1
|
Bai X, Xu W, Zhu Y, Luo B, Ye D. Transcriptomics and phenotypic analysis of OTOF gene knockdown in zebrafish mediated by CRISPR/Cas9. Gene Expr Patterns 2025; 55:119394. [PMID: 40250544 DOI: 10.1016/j.gep.2025.119394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
Deafness is a common genetic disorder, where mutations,in the OTOF gene can disrupt the normal functionof the Otoferlin protein, leading to impaired neurotransmitter release in the inner ear and subsequent deafness. Despite the complexity of the pathogenic mechanism,it is not fully understood. Zebrafish are an excellent model for studying genetically-induced deafness,but there have been no previous reports on the pathogenesis of OTOF in zebrafish.This study successfully established a zebrafish model with mutated OTOF genes using CRISPR/Cas9 gene editing technology to investigate the molecular basis of OTOF-induced deafness. Compared to AB wild type zebrafish, those with low otof expression showed injury and apoptosis of hair cells in the posterior lateral neuromasts along with significant increase in the number of macrophages and apoptotic cells in this region. Additionally, these mutants exhibited a reduction in body length. To further elucidate differences at 5dpf (days post-fertilization) between mutant and wild type zebrafish embryos, RNA-seq analysis was conducted to examine differentially expressed genes (DEGs).A total of 334 up-regulated DEGs and 111 down-regulated DEGs were identified in mutants compared to wild types.KEGG and GO enrichment analyses were performed on these DEGs to identify key signaling pathways and hub DEGs. The findings revealedan increased expression of several genes involved in the HSP70 oxidative stress system, suggesting that OTOF may protect cochlear hair cell from apoptosis induced by oxidative stress through regulation of MAPK signal and HSP70 expression.In summary, the establishment of a zebrafish model with OTOF knockout provides a valuable tool for investigating the function of Otoferlin and understanding the role of the OTOF gene in deafness. These potential molecular insights offer significant contributions towards understanding the pathogenesis of deafness experimental models and serves as a foundation for comprehending the involvement of the OTOF gene.
Collapse
Affiliation(s)
- Xuejing Bai
- People's Hospital of Yuxi City (The Sixth Affiliated Hospital of Kunming Medical University), China.
| | - Wenbo Xu
- People's Hospital of Yuxi City (The Sixth Affiliated Hospital of Kunming Medical University), China
| | - Ying Zhu
- People's Hospital of Yuxi City (The Sixth Affiliated Hospital of Kunming Medical University), China
| | - Beibei Luo
- People's Hospital of Yuxi City (The Sixth Affiliated Hospital of Kunming Medical University), China
| | - Dan Ye
- People's Hospital of Yuxi City (The Sixth Affiliated Hospital of Kunming Medical University), China.
| |
Collapse
|
2
|
Barkan R, Cooke I, Watson SA, Strugnell JM. Synthesis of transcriptomic studies reveals a core response to heat stress in abalone (genus Haliotis). BMC Genomics 2025; 26:474. [PMID: 40361012 PMCID: PMC12070547 DOI: 10.1186/s12864-025-11680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND As climate change causes marine heat waves to become more intense and frequent, marine species increasingly suffer from heat stress. This stress can result in reduced growth, disrupted breeding cycles, vulnerability to diseases and pathogens, and increased mortality rates. Abalone (genus Haliotis) are an ecologically significant group of marine gastropods and are among the most highly valued seafood products. However, heat stress events have had devastating impacts on both farmed and wild populations. Members of this genus are among the most susceptible marine species to climate change impacts, with over 40% of all abalone species listed as threatened with extinction. This has motivated researchers to explore the genetics linked to heat stress in abalone. A substantial portion of publicly available studies has employed transcriptomic approaches to investigate abalone genetic response to heat stress. However, to date, no meta-analysis has been conducted to determine the common response to heat stress (i.e. the core response) across the genus. This study uses a standardized bioinformatic pipeline to reanalyze and compare publicly available RNA-seq datasets from different heat stress studies on abalone. RESULTS Nine publicly available RNA-seq datasets from nine different heat-stress studies on abalone from seven different abalone species and three hybrids were included in the meta-analysis. We identified a core set of 74 differentially expressed genes (DEGs) in response to heat stress in at least seven out of nine studies. This core set of DEGs mainly included genes associated with alternative splicing, heat shock proteins (HSPs), Ubiquitin-Proteasome System (UPS), and other protein folding and protein processing pathways. CONCLUSIONS The detection of a consistent set of genes that respond to heat stress across various studies, despite differences in experimental design (e.g. stress intensity, species studied-geographical distribution, preferred temperature range, etc.), strengthens our proposal that these genes are key elements of the heat stress response in abalone. The identification of the core response to heat stress in abalone lays an important foundation for future research. Ultimately, this study will aid conservation efforts and aquaculture through the identification of resilient populations, genetic-based breeding programs, possible manipulations such as early exposure to stress, gene editing and the use of immunostimulants to enhance thermal tolerance.
Collapse
Affiliation(s)
- Roy Barkan
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, Australia
| | - Sue-Ann Watson
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Queensland Museum, Townsville, QLD, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
3
|
Li L, Chang J, Xu Z, Chu L, Zhang J, Xing Q, Bao Z. Functional allocation of Mitogen-activated protein kinases (MAPKs) unveils thermotolerance in scallop Argopecten irradians irradians. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106750. [PMID: 39293275 DOI: 10.1016/j.marenvres.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three MAPK genes: AiERK, Aip38, and AiJNK. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of AiMAPKs were ubiquitous, with significant increases in AiERK expression observed at the umbo larval stage (3.09-fold), while Aip38 and AiJNK were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of AiMAPKs were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, AiMAPKs expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of AiMAPKs genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.
Collapse
Affiliation(s)
- Linshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaosong Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
4
|
Mai NTQ, Batjargal U, Kim WS, Kim JH, Park JW, Kwak IS, Moon BS. Microplastic induces mitochondrial pathway mediated cellular apoptosis in mussel (Mytilus galloprovincialis) via inhibition of the AKT and ERK signaling pathway. Cell Death Discov 2023; 9:442. [PMID: 38057300 DOI: 10.1038/s41420-023-01740-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Microplastics (MPs) is an escalating aquatic environmental crisis that poses significant threats to marine organisms, especially mussels. Here, we compare the cumulative toxic effects of the two most abundant morphotypes of MPs in the environment, microspheres, and microfibers, on the gill and digestive gland (DG) of Mytilus galloprovincialis in a dose-dependent (1, 10, and 100 mg/L) and time-dependent (1, 4, 7, 14, 21 days exposure) manner. DNA fragmentation assessment through TUNEL assay revealed consistency in the pattern of morphological disturbance degree and cell apoptosis proportions indicated by histopathological analysis. Upon the acute phase of exposure (day 1-4), gill and DG treated with low MPs concentration exhibited preserved morphology and low proportion of TUNEL+ cells. At higher concentrations, spherical and fibrous MP-induced structural impairments and DNA breakage occurred at distinct levels. 100 mg/L microfibers was lethal to all mussels on day 21, indicating the higher toxicity of the fibrous particles. During the chronic phase, both morphological abnormalities degree and DNA fragmentation level increased over time and with increasing concentration, but the differentials between the spherical and fibrous group was gradually reduced, particularly diminished in 10 and 100 mg/L in the last 2 weeks. Furthermore, analysis of transcriptional activities of key genes for apoptosis of 100 mg/L-day 14 groups revealed the upregulation of both intrinsic and extrinsic apoptotic induction pathway and increment in gene transcripts involving genotoxic stress and energy metabolism according to MP morphotypes. Overall, microfibers exert higher genotoxic effects on mussel. In response, mussels trigger more intense apoptotic responses together with enhanced energy metabolism to tolerate the adverse effects in a way related to the accumulation of stimuli.
