1
|
Bucking C, Bury NR, Sundh H, Wood CM. Making in vitro conditions more reflective of in vivo conditions for research on the teleost gastrointestinal tract. J Exp Biol 2024; 227:jeb246440. [PMID: 39392112 PMCID: PMC11529878 DOI: 10.1242/jeb.246440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
To date, the majority of in vitro or ex vivo fish gastrointestinal research has been conducted under unrealistic conditions. In a living fish, ionic conditions, as well as levels of ammonia, pH, HCO3- and PCO2 differ considerably between the different regions of the gastrointestinal tract. These factors also differ from those of the saline often used in gut research. Furthermore, the oxygen gradient from the serosa to the gut lumen is rarely considered: in contrast to the serosa, the lumen is a hypoxic/anoxic environment. In addition, the gut microbiome plays a significant role in gut physiology, increasing the complexity of the in vivo gut, but replicating the microbial community for in vitro studies is exceptionally difficult. However, there are ways in which we can begin to overcome these challenges. Firstly, the luminal chemistry and PO2 in each gut compartment must be carefully considered. Secondly, although microbiological culture techniques are improving, we must learn how to maintain the microbiome diversity seen in vivo. Finally, for ex vivo studies, developing mucosal (luminal) solutions that more closely mimic the in vivo conditions will better replicate physiological processes. Within the field of mammalian gut physiology, great advances in 'gut-on-chip' devices are providing the tools to better replicate in vivo conditions; adopting and adapting this technology may assist in fish gut research initiatives. This Commentary aims to make fish gut physiologists aware of the various issues in replicating the in vivo conditions and identifies solutions as well as those areas that require further improvement.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, Farquharson Life Science Building, York University, Toronto, ON, M3J 1P3, Canada
| | - Nic R. Bury
- School of Ocean and Earth Sciences, University of Southampton, National Oceanographic Centre, Waterfront Campus, Southampton, Hampshire, SO14 3ZH, UK
| | - Henrik Sundh
- Department of Biological & Environmental Sciences, University of Gothenburg, Medicinaregatan 7 B, 41390 Göteborg, Sweden
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
2
|
Cao Q, Blondeau-Bidet E, Lorin-Nebel C. Intestinal osmoregulatory mechanisms differ in Mediterranean and Atlantic European sea bass: A focus on hypersalinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150208. [PMID: 34798741 DOI: 10.1016/j.scitotenv.2021.150208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
European sea bass (Dicentrarchus labrax) migrate towards habitats where salinity can reach levels over 60‰, notably in Mediterranean lagoons. D. labrax are genetically subdivided in Atlantic and Mediterranean lineages and have evolved in slightly different salinities. We compared Atlantic and West-Mediterranean populations regarding their capacity to tolerate hypersalinity with a focus on the involvement of the intestine in solute-driven water reabsorption. Fish were analyzed following a two-week transfer from seawater (SW, 36‰) to either SW or hypersaline water (HW, 55‰). Differences among lineages were observed in posterior intestines of fish maintained in SW regarding NKA activities and mRNA expressions of nkaα1a, aqp8b, aqp1a and aqp1b with systematic higher levels in Mediterranean sea bass. High salinity transfer triggered similar responses in both lineages but at different magnitudes which may indicate slight different physiological strategies between lineages. High salinity transfer did not significantly affect the phenotypic traits measured in the anterior intestine. In the posterior intestine however, the size of enterocytes and NKA activity were higher in HW compared to SW. In this tissue, nka-α1a, nkcc2, aqp8ab and aqp8aa mRNA levels were higher in HW compared to SW as well as relative protein expression of AQP8ab. For aqp1a, 1b, 8aa and 8b, an opposite trend was observed. The sub-apical localization of AQP8ab in enterocytes suggests its role in transepithelial water reabsorption. Strong apical NKCC2/NCC staining indicates an increased Na+ and Cl- reuptake by enterocytes which could contribute to solute-coupled water reuptake in cells where AQP8ab is expressed.
