)
- Alex Van Huynh
- Department of Biological SciencesLehigh UniversityBethlehemPAUSA
| | - Amber M. Rice
- Department of Biological SciencesLehigh UniversityBethlehemPAUSA
| |
Collapse
|
6
|
Gorur-Shandilya S, Demir M, Long J, Clark DA, Emonet T. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli. eLife 2017; 6:e27670. [PMID: 28653907 PMCID: PMC5524537 DOI: 10.7554/elife.27670] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating Drosophila ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation.
Collapse
Affiliation(s)
- Srinivas Gorur-Shandilya
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Mahmut Demir
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Junjiajia Long
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| | - Thierry Emonet
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| |
Collapse
|
7
|
Crowley-Gall A, Date P, Han C, Rhodes N, Andolfatto P, Layne JE, Rollmann SM. Population differences in olfaction accompany host shift in Drosophila mojavensis. Proc Biol Sci 2016; 283:20161562. [PMID: 27581882 PMCID: PMC5013806 DOI: 10.1098/rspb.2016.1562] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022] Open
Abstract
Evolutionary shifts in plant-herbivore interactions provide a model for understanding the link among the evolution of behaviour, ecological specialization and incipient speciation. Drosophila mojavensis uses different host cacti across its range, and volatile chemicals emitted by the host are the primary cue for host plant identification. In this study, we show that changes in host plant use between distinct D. mojavensis populations are accompanied by changes in the olfactory system. Specifically, we observe differences in olfactory receptor neuron specificity and sensitivity, as well as changes in sensillar subtype abundance, between populations. Additionally, RNA-seq analyses reveal differential gene expression between populations for members of the odorant receptor gene family. Hence, alterations in host preference are associated with changes in development, regulation and function at the olfactory periphery.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Priya Date
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clair Han
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Nicole Rhodes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Peter Andolfatto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - John E Layne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
8
|
Identification of host blends that attract the African invasive fruit fly, Bactrocera invadens. J Chem Ecol 2014; 40:966-76. [PMID: 25236383 DOI: 10.1007/s10886-014-0501-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/16/2014] [Accepted: 06/02/2014] [Indexed: 10/24/2022]
Abstract
Bactrocera invadens, an invasive fruit fly species in the Afro-tropical region belonging to the Bactrocera dorsalis complex, causes considerable damage to fruit production and productivity. We sought to find attractants from hosts of B. invadens that could serve as baits in traps for monitoring and management of this pest. The attractiveness of volatiles from four different fruit species (mango, guava, banana and orange) at two stages of ripeness (ripe or unripe) was tested in an olfactometer assay. All fruits were attractive against a clean air control. Using hexane extracts of volatile collections of fruits, we demonstrated that male flies preferred the volatiles of ripe guava and orange over unripe fruit extracts. There was a slight difference in preference between females and males; females preferred orange to guava and mango, whereas males preferred mango and guava to orange. Gas chromatography/electroantennographic detection (GC/EAD) and GC/mass spectrometry (GC/MS) were used to identify compounds to which B. invadens antennae were sensitive. GC/EAD recordings from distal and medio-central parts of the fly antenna showed responses to a number of compounds from each fruit species, with esters dominating the responses. Synthetic blends were made for each fruit species using the shared antennally active compounds in ratios found in the extracts. In the olfactometer, B. invadens was most attracted to the banana and orange blends, followed by the mango and guava blends. The synthetic banana blend was as attractive as the volatile collection of banana, although both were less attractive than the fruit. The results demonstrate that composing attractive blends from GC/EAD-active constituents shared by host fruits can be effective for formulating attractive synthetic host mimics for generalist fruit fly species, such as B. invadens.
Collapse
|
9
|
Selz OM, Thommen R, Maan ME, Seehausen O. Behavioural isolation may facilitate homoploid hybrid speciation in cichlid fish. J Evol Biol 2013; 27:275-89. [DOI: 10.1111/jeb.12287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/06/2013] [Accepted: 10/27/2013] [Indexed: 01/29/2023]
Affiliation(s)
- O. M. Selz
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - R. Thommen
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - M. E. Maan
- Behavioural Biology Research Group; Center for Behaviour and Neurosciences; University of Groningen; Groningen The Netherlands
| | - O. Seehausen
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| |
Collapse
|
10
|
Clifford MR, Riffell JA. Mixture and odorant processing in the olfactory systems of insects: a comparative perspective. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:911-28. [PMID: 23660810 DOI: 10.1007/s00359-013-0818-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 01/18/2023]
Abstract
Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.