Collapse
Affiliation(s)
- Nhu Thi Quynh Mai
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, 59626, Korea
| | - Ulziituya Batjargal
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, 59626, Korea
| | - Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Korea
| | - Ji-Hoon Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Korea
| | - Ji-Won Park
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Korea.
| | - Byoung-San Moon
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea.
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, 59626, Korea.
| |
Collapse
|
5
|
Papadopoulos DK, Lattos A, Giantsis IA, Theodorou JA, Michaelidis B, Feidantsis K. The impact of ascidian biofouling on the farmed Mediterranean mussel Mytilus galloprovincialis physiology and welfare, revealed by stress biomarkers. BIOFOULING 2023:1-18. [PMID: 37144608 DOI: 10.1080/08927014.2023.2209015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In biofouling communities, ascidians are among the most damaging species, presenting severe threats, such as depressed growth rates and decreased chances of lower survival, to shellfish aquaculture. However, little is known concerning the fouled shellfish physiology. In an effort to obtain information for the magnitude of stress caused by ascidians to farmed Mytilus galloprovincialis, five seasonal samplings took place in a mussel aquaculture farm suffering from ascidian biofoulants, in Vistonicos Bay, Greece. The dominant ascidian species were recorded and several stress biomarkers, including Hsp gene expression at both mRNA and protein levels, as well as MAPKs levels, and enzymatic activities of intermediate metabolism were examined. Almost all investigated biomarkers revealed elevated stress levels in fouled mussels compared to non-fouled. This enhanced physiological stress seems to be season-independent and can be attributed to the oxidative stress and/or feed deprivation caused by ascidian biofouling, thus illuminating the biological impact of this phenomenon.
Collapse
Affiliation(s)
- Dimitrios K Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Qu M, Xu J, Yang Y, Li R, Li T, Chen S, Di Y. Assessment of sulfamethoxazole toxicity to marine mussels (Mytilus galloprovincialis): Combine p38-MAPK signaling pathway modulation with histopathological alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114365. [PMID: 36508823 DOI: 10.1016/j.ecoenv.2022.114365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Sulfamethoxazole (SMX), is a ubiquitous antibiotic in the aquatic environment and received concerns on its health hazards, especially its sub-lethal effects on non-target organisms which were remained largely unknown. In the present study, in order to investigate SMX induced tissue damages and reveal underlying mechanisms, marine mussels, Mytilus galloprovincialis were challenged to SMX series (0.5, 50 and 500 μg/L) for six-days followed by six-day-recovery. Comprehensive histopathological alteration (including qualitative, semi-quantitative and quantitative indices), together with transcriptional and (post-) translational responses of key factors (p38, NFκB and p53) in the p38-MAPK signaling pathway were analyzed in gills and digestive glands. Tissue-specific responses were clearly investigated with gills showing more prompt responses and digestive glands showing higher tolerance to SMX. The histopathology showed that SMX triggered inflammatory damages in both tissues and quantitative analysis revealed more significant responses, suggesting its potential as a valuable health indicator. SMX activated expressions of p38, NFκB and p53 at transcriptional and (post-) translational levels, especially after exposed to low level SMX, evidenced by p38 coupled with NFκB/p53 regulation on immunity defense in mussels. Less induction of targeted molecules under severe SMX exposure indicated such signaling transduction may not be efficient enough and can result in inflammatory damages. Taken together, this study expanded the understanding of aquatic SMX induced health risk in marine mussels and the underlying regulation mechanism through p38 signaling transduction.
Collapse
Affiliation(s)
- Mengjie Qu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316100, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Jinzhong Xu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316100, China
| | - Yingli Yang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316100, China
| | - Ruofan Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316100, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Taiwei Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316100, China
| | - Siyu Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316100, China
| | - Yanan Di
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316100, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
7
|
Ambekar AA, Sivaperumal P, Kamala K, Kubal P, Prakash C. Effect of temperature changes on antioxidant enzymes and oxidative stress in gastropod Nerita oryzarum collected along India's first Tarapur Atomic Power Plant site. ENVIRONMENTAL RESEARCH 2023; 216:114334. [PMID: 36162475 DOI: 10.1016/j.envres.2022.114334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Temperature can be considered as pro-oxidant factor that favor the generation of ROS on the species with lower antioxidant efficiency may leads to affect the level of tolerance. So the basic antioxidant enzyme activity (LPO, CAT, SOD, GPx and GST) of gastropod Nerita oryzarum was evaluated at six stations which located between the thermal effluent discharges points from Tarapur Atomic Power Station, India. The antioxidant enzyme activity was shown that all enzyme at discharge point (SII station) where the maximum temperature of heated effluent released. The average maximum values of enzyme activity recorded for LPO, CAT, SOD, GPx and GST were 1.88 ± 0.12, 1.52 ± 0.14, 22.57 ± 0.89, 1.98 ± 0.2 and 17.22 ± 0.63 respectively. The results were inferred the level water temperature directly proportional to the oxidative stress by ROS generation in Nerita oryzarum. Similar results were observed at laboratory experiment under the condition i.e., Treatment 1 (300C), Treatment 2 (350C), Treatment 3 (400C) and Control (250C). The present prima facie work clearly indicated the physiological response of N. oryzarum with respect to antioxidant enzyme activity against the heated effluent released, which will be useful as baseline information for future research work.
Collapse
Affiliation(s)
- Ajit A Ambekar
- Department of Zoology, Smt.Devkiba Mohansinhaji Chauhan College of Commerce and Science, Silvassa, UT of Dadra and Nagar Haveli, 396 230, India; Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore, 574 199, India; ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (West), Mumbai, 400061, India.
| | - Pitchiah Sivaperumal
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Kannan Kamala
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Priti Kubal
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore, 574 199, India; ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (West), Mumbai, 400061, India
| | - Chandra Prakash
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (West), Mumbai, 400061, India
| |
Collapse
|
8
|
Duodenal Metabolic Profile Changes in Heat-Stressed Broilers. Animals (Basel) 2022; 12:ani12111337. [PMID: 35681802 PMCID: PMC9179521 DOI: 10.3390/ani12111337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Heat stress (HS) represents an environmental and socio-economic burden to the poultry industry worldwide. However, the underpinning mechanisms for HS responses are still not well defined. Here, we used a high-throughput analysis to determine the metabolite profiles in acute and chronic heat-stressed broilers in comparison with thermoneutral and pair-fed birds. The results showed that HS altered several duodenal metabolites in a duration-dependent manner and identified potential metabolite signatures. Abstract Heat stress (HS) is devastating to poultry production sustainability worldwide. In addition to its adverse effects on growth, welfare, meat quality, and mortality, HS alters the gut integrity, leading to dysbiosis and leaky gut syndrome; however, the underlying mechanisms are not fully defined. Here, we used a high-throughput mass spectrometric metabolomics approach to probe the metabolite profile in the duodenum of modern broilers exposed to acute (AHS, 2 h) or chronic cyclic (CHS, 8 h/day for 2 weeks) HS in comparison with thermoneutral (TN) and pair-fed birds. Ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC–HRMS) identified a total of 178 known metabolites. The trajectory analysis of the principal component analysis (PCA) score plots (both 2D and 3D maps) showed clear separation between TN and each treated group, indicating a unique duodenal metabolite profile in HS birds. Within the HS groups, partial least squares discriminant analysis (PLS-DA) displayed different clusters when comparing metabolite profiles from AHS and CHS birds, suggesting that the metabolite signatures were also dependent on HS duration. To gain biologically related molecule networks, the above identified duodenal metabolites were mapped into the Ingenuity Pathway Analysis (IPA) knowledge-base and analyzed to outline the most enriched biological functions. Several common and specific top canonical pathways were generated. Specifically, the adenosine nucleotide degradation and dopamine degradation pathways were specific for the AHS group; however, the UDP-D-xylose and UDP-D-glucuronate biosynthesis pathways were generated only for the CHS group. The top diseases enriched by the IPA core analysis for the DA metabolites, including cancer, organismal (GI) injury, hematological, cardiovascular, developmental, hereditary, and neurological disorders, were group-specific. The top altered molecular and cellular functions were amino acid metabolism, molecular transport, small molecule biochemistry, protein synthesis, cell death and survival, and DNA damage and repair. The IPA-causal network predicted that the upstream regulators (carnitine palmitoyltransferase 1B, CPT1B; histone deacetylase 11, HDAC11; carbonic anhydrase 9, CA9; interleukin 37, IL37; glycine N-methyl transferase, GNMT; GATA4) and the downstream mediators (mitogen-activated protein kinases, MAPKs; superoxide dismutase, SOD) were altered in the HS groups. Taken together, these data showed that, independently of feed intake depression, HS induced significant changes in the duodenal metabolite profile in a duration-dependent manner and identified a potential duodenal signature for HS.