Collapse
Affiliation(s)
- Quanquan Cao
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), 34095 Montpellier, France
| | - Eva Blondeau-Bidet
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), 34095 Montpellier, France
| | | |
Collapse
|
3
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
4
|
Brzezinski K, MacMillan HA. Chilling induces unidirectional solute leak through the locust gut epithelia. J Exp Biol 2020; 223:jeb215475. [PMID: 32532867 DOI: 10.1242/jeb.215475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/03/2020] [Indexed: 08/26/2023]
Abstract
Chill-susceptible insects, like the migratory locust, often die when exposed to low temperatures from an accumulation of tissue damage that is unrelated to freezing (chilling injury). Chilling injury is often associated with a loss of ion balance across the gut epithelia. It has recently been suggested that this imbalance is at least partly caused by a cold-induced disruption of epithelial barrier function. Here, we aimed to test this hypothesis in the migratory locust (Locustamigratoria). First, chill tolerance was quantified by exposing locusts to -2°C and recording chill coma recovery time and survival 24 h post-cold exposure. Longer exposure times significantly increased recovery time and caused injury and death. Ion-selective microelectrodes were also used to test for a loss of ion balance in the cold. We found a significant increase of haemolymph K+ and decrease of haemolymph Na+ concentration over time. Next, barrier failure along the gut was tested by monitoring the movement of an epithelial barrier marker (FITC-dextran) across the gut epithelia during exposure to -2°C. We found a significant increase in haemolymph FITC-dextran concentration over time in the cold when assayed in the mucosal to serosal direction. However, when tested in the serosal to mucosal direction, we saw minimal marker movement across the gut epithelia. This suggests that while cold-induced barrier disruption is present, it is apparently unidirectional. It is important to note that these data reveal only the phenomenon itself. The location of this leak as well as the underlying mechanisms remain unclear and require further investigation.
Collapse
Affiliation(s)
- Kaylen Brzezinski
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
5
|
Ruhr IM, Wood CM, Schauer KL, Wang Y, Mager EM, Stanton B, Grosell M. Is aquaporin-3 involved in water-permeability changes in the killifish during hypoxia and normoxic recovery, in freshwater or seawater? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:511-525. [PMID: 32548921 DOI: 10.1002/jez.2393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023]
Abstract
Aquaporins are the predominant water-transporting proteins in vertebrates, but only a handful of studies have investigated aquaporin function in fish, particularly in mediating water permeability during salinity challenges. Even less is known about aquaporin function in hypoxia (low oxygen), which can profoundly affect gill function. Fish deprived of oxygen typically enlarge gill surface area and shrink the water-to-blood diffusion distance, to facilitate oxygen uptake into the bloodstream. However, these alterations to gill morphology can result in unfavorable water and ion fluxes. Thus, there exists an osmorespiratory compromise, whereby fish must try to balance high branchial gas exchange with low ion and water permeability. Furthermore, the gills of seawater and freshwater teleosts have substantially different functions with respect to osmotic and ion fluxes; consequently, hypoxia can have very different effects according to the salinity of the environment. The purpose of this study was to determine what role aquaporins play in water permeability in the hypoxia-tolerant euryhaline common killifish (Fundulus heteroclitus), in two important osmoregulatory organs-the gills and intestine. Using immunofluorescence, we localized aquaporin-3 (AQP3) protein to the basolateral and apical membranes of ionocytes and enterocytes, respectively. Although hypoxia increased branchial AQP3 messenger-RNA expression in seawater and freshwater, protein abundance did not correlate. Indeed, hypoxia did not alter AQP3 protein abundance in seawater and reduced it in the cell membranes of freshwater gills. Together, these observations suggest killifish AQP3 contributes to reduced diffusive water flux during hypoxia and normoxic recovery in freshwater and facilitates intestinal permeability in seawater and freshwater.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Chris M Wood
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Kevin L Schauer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Yadong Wang