Collapse
Affiliation(s)
- Marie R Clifford
- Department of Biology, University of Washington, Seattle, WA, 98195, USA,
| | | |
Collapse
|
11
|
Smadja CM, Canbäck B, Vitalis R, Gautier M, Ferrari J, Zhou JJ, Butlin RK. Large-scale candidate gene scan reveals the role of chemoreceptor genes in host plant specialization and speciation in the pea aphid. Evolution 2012; 66:2723-38. [PMID: 22946799 DOI: 10.1111/j.1558-5646.2012.01612.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the drivers of speciation is critical to interpreting patterns of biodiversity. The identification of the genetic changes underlying adaptation and reproductive isolation is necessary to link barriers to gene flow to the causal origins of divergence. Here, we present a novel approach to the genetics of speciation, which should complement the commonly used approaches of quantitative trait locus mapping and genome-wide scans for selection. We present a large-scale candidate gene approach by means of sequence capture, applied to identifying the genetic changes underlying reproductive isolation in the pea aphid, a model system for the study of ecological speciation. Targeted resequencing enabled us to scale up the candidate gene approach, specifically testing for the role of chemosensory gene families in host plant specialization. Screening for the signature of divergence under selection at 172 candidate and noncandidate loci, we revealed a handful of loci that show high levels of differentiation among host races, which almost all correspond to odorant and gustatory receptor genes. This study offers the first indication that some chemoreceptor genes, often tightly linked together in the genome, could play a key role in local adaptation and reproductive isolation in the pea aphid and potentially other phytophagous insects. Our approach opens a new route toward the functional genomics of ecological speciation.
Collapse
Affiliation(s)
- Carole M Smadja
- Centre National de la Recherche Scientifique CNRS-Institut des Sciences de l'Evolution UMR 5554, cc065 Université Montpellier 2, 34095 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ecological Adaptation and Speciation: The Evolutionary Significance of Habitat Avoidance as a Postzygotic Reproductive Barrier to Gene Flow. INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1155/2012/456374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Habitat choice is an important component of most models of ecologically based speciation, especially when population divergence occurs in the face of gene flow. We examine how organisms choose habitats and ask whether avoidance behavior plays an important role in habitat choice, focusing on host-specific phytophagous insects as model systems. We contend that when a component of habitat choice involves avoidance, there can be repercussions that can have consequences for enhancing the potential for specialization and postzygotic reproductive isolation and, hence, for ecological speciation. We discuss theoretical and empirical reasons for why avoidance behavior has not been fully recognized as a key element in habitat choice and ecological speciation. We present current evidence for habitat avoidance, emphasizing phytophagous insects, and new results for parasitoid wasps consistent with the avoidance hypothesis. We conclude by discussing avenues for further study, including other potential roles for avoidance behavior in speciation related to sexual selection and reinforcement.
Collapse
|
13
|
Norrström N, Getz WM, Holmgren NMA. Selection against accumulating mutations in niche-preference genes can drive speciation. PLoS One 2011; 6:e29487. [PMID: 22216293 PMCID: PMC3246506 DOI: 10.1371/journal.pone.0029487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Our current understanding of sympatric speciation is that it occurs primarily through disruptive selection on ecological genes driven by competition, followed by reproductive isolation through reinforcement-like selection against inferior intermediates/heterozygotes. Our evolutionary model of selection on resource recognition and preference traits suggests a new mechanism for sympatric speciation. We find speciation can occur in three phases. First a polymorphism of functionally different phenotypes is established through evolution of specialization. On the gene level, regulatory functions have evolved in which some alleles are conditionally switched off (i.e. are silent). These alleles accumulate harmful mutations that potentially may be expressed in offspring through recombination. Second mating associated with resource preference invades because harmful mutations in parents are not expressed in the offspring when mating assortatively, thereby dividing the population into two pre-zygotically isolated resource-specialist lineages. Third, silent alleles that evolved in phase one now accumulate deleterious mutations over the following generations in a Bateson-Dobzhansky-Muller fashion, establishing a post-zygotic barrier to hybridization.