Collapse
|
9
|
Bultelle F, Boutet I, Devin S, Caza F, St-Pierre Y, Péden R, Brousseau P, Chan P, Vaudry D, Le Foll F, Fournier M, Auffret M, Rocher B. Molecular response of a sub-antarctic population of the blue mussel (Mytilus edulis platensis) to a moderate thermal stress. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105393. [PMID: 34217095 DOI: 10.1016/j.marenvres.2021.105393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The Kerguelen Islands (49°26'S, 69°50'E) represent a unique environment due to their geographical isolation, which protects them from anthropogenic pollution. The ability of the endemic mussel, part of the Mytilus complex, to cope with moderate heat stress was explored using omic tools. Transcripts involved in six major metabolic functions were selected and the qRT-PCR data indicated mainly changes in aerobic and anaerobic energy metabolism and stress response. Proteomic comparisons revealed a typical stress response pattern with cytoskeleton modifications and elements suggesting increased energy metabolism. Results also suggest conservation of protein homeostasis by the long-lasting presence of HSP while a general decrease in transcription is observed. The overall findings are consistent with an adaptive response to moderate stresses in mussels in good physiological condition, i.e. living in a low-impact site, and with the literature concerning this model species. Therefore, local blue mussels could be advantageously integrated into biomonitoring strategies, especially in the context of Global Change.
Collapse
Affiliation(s)
- F Bultelle
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - I Boutet
- Station Biologique de Roscoff CNRS, Laboratory Adaptation & Diversity in Marine Environment (UMR7144 CNRS-SU), Sorbonne Université, Roscoff, France.
| | - S Devin
- UMR 7360 LIEC, Université Metz-Lorraine, France.
| | - F Caza
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Y St-Pierre
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - R Péden
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France; UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, Université de REIMS Champagne-Ardenne, Campus Moulin de la Housse, 51687, Reims, France.
| | - P Brousseau
- Institut des Sciences de la mer, Le Parc de la rivière Mitis, Sainte-Flavie, Québec, G0J 2L0, Canada.
| | - P Chan
- Normandie Univ, UNIROUEN, Plateforme PISSARO, IRIB, 76821, Mont-Saint-Aignan, France.
| | - D Vaudry
- Normandie Univ, UNIROUEN, Plateforme PISSARO, IRIB, 76821, Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, INSERM U1239 DC2N, 76821, Mont-Saint-Aignan, France.
| | - F Le Foll
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - M Fournier
- Institut des Sciences de la mer, Le Parc de la rivière Mitis, Sainte-Flavie, Québec, G0J 2L0, Canada.
| | - M Auffret
- UMR CNRS 6539-LEMAR/ Laboratoire des Sciences de l'Environnement Marin, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - B Rocher
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| |
Collapse
|
10
|
Feidantsis K, Pörtner HO, Giantsis IA, Michaelidis B. Advances in understanding the impacts of global warming on marine fishes farmed offshore: Sparus aurata as a case study. JOURNAL OF FISH BIOLOGY 2021; 98:1509-1523. [PMID: 33161577 DOI: 10.1111/jfb.14611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Monitoring variations in proteins involved in metabolic processes, oxidative stress responses, cell signalling and protein homeostasis is a powerful tool for developing hypotheses of how environmental variations affect marine organisms' physiology and biology. According to the oxygen- and capacity-limited thermal tolerance hypothesis, thermal acclimation mechanisms such as adjusting the activities of enzymes of intermediary metabolism and of antioxidant defence mechanisms, inducing heat shock proteins (Hsps) or activating mitogen-activated protein kinases may all shift tolerance windows. Few studies have, however, investigated the molecular, biochemical and organismal responses by fishes to seasonal temperature variations in the field to link these to laboratory findings. Investigation of the impacts of global warming on fishes farmed offsore, in the open sea, can provide a stepping stone towards understanding effects on wild populations because they experience similar environmental fluctuations. Over the last 30 years, farming of the gilthead sea bream Sparus aurata (Linnaeus 1758) has become widespread along the Mediterranean coastline, rendering this species a useful case study. Based on available information, the prevailing seasonal temperature variations expose the species to the upper and lower limits of its thermal range. Evidence for this includes oxygen restriction, reduced feeding, reduced responsiveness to environmental stimuli, plus a range of molecular and biochemical indicators that change across the thermal range. Additionally, close relationships between biochemical pathways and seasonal patterns of metabolism indicate a connection between energy demand and metabolic processes on the one hand, and cellular stress responses such as oxidative stress, inflammation and autophagy on the other. Understanding physiological responses to temperature fluctuations in fishes farmed offshore can provide crucial background information for the conservation and successful management of aquaculture resources in the face of global change.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans O Pörtner
- Alfred-Wegener-Institut für Polar-und Meeresforschung, Physiologie Mariner Tiere, Bremerhaven, Germany
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Boroda AV, Kipryushina YO, Odintsova NA. The effects of cold stress on Mytilus species in the natural environment. Cell Stress Chaperones 2020; 25:821-832. [PMID: 32297161 PMCID: PMC7591686 DOI: 10.1007/s12192-020-01109-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022] Open
Abstract
Environmental stressors induce changes in marine mussels from molecular (e.g., neurotransmitter and chaperone concentration, and expression of immune- and heat-shock protein-related genes) to physiological (e.g., filtration and heart rates, the number of circulating hemocytes) levels. Temperature directly affects the biogeographic distribution of mussels. Chaperones might form an essential part of endogenous protective mechanisms for the adaptation of these animals to low temperatures in nature. Here, we review the available studies dealing with cold stress responses of Mytilidae family members in their natural environment.