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Edward M Mager
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Bruce Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| |
Collapse
|
6
|
Goodrich HR, Bayley M, Birgersson L, Davison WG, Johannsson OE, Kim AB, Le My P, Tinh TH, Thanh PN, Thanh HDT, Wood CM. Understanding the gastrointestinal physiology and responses to feeding in air-breathing Anabantiform fishes. JOURNAL OF FISH BIOLOGY 2020; 96:986-1003. [PMID: 32060920 DOI: 10.1111/jfb.14288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The Mekong Delta is host to a large number of freshwater species, including a unique group of facultative air-breathing Anabantiforms. Of these, the striped snakehead (Channa striata), the climbing perch (Anabas testudineus), the giant gourami (Osphronemus goramy) and the snakeskin gourami (Trichogaster pectoralis) are major contributors to aquaculture production in Vietnam. The gastrointestinal responses to feeding in these four species are detailed here. Relative intestinal length was lowest in the snakehead, indicating carnivory, and 5.5-fold greater in the snakeskin, indicating herbivory; climbing perch and giant gourami were intermediate, indicating omnivory. N-waste excretion (ammonia-N + urea-N) was greatest in the carnivorous snakehead and least in the herbivorous snakeskin, whereas the opposite trend was observed for net K+ excretion. Similarly, the more carnivorous species had a greater stomach acidity than the more herbivorous species. Measurements of acid-base flux to water indicated that the greatest postprandial alkaline tide occurred in the snakehead and a potential acidic tide in the snakeskin. Additional findings of interest were high levels of both PCO2 (up to 40 mmHg) and HCO3 - (up to 33 mM) in the intestinal chyme of all four of these air-breathing species. Using in vitro gut sac preparations of the climbing perch, it was shown that the intestinal net absorption of fluid, Na+ and HCO3 - was upregulated by feeding but not net Cl- uptake, glucose uptake or K+ secretion. Upregulated net absorption of HCO3 - suggests that the high chyme (HCO3 - ) does not result from secretion by the intestinal epithelium. The possibility of ventilatory control of PCO2 to regulate postprandial acid-base balance in these air-breathing fish is discussed.
Collapse
Affiliation(s)
- Harriet R Goodrich
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
- College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, UK
| | - Mark Bayley
- Department of Bioscience, Zoophysiology Aarhus University, Aarhus, Denmark
| | - Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - William G Davison
- College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, UK
| | - Ora E Johannsson
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Anne B Kim
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Phuong Le My
- Department of Agriculture, Bac Lieu University, Bac Lieu, Vietnam
| | - Tran H Tinh
- Aquaculture and Fisheries, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Phuong N Thanh
- College of Aquaculture and Fisheries, Can Tho University, Cần Thơ, Vietnam
| | - Huong Do Thi Thanh
- College of Aquaculture and Fisheries, Can Tho University, Cần Thơ, Vietnam
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: roles of NKCC, K + channels, and Na +, K + ATPase. J Comp Physiol B 2019; 189:549-566. [PMID: 31486919 DOI: 10.1007/s00360-019-01231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/15/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
We examined mechanisms of ammonia handling in the anterior, mid, and posterior intestine of unfed and fed freshwater rainbow trout (Oncorhynchus mykiss), with a focus on the Na+:K+:2Cl- co-transporter (NKCC), Na+:K +-ATPase (NKA), and K+ channels. NKCC was localized by immunohistochemistry to the mucosal (apical) surface of enterocytes, and NKCC mRNA was upregulated after feeding in the anterior and posterior segments. NH4+ was equally potent to K+ in supporting NKA activity in all intestinal sections. In vitro gut sac preparations were employed to examine mucosal ammonia flux rates (Jmamm, disappearance from the mucosal saline), serosal ammonia flux rates (Jsamm, appearance in the serosal saline), and total tissue ammonia production rates (Jtamm = Jsamm - Jmamm). Bumetanide (10-4 mol L-1), a blocker of NKCC, inhibited Jsamm in most preparations, but this was largely due to reduction of Jtamm; Jmamm was significantly inhibited only in the anterior intestine of fed animals. Ouabain (10-4 mol L-1), a blocker of NKA, generally reduced both Jmamm and Jsamm without effects on Jtamm in most preparations, though the anterior intestine was resistant after feeding. Barium (10-2 mol L-1), a blocker of K+ channels, inhibited Jmamm in most preparations, and Jsamm in some, without effects on Jtamm. These pharmacological results, together with responses to manipulations of serosal and mucosal Na+ and K+ concentrations, suggest that NKCC is not as important in ammonia absorption as previously believed. NH4+ appears to be taken up through barium-sensitive K+ channels on the mucosal surface. Mucosal NH4+ uptake via both NKCC and K+ channels is energized by basolateral NKA, which plays an additional role in scavenging NH4+ on the serosal surface to possibly minimize blood toxicity or enhance ion uptake and amino acid synthesis following feeding. Together with recent findings from other studies, we have provided an updated model to describe the current understanding of intestinal ammonia transport in teleost fish.
Collapse
|
8
|
Gregório SF, Ruiz-Jarabo I, Carvalho EM, Fuentes J. Increased intestinal carbonate precipitate abundance in the sea bream (Sparus aurata L.) in response to ocean acidification. PLoS One 2019; 14:e0218473. [PMID: 31226164 PMCID: PMC6588277 DOI: 10.1371/journal.pone.0218473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Marine fish contribute to the carbon cycle by producing mineralized intestinal precipitates generated as by-products of their osmoregulation. Here we aimed at characterizing the control of epithelial bicarbonate secretion and intestinal precipitate presence in the gilthead sea bream in response to predicted near future increases of environmental CO2. Our results demonstrate that hypercapnia (950 and 1800 μatm CO2) elicits higher intestine epithelial HCO3- secretion ex vivo and a subsequent parallel increase of intestinal precipitate presence in vivo when compared to present values (440 μatm CO2). Intestinal gene expression analysis in response to environmental hypercapnia revealed the up-regulation of transporters involved in the intestinal bicarbonate secretion cascade such as the basolateral sodium bicarbonate co-transporter slc4a4, and the apical anion transporters slc26a3 and slc26a6 of sea bream. In addition, other genes involved in intestinal ion uptake linked to water absorption such as the apical nkcc2 and aquaporin 1b expression, indicating that hypercapnia influences different levels of intestinal physiology. Taken together the current results are consistent with an intestinal physiological response leading to higher bicarbonate secretion in the intestine of the sea bream paralleled by increased luminal carbonate precipitate abundance and the main related transporters in response to ocean acidification.
Collapse
Affiliation(s)
- Sílvia F. Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ignacio Ruiz-Jarabo
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Edison M. Carvalho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| |
Collapse
|
9
|
Heffell Q, Turko AJ, Wright PA. Plasticity of skin water permeability and skin thickness in the amphibious mangrove rivulus Kryptolebias marmoratus. J Comp Physiol B 2017; 188:305-314. [PMID: 28940028 DOI: 10.1007/s00360-017-1123-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 01/29/2023]
Abstract
The skin of amphibious fishes is a multipurpose organ, important for gas and ion exchange and nitrogen excretion when fish are out of water (emersed). We tested the hypothesis that skin permeability is altered to maintain water balance through changes in water permeability and skin thickness during salinity acclimation and/or when fish emerse, using the euryhaline, amphibious fish Kryptolebias marmoratus as a model. We first recorded the behaviour of fish out of water to determine which part of the cutaneous surface was in contact with the substrate. Fish spent about 70% of their time on their ventral surface when out of water. Osmotic permeability of the skin was assessed in fish acclimated to 0.3 or 45‰ using 3H2O fluxes in an in vitro micro-Ussing chamber setup. In freshwater-acclimated fish, 3H2O influx across the skin was significantly higher compared to hypersaline-acclimated fish, with no significant changes in efflux. Prolonged emersion (7 days) resulted in an increase in skin 3H2O influx, but not efflux in fish acclimated to a moist 45‰ substrate. In a separate experiment, dorsal epidermal skin thickness increased while the ventral dermis thickness decreased in fish emersed for over a week. However, there was no link between regional skin thickness and water flux in our experiments. Taken together, these findings suggest that K. marmoratus alter skin permeability to maximize water uptake while emersed in hypersaline conditions, adjustments that probably help them survive months of emersion during the dry season when drinking to replace water loss is not possible.
