1
|
Jiang C, Storey KB, Yang H, Sun L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int J Mol Sci 2023; 24:14093. [PMID: 37762394 PMCID: PMC10531719 DOI: 10.3390/ijms241814093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wilsterman K, Ballinger MA, Williams CM. A unifying, eco‐physiological framework for animal dormancy. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn Wilsterman
- Biological Sciences University of Montana Missoula MT USA
- Integrative Biology University of California Berkeley CA USA
| | | | | |
Collapse
|
3
|
Shi Y, Vistro WA, Bai X, Wu R, Chen C, Huang Y, Fazlani SA, Tarique I, Yang P, Chen Q. Effect of seasonal variance on intestinal epithelial barriers and the associated innate immune response of the small intestine of the Chinese soft-shelled turtles. FISH & SHELLFISH IMMUNOLOGY 2020; 97:173-181. [PMID: 31857223 DOI: 10.1016/j.fsi.2019.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
It is conceivable that pathological conditions can cause intestinal barrier disruption and innate immune dysfunction. However, very limited information has been reported on the effect of seasonal variance on intestinal barriers and innate immunity. The present study was designed to investigate the seasonal variance in intestinal epithelial barriers and the associated innate immune response of turtle intestines during hibernation and nonhibernation periods. Goblet cells (GCs) demonstrated dynamic actions of the mucosal barrier with strong Muc2 protein expression during hibernation. However, weak Muc2 expression during nonhibernation was confirmed by immunohistochemistry, immunofluorescence and immunoblotting. Furthermore, light and transmission electron microscopy revealed that the hypertrophy of GCs resulted in the hypersecretion of mucus granules (MGs) and created a well-developed mucosal layer during hibernation. The absorptive cells (ACs), forming a physical barrier of tight junctions, and desmosomes were firmly anchored during hibernation. Conversely, during nonhibernation, the integrity of tight junctions, adherence junctions and desmosomes was noticeable expanded, causing increased paracellular permeability. As further confirmation, there was strong zonula occluden-1 (ZO-1) and connexins 43 (Cx43) protein expression during hibernation and weak ZO-1 and Cx43 expression during nonhibernation. Moreover, the expression level of the innate immune response proteins Toll-like receptors 2 and 4 (TLR2 and 4) were enhanced during hibernation and were reduced during nonhibernation. These results provide rich information about the seasonal fluctuations that interrupt intestinal epithelial barriers and innate immune response, which might be essential for protection and intestinal homeostasis.
Collapse
Affiliation(s)
- Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ruizhi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chang Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Surfaraz Ali Fazlani
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
4
|
Ali Vistro W, Liu Y, Xu M, Yang P, Haseeb A, Huang Y, Bai X, Yu L, Gandahi NS, Tarique I, Chen Q. Mitochondria-Rich Cells: A Novel Type of Concealed Cell in the Small Intestine of Chinese Soft-Shelled Turtles ( Pelodiscus Sinensis). Animals (Basel) 2019; 9:ani9100717. [PMID: 31554287 PMCID: PMC6826939 DOI: 10.3390/ani9100717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/22/2023] Open
Abstract
Although some studies have been conducted over the past few decades, the existence of mitochondria-rich cells (MRCs) in reptiles is still obscure. This is the first study to uncover the presence of MRCs in the small intestine of Chinese soft-shelled turtles. In this study, we investigated the ultrastructural characteristics of MRCs and the secretion of different ion transport proteins in the small intestine of Pelodiscus sinensis. Transmission electron microscopy revealed that the ultrastructural features of MRCs are clearly different from those of other cells. The cytoplasmic density of MRCs was higher than absorptive epithelial cells (AECs) and goblet cells (GCs). MRCs possessed abundant heterogeneous mitochondria and an extensive tubular system in the cytoplasm, however, the AECs and GCs completely lacked a tubular system. Statistical analysis showed that the diameter and quantification of mitochondria were highly significant in MRCs. Mitochondrial vacuolization and despoiled mitochondria were closely associated with autophagosomes in MRCs. The multivesicular bodies (MVBs) and the exosome secretion pathway were observed in MRCs. Immunohistochemical staining of ion transport proteins indicated positive immunoreactivity of Na+/K+_ATPase (NKA) and Na+/K+/2Cl- cotransporter (NKCC) at the basal region of the mucosal surface. Likewise, the immunofluorescence staining results showed a strong positive localization of NKA, NKCC, and carbonic anhydrase (CA) at the basal and apical region of the mucosal surface of small intestine. Our findings suggest that MRCs provide support and regulate cellular ions for intestinal homeostasis and provide energy for cellular quality control in intestine.