Collapse
Affiliation(s)
- Andrey Victorovich Boroda
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia.
| | - Yulia Olegovna Kipryushina
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia
| | - Nelly Adolphovna Odintsova
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia
| |
Collapse
|
12
|
Feidantsis K, Giantsis IA, Vratsistas A, Makri S, Pappa AZ, Drosopoulou E, Anestis A, Mavridou E, Exadactylos A, Vafidis D, Michaelidis B. Correlation between intermediary metabolism, Hsp gene expression, and oxidative stress-related proteins in long-term thermal-stressed Mytilus galloprovincialis. Am J Physiol Regul Integr Comp Physiol 2020; 319:R264-R281. [DOI: 10.1152/ajpregu.00066.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long-term exposure of Mytilus galloprovincialis to temperatures beyond 26°C triggers mussel mortality. The present study aimed to integratively illustrate the correlation between intermediary metabolism, hsp gene expression, and oxidative stress-related proteins in long-term thermally stressed Mytilus galloprovincialis and whether they are affected by thermal stress magnitude and duration. We accordingly evaluated the gene expression profiles, in the posterior adductor muscle (PAM) and the mantle, concerning heat shock protein 70 and 90 ( hsp70 and hsp90), and the antioxidant defense indicators Mn-SOD, Cu/Zn-SOD, catalase, glutathione S-transferase, and the metallothioneins mt-10 and mt-20. Moreover, we determined antioxidant enzyme activities, oxidative stress through lipid peroxidation, and activities of intermediary metabolism enzymes. The pattern of changes in relative mRNA expression levels indicate that mussels are able to sense thermal stress even when exposed to 22°C and before mussel mortality is initiated. Data indicate a close correlation between the magnitude and duration of thermal stress with lipid peroxidation levels and changes in the activity of antioxidant enzymes and the enzymes of intermediary metabolism. The gene expression and increase in the activities of antioxidant enzymes support a scenario, according to which exposure to 24°C might trigger reactive oxygen species (ROS) production, which is closely correlated with anaerobic metabolism under hypometabolic conditions. Increase and maintenance of oxidative stress in conjunction with energy balance disturbance seem to trigger mussel mortality after long-term exposure at temperatures beyond 26°C. Eventually, in the context of preparation for oxidative stress, certain hypotheses and models are suggested, integrating the several steps of cellular stress response.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Andreas Vratsistas
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula Makri
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia-Zoi Pappa
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Anestis
- Laboratory of Hygiene, Division of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Mavridou
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Exadactylos
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Dimitrios Vafidis
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Yurinskaya MM, Garbuz DG, Evgen’ev MB, Vinokurov MG. Exogenous HSP70 and Signaling Pathways Involved in the Inhibition of LPS-Induced Neurotoxicity of Neuroblastoma Cells. Mol Biol 2020. [DOI: 10.1134/s0026893320010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Somero GN. The cellular stress response and temperature: Function, regulation, and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:379-397. [PMID: 31944627 DOI: 10.1002/jez.2344] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/11/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023]
Abstract
The cellular stress response (CSR) is critical for enabling organisms to cope with thermal damage to proteins, nucleic acids, and membranes. It is a graded response whose properties vary with the degree of cellular damage. Molecular damage has positive, as well as negative, function-perturbing effects. Positive effects include crucial regulatory interactions that orchestrate involvement of the different components of the CSR. Thermally unfolded proteins signal for rapid initiation of transcription of genes encoding heat shock proteins (HSPs), central elements of the heat shock response (HSR). Thermal disruption of messenger RNA (mRNA) secondary structures in untranslated regions leads to the culling of the mRNA pool: thermally labile mRNAs for housekeeping proteins are degraded by exonucleases; heat-resistant mRNAs for stress proteins like HSPs then can monopolize the translational apparatus. Thus, proteins and RNA function as "cellular thermometers," and evolved differences in their thermal stabilities enable rapid initiation of the CSR whenever cell temperature rises significantly above the normal thermal range of a species. Covalent DNA damage, which may result from increased production of reactive oxygen species, is temperature-dependent; its extent may determine cellular survival. High levels of stress that exceed capacities for molecular repair can lead to proteolysis, inhibition of cell division, and programmed cell death (apoptosis). Onset of these processes may occur later in the stress period, after initiation of the HSR, to allow HSPs opportunity to restore protein homeostasis. Delay of these energy costly processes may also result from shortfalls in availability of adenosine triphosphate and reducing power during times of peak stress.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| |
Collapse
|
15
|
Role of MAPKs in HSP70's Protection against Heat Stress-Induced Injury in Rat Small Intestine. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1571406. [PMID: 30112361 PMCID: PMC6077665 DOI: 10.1155/2018/1571406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Aim To evaluate the role of heat shock protein 70 (HSP70) on the MAPK pathway activation with quercetin treatment and its protection against small intestine impairments of heat stressed rats. Methods Forty-eight male Sprague-Dawley rats aged 6 weeks were randomized to three groups (n=16/group), namely, control (CON), heat stress (HS), and heat stress + quercetin (HQ). The experiment lasted for 14 days with daily 50 min of heat stress treatment (43°C) for the HS and HQ groups. Rats of HQ group were intragastrically given 0.5 ml quercetin solution (50 mg/kg body weight) before the heat stress treatment. Half of the animals were sacrificed on day 7 and the rest on day 14 for tissue sampling. Intestinal morphology, small intestine morphology and permeability, protein expression of HSP70, phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and caspase-3 activity were examined. Results Heat stress caused morphological damage to the small intestine and increased intestinal permeability. HSP70 expression and MAPK activity in the small intestine were increased by heat stress. Inhibition of HSP70 by quercetin did not change intestinal permeability compared with the HS group but aggravated intestinal injury and affected the activation of MAPKs and caspase-3. Conclusions HSP70 may modulate stress-activated signaling and acts in a protective manner via MAPK signaling. Affecting HSP70 protective mechanisms could be useful for protection against heat stress-induced injury in rat small intestine.
Collapse
|
16
|
The impact of acute thermal stress on green mussel Perna viridis: Oxidative damage and responses. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:7-15. [PMID: 29654820 DOI: 10.1016/j.cbpa.2018.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
Abstract
Examining the physiological responses of mussels to thermal stress is crucial to evaluate their biogeographic distribution and ability to adapt to a changing climate. In the present study, we investigated the effects of acute cold (8 °C and 15 °C) and heat (35 °C and 42 °C) stress on the mortality rate, reactive oxygen species (ROS) production, malondialdehyde (MDA) content, mitochondrial membrane potential (MMP) and antioxdative responses in the gill tissue of the green mussel species Perna viridis. Our results showed that cold and heat stress induced a temperature-dependent increase in mortality rate. ROS production increased significantly (p < 0.01) after both cold and heat stress. However, the activities of antioxidant enzymes, including SOD, CAT and GSH-Px, were greatly enhanced only after heat stress. In addition, MDA content and MMP increased significantly under both cold and heat stress. The up-regulation of Hsp70 transcripts was only detected after acute stress at 35 °C. However, p38-MAPK phosphorylation levels increased after both cold and heat stress. In addition, a moderate activation of caspase-3 was found after mussels were exposed to 8 °C and 42 °C stress. Our results suggest that both extreme cold and heat stress could induce ROS production in the gill tissue of P. viridis, which might result in lipid peroxidation and mitochondria dysfunction. Antioxidative enzymes and Hsp70 might be important in the heat stress response of animals, whereas p38-MAPK might be crucial in the acute response to both cold and heat stress. However, caspase-3 activation might be very weak under both cold and heat stress.
Collapse
|
17
|
Zhao X, Xiu J, Li Y, Ma H, Wu J, Wang B, Guo G. Characterization and Expression Pattern Analysis of the T-Complex Protein-1 Zeta Subunit in Musca domestica L (Diptera). JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3966743. [PMID: 28973494 PMCID: PMC5510958 DOI: 10.1093/jisesa/iex063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 05/26/2023]
Abstract
Chaperonins, belonging to the T-complex protein-1 (TCP-1) family, assist in the correct folding of nascent and misfolded proteins. It is well-known that in mammals, the zeta subunit of the TCP-1 complex (TCP-1ζ) plays a vital role in the folding and assembly of cytoskeleta proteins. This study reported for the first time the cloning, characterization and expression pattern analysis of the TCP-1ζ from Musca domestica, which was named as MdTCP-1ζ. The MdTCP-1ζ cDNA is 1,803 bp long with a 1,596 bp open reading frame that encodes a protein with 531 bp amino acids. The analysis of the transcriptional profile of MdTCP-1ζ using qRT-PCR revealed relatively high expression in the salivary glands and trachea at the tissues while among the developmental stages. The highest expression was observed only in the eggs suggesting that the MdTCP-1ζ may play a role in embryonic development. The expression of MdTCP-1ζ was also significantly induced after exposure to short-term heat shock and infection by Escherichia coli, Staphylococcus aureus, or Candida albicans. This suggested that MdTCP-1ζ may take part in the immune responses of housefly and perhaps contribute to the protection against cellular injury.