Collapse
Affiliation(s)
- Niclas Norrström
- Systems Biology Research Centre, University of Skövde, Skövde, Sweden
| | - Wayne M. Getz
- Department of Environmental Sciences, Policy and Management, University of California, Berkeley, California, United States of America
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
14
|
SEGURA DIEGOF, VERA MTERESA, RULL JUAN, WORNOAYPORN VIWAT, ISLAM AMIRUL, ROBINSON ALANS. Assortative mating among Anastrepha fraterculus (Diptera: Tephritidae) hybrids as a possible route to radiation of the fraterculus cryptic species complex. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2010.01590.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
|
16
|
Olsson SB, Linn CE, Feder JL, Michel A, Dambroski HR, Berlocher SH, Roelofs WL. Comparing peripheral olfactory coding with host preference in the rhagoletis species complex. Chem Senses 2008; 34:37-48. [PMID: 18791185 DOI: 10.1093/chemse/bjn053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that flies from sympatric populations of Rhagoletis pomonella infesting hawthorn, apple, and flowering dogwood fruit can distinguish among unique volatile blends identified from each host. Analysis of peripheral chemoreception in Rhagoletis flies suggests that changes in receptor specificity and/or receptor neuron sensitivity could impact olfactory preference among the host populations and their hybrids. In an attempt to validate these claims, we have combined flight tunnel analyses and single sensillum electrophysiology in F(2) and backcross hybrids displaying a variety of behavioral phenotypes. Results show that differences in peripheral chemoreception among second-generation adults do not provide a direct correlation between peripheral coding and olfactory behavior. We conclude that either the plasticity of the central nervous system in Rhagoletis can compensate for significant alterations in peripheral coding or that peripheral changes present subtle effects on behavior not easily detectable with current techniques. The results of this study imply that the basis for olfactory behavior in Rhagoletis has a complicated genetic and neuronal basis, even for populations with a recent divergence in preference.
Collapse
Affiliation(s)
- Shannon B Olsson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knöll, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
In a recent paper, Cayirlioglu et al. report that the disruption of a specific miRNA, miR-279, which normally acts to inhibit the transcription factor Nerfin-1, uncovers a population of hybrid CO2 neurons in the Drosophila maxillary palp.1 Normally, fruit fly CO2 neurons are found only in the antennae, while mosquito CO2 neurons are found only in the maxillary palps. The hybrid neurons in this miRNA mutant may, thus, recapitulate an evolutionary intermediate unseen since the divergence of these two dipteran lineages over 250 million years ago.
Collapse
Affiliation(s)
- Walton D Jones
- Biological Sciences, KAIST, 335 Gwanghangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
18
|
On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity (Edinb) 2008; 102:77-97. [PMID: 18685572 DOI: 10.1038/hdy.2008.55] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chemosensory speciation is characterized by the evolution of barriers to genetic exchange that involve chemosensory systems and chemical signals. Here, we review some representative studies documenting chemosensory speciation in an attempt to evaluate the importance and the different aspects of the process in nature and to gain insights into the genetic basis and the evolutionary mechanisms of chemosensory trait divergence. Although most studies of chemosensory speciation concern sexual isolation mediated by pheromone divergence, especially in Drosophila and moth species, other chemically based behaviours (habitat choice, pollinator attraction) can also play an important role in speciation and are likely to do so in a wide range of invertebrate and vertebrate species. Adaptive divergence of chemosensory traits in response to factors such as pollinators, hosts and conspecifics commonly drives the evolution of chemical prezygotic barriers. Although the genetic basis of chemosensory speciation remains largely unknown, genomic approaches to chemosensory gene families and to enzymes involved in biosynthetic pathways of signal compounds now provide new opportunities to dissect the genetic basis of these complex traits and of their divergence among taxa.
Collapse
|
19
|
Domingue MJ, Musto CJ, Linn CE, Roelofs WL, Baker TC. Olfactory neuron responsiveness and pheromone blend preference in hybrids between Ostrinia furnacalis and Ostrinia nubilalis (Lepidoptera: Crambidae). JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1261-1270. [PMID: 18634788 DOI: 10.1016/j.jinsphys.2008.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/15/2008] [Accepted: 06/18/2008] [Indexed: 05/26/2023]
Abstract
The olfactory receptor neuron (ORN) and behavioral responses of hybrids between the Asian corn borer (ACB), Ostrinia furnacalis, and the E-strain European corn borer (ECB(E)), Ostrinia nubilalis were examined and compared to the parental populations. In hybrids and both parents, the large-spike-size ORN was capable of responding to all four pheromone components of ACB and ECB, despite differences in which compounds elicited the greatest spike frequency in each population. There was a small-spiking ORN more narrowly tuned to the minor pheromone components in both ACB and ECB(E). In hybrids the homologous small-spiking ORN was tuned primarily to the ECB(E) minor pheromone component, with some responsiveness to the ACB minor component. Both species and all the hybrids had an intermediate spike-size ORN tuned primarily to their common behavioral antagonist. Dominance of responsiveness to the ECB(E) versus the ACB minor pheromone component on the small-spiking ORN may explain the greater tendency of hybrids to fly upwind to the ECB(E) pheromone blend than the ACB blend. This finding points toward a distinct evolutionary role for this ORN in allowing a pheromone shift.
Collapse
Affiliation(s)
- Michael J Domingue
- Department of Entomology, Chemical Ecology Laboratory, Penn State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|