Collapse
Affiliation(s)
- Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yifei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Mengdi Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Liang Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Noor Samad Gandahi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
5
|
Vistro WA, Tarique I, Haseeb A, Yang P, Huang Y, Chen H, Bai X, Fazlani SA, Chen Q. Seasonal exploration of ultrastructure and Na +/K +-ATPase, Na +/K +/2Cl- cotransporter of mitochondria-rich cells in the small intestine of turtles. Micron 2019; 126:102747. [PMID: 31505373 DOI: 10.1016/j.micron.2019.102747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 01/31/2023]
Abstract
Despite the exploration of mitochondria-rich cells (MRCs) in different animal classes, very limited information has been documented about MRCs in reptiles. The present study was designed to investigate the effect of seasonal variation on the cell ultrastructure and ion transport protein activity of MRCs during hibernation and non-hibernation of Chinese soft-shelled turtle's intestine. Transmission electron microscopy revealed that, during hibernation the high-density cytoplasm of MRCs occupied large cross-sectional area and showed heterogeneous abundance of mitochondria and an expanded extensive tubular system as compared to non-hibernation. During hibernation the cytoplasm of MRCs exhibited more mitochondrial vacuolization, autophagosomes, phagophore formation and well-structured endoplasmic reticulum. During hibernation, MRCs connected with absorptive cells through wide interdigitation, and created tight junction and more desmosomes as compared to non-hibernation. Immunohistochemistry and immunofluorescence showed, the strong immunopositive reactions and immunosignaling of Na+/K+-ATPase (NKA) and Na+/K+/2Cl- cotransporter (NKCC) at basolateral region of mucosal surface of intestine during hibernation. However, weak immunopositive reactions and immunosignaling of NKA and NKCC during non-hibernation. The statistical analysis showed that the number and size of MRCs with NKA-associated immunoreactivity were significantly increased during hibernation. NKA and NKCC mRNA expression was significantly increased during hibernation via qPCR. Further confirmed, the intensity of NKA and NKCC proteins was more elevated during hibernation than non-hibernation shown by immunobloting. However, the concentrations of the plasma ions Na+ and Cl- were significantly higher during hibernation; conversely, K+ concentration was significantly higher during non-hibernation. The findings suggest that the potential role of MRCs is affected by seasonal fluctuations, during which intestinal homeostasis and hydromineral balance are essential for turtles.
Collapse
Affiliation(s)
- Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Surfaraz Ali Fazlani
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
6
|
Wu NC, Cramp RL, Ohmer MEB, Franklin CE. Epidermal epidemic: unravelling the pathogenesis of chytridiomycosis. ACTA ACUST UNITED AC 2019; 222:jeb.191817. [PMID: 30559300 DOI: 10.1242/jeb.191817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Abstract
Chytridiomycosis, a lethal fungal skin disease of amphibians, fatally disrupts ionic and osmotic homeostasis. Infected amphibians increase their skin shedding rate (sloughing) to slow pathogen growth, but the sloughing process also increases skin permeability. Healthy amphibians increase active ion uptake during sloughing by increasing ion transporter abundance to offset the increased skin permeability. How chytridiomycosis affects the skin function during and between sloughing events remains unknown. Here, we show that non-sloughing frogs with chytridiomycosis have impaired cutaneous sodium uptake, in part because they have fewer sodium transporters in their skin. Interestingly, sloughing was associated with a transient increase in sodium transporter activity and abundance, suggesting that the newly exposed skin layer is initially fully functional until the recolonization of the skin by the fungus again impedes cutaneous function. However, the temporary restoration of skin function during sloughing does not restore ionic homeostasis, and the underlying loss of ion uptake capacity is ultimately detrimental for amphibians with chytridiomycosis.
Collapse
Affiliation(s)
- Nicholas C Wu
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michel E B Ohmer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Cramp RL, Hansen MJ, Franklin CE. Osmoregulation by juvenile brown-banded bamboo sharks, Chiloscyllium punctatum, in hypo- and hyper-saline waters. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:107-14. [PMID: 25868436 DOI: 10.1016/j.cbpa.2015.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
While there is a considerable body of work describing osmoregulation by elasmobranchs in brackish and saltwater, far fewer studies have investigated osmoregulation in hypersaline waters. We examined osmo- and ionoregulatory function and plasticity in juvenile brown-banded bamboo sharks, Chiloscyllium punctatum, exposed to three experimental salinities (25, 34 and 40‰) for two weeks. C. punctatum inhabits sheltered coastal areas and bays which can naturally become hypersaline as a consequence of evaporation of water but can also become hyposaline during flood events. We hypothesised that C. punctatum would demonstrate a phenotypically plastic osmoregulatory physiology. Plasma osmolality, urea, Na(+) and Cl(-) levels increased significantly with increasing environmental salinity. Rectal gland and branchial sodium-potassium ATPase (NKA) activities were unaffected by salinity. Using immunohistochemistry and Western Blotting we found evidence for the presence of the key ion-regulatory proteins vacuolar H(+)-ATPase (VHA), pendrin (Cl(-)/HCO₃(-) co-transporter) and the Na(+)-H(+) exchanger isoform 3 (NHE3) in discrete cells within the branchial epithelia. These results indicate that C. punctatum is a partially euryhaline elasmobranch able to maintain osmo- and ionoregulatory function between environmental salinities of 25‰ and 40‰. As suggested for other elasmobranchs, the gills of C. punctatum likely play a limited role in maintaining Na(+) homeostasis over the salinity range studied, but may play an important role in acid-base balance.
Collapse
Affiliation(s)
- R L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - M J Hansen
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - C E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Physiological and morphological responses to the first bout of refeeding in southern catfish (Silurus meridionalis). J Comp Physiol B 2014; 184:329-46. [DOI: 10.1007/s00360-014-0801-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022]
|
9
|
Seliverstova EV, Prutskova NP. Morphofunctional changes in the small intestine epithelium of the frog Rana temporaria in the course of hibernation. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012030061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Abstract
Aestivation is a survival strategy used by many vertebrates and invertebrates to endure arid environmental conditions. Key features of aestivation include strong metabolic rate suppression, strategies to retain body water, conservation of energy and body fuel reserves, altered nitrogen metabolism, and mechanisms to preserve and stabilize organs, cells and macromolecules over many weeks or months of dormancy. Cell signaling is crucial to achieving both a hypometabolic state and reorganizing multiple metabolic pathways to optimize long-term viability during aestivation. This commentary examines the current knowledge about cell signaling pathways that participate in regulating aestivation, including signaling cascades mediated by the AMP-activated kinase, Akt, ERK, and FoxO1.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6.
| | | |
Collapse
|
11
|
Enzyme activity in the aestivating Green-striped burrowing frog (Cyclorana alboguttata). J Comp Physiol B 2010; 180:1033-43. [DOI: 10.1007/s00360-010-0471-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
|