Collapse
Affiliation(s)
- Xuejun Zhao
- Department of parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, University City Guian New District, 550025, China (; ; ; ; ; )
| | - Jiangfan Xiu
- Department of parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, University City Guian New District, 550025, China (; ; ; ; ; )
| | - Yan Li
- Department of parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, University City Guian New District, 550025, China (; ; ; ; ; )
| | - Huiling Ma
- Department of parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, University City Guian New District, 550025, China (; ; ; ; ; )
| | - Jianwei Wu
- Department of parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, University City Guian New District, 550025, China (; ; ; ; ; )
| | - Bo Wang
- Department of Electrochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China ()
| | - Guo Guo
- Department of parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, University City Guian New District, 550025, China (; ; ; ; ; )
| |
Collapse
|
18
|
Liu C, Su H, Wan H, Qin Q, Wu X, Kong X, Lin N. Forsythoside A exerts antipyretic effect on yeast-induced pyrexia mice via inhibiting transient receptor potential vanilloid 1 function. Int J Biol Sci 2017; 13:65-75. [PMID: 28123347 PMCID: PMC5264262 DOI: 10.7150/ijbs.18045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/12/2016] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel gated by noxious heat, playing major roles in thermoregulation. Forsythoside A (FT-A) is the most abundant phenylethanoid glycosides in Fructus Forsythiae, which has been prescribed as a medicinal herb for treating fever in China for a long history. However, how FT-A affects pyrexia and what is the underlying molecular mechanism remain largely unknown. Here we found that FT-A exerted apparent antipyretic effect through decreasing the levels of prostaglandin E2 (PGE2) and interleukin 8 (IL-8) in a dose-dependent fashion on the yeast induced pyrexia mice. Interestingly, FT-A significantly downregulated TRPV1 expression in the hypothalamus and dorsal root ganglion (DRG) of the yeast induced pyrexia mice. Moreover, FT-A inhibited IL-8 and PGE2 secretions, and calcium influx in the HEK 293T-TRPV1 cells after stimulated with capsaicin, the specific TRPV1 agonist. Further investigation of the molecular mechanisms revealed that FT-A treatment rapidly inhibited phosphorylation of extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 in both yeast induced pyrexia mice and HEK 293T-TRPV1 cells. These results suggest that FT-A may serve as a potential antipyretic agent and the therapeutic action of Fructus Forsythiae on pyretic related disease is, in part, due to the FT-A activities.
Collapse
Affiliation(s)
- Cuiling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongchang Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongye Wan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingxia Qin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Dallas LJ, Bean TP, Turner A, Lyons BP, Jha AN. Exposure to tritiated water at an elevated temperature: Genotoxic and transcriptomic effects in marine mussels (M. galloprovincialis). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 164:325-336. [PMID: 27552656 DOI: 10.1016/j.jenvrad.2016.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Temperature is an abiotic factor of particular concern for assessing the potential impacts of radionuclides on marine species. This is particularly true for tritium, which is discharged as tritiated water (HTO) in the process of cooling nuclear institutions. Additionally, with sea surface temperatures forecast to rise 0.5-3.5 °C in the next 30-100 years, determining the interaction of elevated temperature with radiological exposure has never been more relevant. We assessed the tissue-specific accumulation, transcriptional expression of key genes, and genotoxicity of tritiated water to marine mussels at either 15 or 25 °C, over a 7 day time course with sampling after 1 h, 12 h, 3 d and 7d. The activity concentration used (15 MBq L-1) resulted in tritium accumulation that varied with both time and temperature, but consistently produced dose rates (calculated using the ERICA tool) of <20 Gy h-1, i.e. considerably below the recommended guidelines of the IAEA and EURATOM. Despite this, there was significant induction of DNA strand breaks (as measured by the comet assay), which also showed a temperature-dependent time shift. At 15 °C, DNA damage was only significantly elevated after 7 d, in contrast to 25 °C where a similar response was observed after only 3 d. The transcription profiles of two isoforms of hsp70, hsp90, mt20, p53 and rad51 indicated potential mechanisms behind this temperature-induced acceleration of genotoxicity, which may be the result of compromised defence. Specifically, genes involved in protein folding, DNA double strand break repair and cell cycle checkpoint control were upregulated after 3 d HTO exposure at 15 °C, but significantly downregulated when the same exposure occurred at 25 °C. This study is the first to investigate temperature effects on radiation-induced genotoxicity in an ecologically relevant marine invertebrate, Mytilus galloprovincialis. From an ecological perspective, our study suggests that mussels (or similar marine species) exposed to increased temperature and HTO may have a compromised ability to defend against genotoxic stress.
Collapse
Affiliation(s)
- Lorna J Dallas
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Tim P Bean
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK
| | - Andrew Turner
- School of Geography, Earth & Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Brett P Lyons
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
20
|
Ren Y, Pan H, Yang Y, Pan B, Bu W. Molecular cloning, characterization and functional analysis of a heat shock protein 70 gene in Cyclina sinensis. FISH & SHELLFISH IMMUNOLOGY 2016; 58:663-668. [PMID: 27725261 DOI: 10.1016/j.fsi.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Heat shock protein 70 (HSP70) is an important member of the heat shock protein superfamily and is involved in protecting organisms against various stressors. In the present study, we used RACE to clone a full-length Cyclina sinensis HSP70 cDNA termed CsHSP70. The full length of the CsHSP70 cDNA was 2308 bp, with a 5' untranslated region (UTR) of 42 bp, a 3' UTR of 268 bp, and an open reading frame (ORF) of 1998 bp encoding a polypeptide of 655 amino acids with an estimated molecular mass of 72.75 kDa and an estimated isoelectric point of 5.48. Quantitative real-time PCR was employed to analyze the tissue distribution and temporal expression of the CsHSP70 gene after bacterial challenge and cadmium (Cd) exposure. The CsHSP70 mRNA transcript was expressed ubiquitously in five examined tissues, with the highest expression in hemocytes (P < 0.05) and with the lowest expression in the hepatopancreas. Furthermore, the expression level of CsHSP70 in hemocytes at 3 h after Vibrio anguillarum challenge was extremely significantly up-regulated (P < 0.01). Moreover, the CsHSP70 transcript was up-regulated significantly following exposure to a safe Cd concentration (0.1 mg/L). Finally, after the CsHSP70 gene was silenced by RNA interference, the expression of the CsTLR13 and CsMyD88 genes were extremely significantly decreased (P < 0.01). The results indicated that CsHSP70 could play an important role in mediating the environmental stress and immune responses, and regulating TLR signaling pathway in C. sinensis.