Collapse
Affiliation(s)
- Quentin Heffell
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
10
|
Ruiz-Jarabo I, Gregório SF, Gaetano P, Trischitta F, Fuentes J. High rates of intestinal bicarbonate secretion in seawater tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2017; 207:57-64. [PMID: 28238831 DOI: 10.1016/j.cbpa.2017.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023]
Abstract
Osmoregulation in fish is a complex process that requires the orchestrated cooperation of many tissues. In fish facing hyperosmotic environments, the intestinal absorption of some monovalent ions and the secretion of bicarbonate are key processes to favor water absorption. In the present study, we showed that bicarbonate levels in the intestinal fluid are several fold higher in seawater than in freshwater acclimated tilapia (Oreochromis mossambicus). In addition, we analyzed gene expression of the main molecular mechanisms involved in HCO3- movements i.e. slc26a6, slc26a3, slc4a4 and v-type H-ATPase sub C in the intestine of tilapia acclimated to both seawater and freshwater. Our results show an anterior/posterior functional regionalization of the intestine in tilapia in terms of expression patterns, which is affected by environmental salinity mostly in the anterior and mid intestine. Analysis of bicarbonate secretion using pH-Stat in tissues mounted in Ussing chambers reveals high rates of bicarbonate secretion in tilapia acclimated to seawater from anterior intestine to rectum ranging between ~900 and ~1700nmolHCO3-cm-2h-1. However, a relationship between the expression of slc26a6, slc26a3, slc4a4 and the rate of bicarbonate secretion seems to be compromised in the rectum. In this region, the low expression of the bicarbonate transporters could not explain the high bicarbonate secretion rates here described. However, we postulate that the elevated v-type H-ATPase mRNA expression in the rectum could be involved in this process.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - S F Gregório
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P Gaetano
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - F Trischitta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - J Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
11
|
Ruiz-Jarabo I, Barany A, Jerez-Cepa I, Mancera JM, Fuentes J. Intestinal response to salinity challenge in the Senegalese sole (Solea senegalensis). Comp Biochem Physiol A Mol Integr Physiol 2016; 204:57-64. [PMID: 27865855 DOI: 10.1016/j.cbpa.2016.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/08/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Fish are continuously forced to actively absorb or expel water and ions through epithelia. Most studies have focused on the gill due to its role in Na+ and Cl- trafficking. However, comparatively few studies have focused on the changing function of the intestine in response to external salinity. Therefore, the present study investigated the main intestinal changes of long-term acclimation of the Senegalese sole (Solea senegalensis) to 5, 15, 38 and 55ppt. Through the measurement of short-circuit current (Isc) in Ussing chambers and biochemical approaches, we described a clear anterior/posterior functional regionalization of the intestine in response to salinity. The use of specific inhibitors in Ussing chamber experiments, revealed that the bumetanide-sensitive Na+/K+/Cl- co-transporters are the main effectors of Cl- uptake in both anterior intestine and rectum. Additionally, the use of the anion exchanger specific inhibitor, DIDS, showed a salinity/region dependency of anion exchanger function. Moreover, we also described ouabain-sensitive Na+/K+-ATPase (NKA) and Bafilomycin A1-sensitive H+-ATPase activities (HA), which displayed changes related to salinity and intestinal region. However, the most striking result of the present study is the description of an omeprazole-sensitive H+/K+-ATPase (HKA) in the rectum of Senegalese sole. Its activity was consistently measurable and increased at lower salinities, reaching rates even higher than those of the NKA. Together our results provide new insights into the changing role of the intestine in response to external salinity in teleost fish. The rectal activity of HKA offers an alternative/cooperative mechanism with the HA in the final processing of intestinal water absorption by apical titration of secreted bicarbonate.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - A Barany