Collapse
Affiliation(s)
- Yipeng Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China; Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Heting Pan
- Library of Tianjin Medical University, Tianjin, 300070, PR China
| | - Ying Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Baoping Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
21
|
Lavradas RT, Rocha RCC, Bordon ICAC, Saint'Pierre TD, Godoy JM, Hauser-Davis RA. Differential metallothionein, reduced glutathione and metal levels in Perna perna mussels in two environmentally impacted tropical bays in southeastern Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:75-84. [PMID: 26994306 DOI: 10.1016/j.ecoenv.2016.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Mussel farming is an important economic activity in Brazil, and these organisms are consumed by the majority of the population in most coastal zones in the country. However, despite the increasing pollution of aquatic ecosystems in Brazil, little is known about the biochemical activity in mussels in response to metal exposure. In this context, the aim of the present study was to investigate metal and metalloid exposure effects in Perna perna mussels, by determining metal levels, the induction of metallothionein (MT) synthesis, and oxidative stress, in the form of reduced glutathione (GSH) in 3 contaminated areas from the Guanabara Bay in comparison to a reference site, Ilha Grande Bay, both in summer and winter. Metal and metalloid concentrations were also compared to Brazilian and international guidelines, to verify potential health risks to human consumers. Mussels from all sampling sites were shown to be improper for human consumption due to metal contamination, including Ilha Grande Bay, which has previously been considered a reference site. Several statistically significant correlations and seasonal differences were observed between MT, GSH and metals and metalloids in both analyzed tissues. A Discriminant Canonical Analysis indicated that the digestive gland is a better bioindicator for environmental contamination by metals and metalloids in this species and offers further proof that MT variations observed are due to metal exposure and not oxidative stress, since GSH influence for both muscle tissue and the digestive glands was non-significant in this analysis. These results show that P. perna mussels are an adequate sentinel species for metal contamination with significant effects on oxidative stress and metal exposure biomarkers. To the best of our knowledge, this is the first study to report metals, metalloids, MT and GSH levels in the muscle tissue of this species.
Collapse
Affiliation(s)
- Raquel T Lavradas
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Chemistry Department, Rua Marquês de São Vicente, 225, Gávea, CEP 22453-900 Rio de Janeiro, RJ, Brazil
| | - Rafael C C Rocha
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Chemistry Department, Rua Marquês de São Vicente, 225, Gávea, CEP 22453-900 Rio de Janeiro, RJ, Brazil
| | - Isabella C A C Bordon
- São Paulo State University (UNESP), Campus do Litoral Paulista, Praça Infante Dom Henrique s/n°, Parque Bitaru, CEP 11330-900 São Vicente, SP, Brazil
| | - Tatiana D Saint'Pierre
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Chemistry Department, Rua Marquês de São Vicente, 225, Gávea, CEP 22453-900 Rio de Janeiro, RJ, Brazil
| | - José M Godoy
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Chemistry Department, Rua Marquês de São Vicente, 225, Gávea, CEP 22453-900 Rio de Janeiro, RJ, Brazil
| | - Rachel A Hauser-Davis
- Federal University of the State of Rio de Janeiro - UNIRIO, Neotropical Biodiversity Post-Graduate Program, Av. Pasteur, 458, Urca, CEP 22290-240 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
Epelboin Y, Quintric L, Guévélou E, Boudry P, Pichereau V, Corporeau C. The Kinome of Pacific Oyster Crassostrea gigas, Its Expression during Development and in Response to Environmental Factors. PLoS One 2016; 11:e0155435. [PMID: 27231950 PMCID: PMC4883820 DOI: 10.1371/journal.pone.0155435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
Oysters play an important role in estuarine and coastal marine habitats, where the majority of humans live. In these ecosystems, environmental degradation is substantial, and oysters must cope with highly dynamic and stressful environmental constraints during their lives in the intertidal zone. The availability of the genome sequence of the Pacific oyster Crassostrea gigas represents a unique opportunity for a comprehensive assessment of the signal transduction pathways that the species has developed to deal with this unique habitat. We performed an in silico analysis to identify, annotate and classify protein kinases in C. gigas, according to their kinase domain taxonomy classification, and compared with kinome already described in other animal species. The C. gigas kinome consists of 371 protein kinases, making it closely related to the sea urchin kinome, which has 353 protein kinases. The absence of gene redundancy in some groups of the C. gigas kinome may simplify functional studies of protein kinases. Through data mining of transcriptomes in C. gigas, we identified part of the kinome which may be central during development and may play a role in response to various environmental factors. Overall, this work contributes to a better understanding of key sensing pathways that may be central for adaptation to a highly dynamic marine environment.
Collapse
Affiliation(s)
- Yanouk Epelboin
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Laure Quintric
- Ifremer, Service Ressources Informatiques et Communications, Plouzané, France
| | - Eric Guévélou
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Pierre Boudry
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Vianney Pichereau
- UBO, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Charlotte Corporeau
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| |
Collapse
|
23
|
Hasan I, Gerdol M, Fujii Y, Rajia S, Koide Y, Yamamoto D, Kawsar SMA, Ozeki Y. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis). Mar Drugs 2016; 14:md14050092. [PMID: 27187419 PMCID: PMC4882566 DOI: 10.3390/md14050092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic “mytilectin family” in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5′ end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5′UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3′UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels.
Collapse
Affiliation(s)
- Imtiaj Hasan
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, Trieste 34127, Italy.
| | - Yuki Fujii
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Sultana Rajia
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
- Department of Natural Science, Varendra University, Rajshahi 6204, Bangladesh.
| | - Yasuhiro Koide
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Daiki Yamamoto
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Sarkar M A Kawsar
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
- Department of Chemistry, Faculty of Sciences, University of Chittagong, Chittagong 4331, Bangladesh.
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
24
|
Wang QL, Liu BO, Li XJ, Hu KP, Zhao K, Ye XM. Inhibition of mTOR promotes hyperthermia sensitivity in SMMC-7721 human hepatocellular carcinoma cell line. Exp Ther Med 2016; 11:961-968. [PMID: 26998020 DOI: 10.3892/etm.2016.2979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/02/2015] [Indexed: 11/05/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a critical mediator of the phosphoinositide 3-kinase/protein kinase B/mTOR signaling pathway, and mTOR activity is induced following heat shock. Thermotherapy is used to treat hepatocellular carcinoma (HCC). However, the role of mTOR in modulating thermosensitivity in HCC has yet to be elucidated. In the present study, the antisense plasmid pEGFP-C1-mTOR was transfected into SMMC-7721 cells, and the expression levels of mTOR were analyzed by reverse transcription-polymerase chain reaction and western blot analysis. The thermal responses of the transfected cells were also examined. The results revealed that SMMC-7721 cells were sensitive to heat treatment, and cell viability was significantly inhibited following hyperthermia treatment (P<0.01). The mRNA and protein expression levels of mTOR decreased post-transfection. Cell proliferation, colony-forming ability and motility were all significantly decreased following hyperthermia treatment in the transfected cells. Flow cytometry analysis demonstrated that apoptosis was significantly increased following treatment (P<0.01). The number of cells in S phase was increased, and the cell cycle was arrested in S phase. In conclusion, inhibition of mTOR increased the thermosensitivity of SMMC-7721 cells by increasing cellular apoptosis and inducing S phase arrest.
Collapse
Affiliation(s)
- Qing-Liang Wang
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510530, P.R. China
| | - B O Liu
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510530, P.R. China
| | - Xiao-Jie Li
- Department of Laboratory Medicine, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510530, P.R. China
| | - Kun-Peng Hu
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510530, P.R. China
| | - Kun Zhao
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510530, P.R. China
| | - Xiao-Ming Ye
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510530, P.R. China
| |
Collapse
|
25
|
Jaumot J, Navarro A, Faria M, Barata C, Tauler R, Piña B. qRT-PCR evaluation of the transcriptional response of zebra mussel to heavy metals. BMC Genomics 2015; 16:354. [PMID: 25943386 PMCID: PMC4422313 DOI: 10.1186/s12864-015-1567-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023] Open
Abstract
Background The transcriptional response of adult zebra mussels (Dreissena polymorpha) to heavy metals (mercury, copper, and cadmium) was analyzed by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to study the coordinated regulation of different metal-, oxidative stress- and xenobiotic defence-related genes in gills and digestive gland. Regulatory network analyses allowed the comparison of this response between different species and taxa. Results Chemometric analyses allowed identifying the effects of these metals clearly separating control and treated samples of both tissues. Interactions between the different genes, either in the same or between both tissues, were analysed to identify correlations and to propose stress-related genes’ regulatory networks. These networks were finally compared with existing data from human, mouse, zebrafish, Drosophila and the roundworm to evaluate their mechanistically-known response to metals (and to stressors in general) with the correlations observed in the still poorly-known, invasive zebra mussel. Conclusions Our analyses found a general conservation of regulation genes and of their interactions among the different considered species, and may serve as a guide to extrapolate regulatory data from model species to lesser-known environmentally (or medically) relevant species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1567-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain.
| | - Anna Navarro
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain.
| | - Melissa Faria
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain.
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain.
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain.
| | - Benjamín Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain.
| |
Collapse
|
26
|
Suppressed expression of mitogen-activated protein kinases in hyperthermia induced defective neural tube. Neurosci Lett 2015; 594:6-11. [PMID: 25818329 DOI: 10.1016/j.neulet.2015.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
Abstract
Neural tube defects (NTDs) are common congenital malformations. Mitogen-activated protein kinases (MAPKs) pathway is involved in many physiological processes. HMGB1 has been showed closely associated with neurulation and NTDs induced by hyperthermia and could activate MAPKs pathway. Since hyperthermia caused increased activation of MAPKs in many systems, the present study aims to investigate whether HMGB1 contributes to hyperthermia induced NTDs through MAPKs pathway. The mRNA levels of MAPKs and HMGB1 between embryonic day 8.5 and 10 (E8.5-10) in hyperthermia induced defective neural tube were detected by real-time quantitative polymerase chain reaction (qPCR). By immunofluorescence and western blotting, the expressions of HMGB1 and phosphorylated MAPKs (ERK1/2, JNK and p38) in neural tubes after hyperthermia were studied. The mRNA levels of MAPKs and HMGB1, as well as the expressions of HMGB1 along with phosphorylated JNK, p38 and ERK, were downregulated in NTDs groups induced by hyperthermia compared with control. The findings suggested that HMGB1 may contribute to hyperthermia induced NTDs formation through decreased cell proliferation due to inhibited phosphorylated ERK1/2 MAPK.
Collapse
|
27
|
Jarque S, Prats E, Olivares A, Casado M, Ramón M, Piña B. Seasonal variations of gene expression biomarkers in Mytilus galloprovincialis cultured populations: temperature, oxidative stress and reproductive cycle as major modulators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 499:363-372. [PMID: 25203829 DOI: 10.1016/j.scitotenv.2014.08.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
The blue mussel Mytilus galloprovincialis has been used as monitoring organism in many biomonitoring programs because of its broad distribution in South European sea waters and its physiological characteristics. Different pollution-stress biomarkers, including gene expression biomarkers, have been developed to determine its physiological response to the presence of different pollutants. However, the existing information about basal expression profiles is very limited, as very few biomarker-based studies were designed to reflect the natural seasonal variations. In the present study, we analyzed the natural expression patterns of several genes commonly used in biomonitoring, namely ferritin, metallothionein, cytochrome P450, glutathione S-transferase, heat shock protein and the kinase responsive to stress KRS, during an annual life cycle. Analysis of mantle-gonad samples of cultured populations of M. galloprovincialis from the Delta del Ebro (North East Spain) showed natural seasonal variability of these biomarkers, pointing to temperature and oxidative stress as major abiotic modulators. In turn, the reproductive cycle, a process that can be tracked by VCLM7 expression, and known to be influenced by temperature, seems to be the major biotic factor involved in seasonality. Our results illustrate the influence of environmental factors in the physiology of mussels through their annual cycle, a crucial information for the correct interpretation of responses under stress conditions.
Collapse
Affiliation(s)
- Sergio Jarque
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain; Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Eva Prats
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Alba Olivares
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Montserrat Ramón
- IEO-Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015 Palma, Spain; Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| |
Collapse
|
28
|
Tang T, Wu C, Li J, Ren G, Huang D, Liu F. Stress-induced HSP70 from Musca domestica plays a functionally significant role in the immune system. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1226-1234. [PMID: 22750549 DOI: 10.1016/j.jinsphys.2012.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
As important molecular chaperones, members of the 70kDa heat shock protein (HSP70) family play essential roles in stress tolerance and innate immunity in organisms. The full-length complementary DNA (cDNA) of a novel inducible HSP70, named as MdHSP70, was isolated from Musca domestica. The cDNA clone consisted of 2411 bp with a 1956 bp open reading frame which encodes 651 amino acids. Using real-time quantitative polymerase chain reaction (qPCR), we investigated the transcriptional profile of the gene under heat shock, cadmium stress and in response to bacteria. Increased expression of MdHSP70 was observed in response to both heat shock and Cd stress. The expression of MdHSP70 was significantly induced by Escherichia coli or Staphylococcus aureus stimulation. Larvae were fed bacteria expressing dsRNA targeting the MdHSP70 gene. Our results showed high mortality in larvae treated with dsRNA of MdHSP70 at heat shock, Cd stress and bacterial invasion, suggesting that MdHSP70 is potentially involved in the stress and immune responses of the house fly and perhaps contributes to protection against cellular injury.
Collapse
Affiliation(s)
- Ting Tang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | | | | | | | | | | |
Collapse
|
29
|
Feidantsis K, Anestis A, Vasara E, Kyriakopoulou-Sklavounou P, Michaelidis B. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus). Comp Biochem Physiol A Mol Integr Physiol 2012; 162:331-9. [DOI: 10.1016/j.cbpa.2012.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
30
|
Guinot D, Ureña R, Pastor A, Varó I, del Ramo J, Torreblanca A. Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata. CHEMOSPHERE 2012; 87:1215-1221. [PMID: 22356858 DOI: 10.1016/j.chemosphere.2012.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/27/2011] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
Previous studies have demonstrated that the commercial feed of aquacultured fish contains trace amounts of toxic and essential metals which can accumulate in tissues and finally be ingested by consumers. Recently rising temperatures, associated to the global warming phenomenon, have been reported as a factor to be taken into consideration in ecotoxicology, since temperature-dependent alterations in bioavailability, toxicokinetics and biotransformation rates can be expected. Sparus aurata were kept at 22°C, 27°C and 30°C for 3 months in order to determine the temperature effect on metallothionein induction and metal bioaccumulation from a non-experimentally contaminated commercial feed. A significant temperature-dependent accumulation of cadmium (Cd), copper (Cu), mercury (Hg), zinc (Zn), lead (Pb) and iron (Fe) was found in liver, together with that of manganese (Mn), Fe and Zn in muscle. Hg presented the highest bioaccumulation factor, and essential metal homeostasis was disturbed in both tissues at warm temperatures. An enhancement of hepatic metallothionein induction was found in fish exposed to the highest temperature.
Collapse
Affiliation(s)
- Diana Guinot
- Department of Functional Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
31
|
FEIDANTSIS KONSTANTINOS, PÖRTNER HANSO, MARKOU THOMAIS, LAZOU ANTIGONE, MICHAELIDIS BASILE. Involvement of p38 MAPK in the Induction of Hsp70 During Acute Thermal Stress in Red Blood Cells of the Gilthead Sea Bream, Sparus aurata. ACTA ACUST UNITED AC 2012; 317:303-10. [DOI: 10.1002/jez.1725] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/13/2012] [Accepted: 02/16/2012] [Indexed: 11/10/2022]
Affiliation(s)
- KONSTANTINOS FEIDANTSIS
- Laboratory of Animal Physiology; Department of Zoology; Faculty of Sciences; School of Biology; University of Thessaloniki; Thessaloniki; Greece
| | - HANS O. PÖRTNER
- Alfred-Wegener-Institut für Polar-und Meeresforschung; Physiologie mariner Tiere; Bremerhaven; Germany
| | - THOMAIS MARKOU
- Laboratory of Animal Physiology; Department of Zoology; Faculty of Sciences; School of Biology; University of Thessaloniki; Thessaloniki; Greece
| | - ANTIGONE LAZOU
- Laboratory of Animal Physiology; Department of Zoology; Faculty of Sciences; School of Biology; University of Thessaloniki; Thessaloniki; Greece
| | - BASILE MICHAELIDIS
- Laboratory of Animal Physiology; Department of Zoology; Faculty of Sciences; School of Biology; University of Thessaloniki; Thessaloniki; Greece
| |
Collapse
|
32
|
Yao CL, Somero GN. The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and M. californianus): DNA damage, membrane integrity, apoptosis and signalling pathways. J Exp Biol 2012; 215:4267-77. [DOI: 10.1242/jeb.073577] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Summary
We investigated effects of acute heat- and cold stress on cell viability, lysosome membrane stability, double- and single-stranded DNA breakage, and signalling mechanisms involved in cellular homeostasis and apoptosis in hemocytes of native and invasive mussels, Mytilus californianus and M. galloprovincialis, respectively. Both heat stress (28ºC, 32ºC) and cold stress (2ºC, 6ºC) led to significant double- and single-stranded breaks in DNA. The types and extents of DNA damage were temperature- and time-dependent, as was caspase-3 activation, an indicator of apoptosis, which may occur in response to DNA damage. Hemocyte viability and lysosomal membrane stability decreased significantly under heat stress. Western blot analyses of hemocyte extracts with antibodies for proteins associated with cell signalling and stress responses [including members of the phospho-specific Mitogen Activated Protein Kinase (MAPK) family (c-JUN NH(2)-terminal kinase (JNK) and p38-MAPK) and apoptosis executor caspase-3] revealed that heat- and cold stress induced a time-dependent activation of JNK, p38-MAPK and caspase-3 and that these signalling and stress responses differed between species. Thermal limits for activation of cell signalling processes linked to repair of stress-induced damage may help determine cellular thermal tolerance limits. Our results show similarities in responses to cold- and heat stress and suggest causal linkages between levels of DNA damage at both extremes of temperature and downstream regulatory responses, including induction of apoptosis. Compared to M. californianus, M. galloprovincialis might have a wider temperature tolerance due to a lower amount of double-stranded DNA damage, faster signalling activation and transduction, and stronger repair ability against temperature stress.
Collapse
|
33
|
Identification of two metallothionein genes and their roles in stress responses of Musca domestica toward hyperthermy and cadmium tolerance. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:81-8. [DOI: 10.1016/j.cbpb.2011.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/26/2011] [Accepted: 06/27/2011] [Indexed: 11/22/2022]
|
34
|
Kolaiti RM, Baier A, Szyszka R, Kouyanou-Koutsoukou S. Isolation of a CK2α subunit and the holoenzyme from the mussel Mytilus galloprovincialis and construction of the CK2α and CK2β cDNAs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:505-516. [PMID: 20922551 DOI: 10.1007/s10126-010-9321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/07/2010] [Indexed: 05/29/2023]
Abstract
Protein kinase CK2 is a ubiquitous, highly pleiotropic, and constitutively active phosphotransferase that phosphorylates mainly serine and threonine residues. CK2 has been studied and characterized in many organisms, from yeast to mammals. The holoenzyme is generally composed of two catalytic (α and/or α') and two regulatory (β) subunits, forming a differently assembled tetramer. The free and catalytically active α/α' subunits can be present in cells under some circumstances. We present here the isolation of a putative catalytic CK2α subunit and holoenzyme from gills of the mussel Mytilus galloprovincialis capable of phosphorylating the purified recombinant ribosomal protein rMgP1. For further analysis of M. galloprovincialis protein kinase CK2, the cDNA molecules of CK2α and CK2β subunits were constructed and cloned into expression vectors, and the recombinant proteins were purified after expression in Escherichia coli. The recombinant MgCK2β subunit and MgP1 were phosphorylated by the purified recombinant MgCK2α subunit. The mussel enzyme presented features typical for CK2: affinity for GTP, inhibition by both heparin and ATP competitive inhibitors (TBBt, TBBz), and sensitivity towards NaCl. Predicted amino acid sequence comparison showed that the M. galloprovincialis MgCK2α and MgCK2β subunits have similar features to their mammalian orthologs.
Collapse
Affiliation(s)
- Regina-Maria Kolaiti
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | | | | | | |
Collapse
|
35
|
Venier P, Varotto L, Rosani U, Millino C, Celegato B, Bernante F, Lanfranchi G, Novoa B, Roch P, Figueras A, Pallavicini A. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics 2011; 12:69. [PMID: 21269501 PMCID: PMC3039611 DOI: 10.1186/1471-2164-12-69] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/26/2011] [Indexed: 11/15/2022] Open
Abstract
Background Sessile bivalves of the genus Mytilus are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of M. galloprovincialis, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes. Results We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in M. galloprovincialis. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with Vibrio splendidus at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the Vibrio-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways. Conclusions The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on Vibrio-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the Mytilus species to an evolving microbial world.
Collapse
Affiliation(s)
- Paola Venier
- Department of Biology, University of Padova, Via U, Bassi, 58/B, 35121 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aceto S, Formisano G, Carella F, De Vico G, Gaudio L. The metallothionein genes of Mytilus galloprovincialis: genomic organization, tissue expression and evolution. Mar Genomics 2011; 4:61-8. [PMID: 21429466 DOI: 10.1016/j.margen.2011.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 11/29/2022]
Abstract
Recently, increasing interest has been directed to the study of metallothioneins (MTs), which are small proteins that are able to bind metal ions. The induction of MT synthesis after exposure to metal or other environmental contaminants in a large number of aquatic invertebrates makes these proteins good biomarkers in water monitoring programs. Within bivalves, the species Mytilus galloprovincialis and Mytilus edulis represent model organisms for these types of studies, as well as for molecular studies regarding the expression and characterization of MT encoding genes. In the present paper, we focused on the genomic characterization, evolutionary, and tissue-expression analyses of the MT-10, MT-10 Intronless, and MT-20 genes in M. galloprovincialis. The comparison of the genomic sequences showed the presence of long nucleotide stretches within the introns of the MT genes that are conserved between M. galloprovincialis and M. edulis. These non-coding conserved sequences may contain regulatory motifs. Real-Time RT-PCR experiments revealed that, at the basal conditions, the MT-10 and MT-10 Intronless genes are expressed at levels considerably higher than the MT-20 gene, mainly in the digestive gland and gill tissue. The strong induction of the MT-20 gene expression detected in a field-collected sample is associated with the up-regulation of both the MT-10 and MT-10 Intronless genes. Evolutionary analysis revealed signals of localized positive selection that, together with the tissue-expression data, support a possible functional diversification between the MTs encoded by the MT-10 and MT-10 Intronless genes.
Collapse
Affiliation(s)
- Serena Aceto
- Department of Biological Sciences, University of Naples Federico II, 80134 Napoli, Italy.
| | | | | | | | | |
Collapse
|