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - I Jerez-Cepa
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - J Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
12
|
Whittamore JM, Genz J, Grosell M, Wilson RW. Measuring intestinal fluid transport in vitro: Gravimetric method versus non-absorbable marker. Comp Biochem Physiol A Mol Integr Physiol 2016; 194:27-36. [DOI: 10.1016/j.cbpa.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
13
|
Ruhr IM, Takei Y, Grosell M. The role of the rectum in osmoregulation and the potential effect of renoguanylin on SLC26a6 transport activity in the Gulf toadfish (Opsanus beta). Am J Physiol Regul Integr Comp Physiol 2016; 311:R179-91. [PMID: 27030664 DOI: 10.1152/ajpregu.00033.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023]
Abstract
Teleosts living in seawater continually absorb water across the intestine to compensate for branchial water loss to the environment. The present study reveals that the Gulf toadfish (Opsanus beta) rectum plays a comparable role to the posterior intestine in ion and water absorption. However, the posterior intestine appears to rely more on SLC26a6 (a HCO3 (-)/Cl(-) antiporter) and the rectum appears to rely on NKCC2 (SLC12a1) for the purposes of solute-coupled water absorption. The present study also demonstrates that the rectum responds to renoguanylin (RGN), a member of the guanylin family of peptides that alters the normal osmoregulatory processes of the distal intestine, by inhibited water absorption. RGN decreases rectal water absorption more greatly than in the posterior intestine and leads to net Na(+) and Cl(-) secretion, and a reversal of the absorptive short-circuit current (ISC). It is hypothesized that maintaining a larger fluid volume within the distal segments of intestinal tract facilitates the removal of CaCO3 precipitates and other solids from the intestine. Indeed, the expression of the components of the Cl(-)-secretory response, apical CFTR, and basolateral NKCC1 (SLC12a2), are upregulated in the rectum of the Gulf toadfish after 96 h in 60 ppt, an exposure that increases CaCO3 precipitate formation relative to 35 ppt. Moreover, the downstream intracellular effects of RGN appear to directly inhibit ion absorption by NKCC2 and anion exchange by SLC26a6. Overall, the present findings elucidate key electrophysiological differences between the posterior intestine and rectum of Gulf toadfish and the potent regulatory role renoguanylin plays in osmoregulation.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida; and
| | - Yoshio Takei
- Department of Marine Bioscience, The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Martin Grosell
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida; and
| |
Collapse
|
14
|
Al-Reasi HA, Smith DS, Wood CM. The influence of dissolved organic matter (DOM) on sodium regulation and nitrogenous waste excretion in the zebrafish (Danio rerio). J Exp Biol 2016; 219:2289-99. [DOI: 10.1242/jeb.139444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Dissolved organic matter (DOM) is both ubiquitous and diverse in composition in natural waters, but its effects on the branchial physiology of aquatic organisms have received little attention relative to other variables (e.g. pH, hardness, salinity, alkalinity). Here we investigated the effects of four chemically distinct DOM isolates (three natural, one commercial, ranging from autochthonous to highly allochthonous, all at∼6 mg C L−1) on the physiology of gill ionoregulation and N-waste excretion in zebrafish acclimated to either circumneutral (7.0 – 8.0) or acidic pH (5.0). Overall, lower pH tended to increase net branchial ammonia excretion, net K+ loss, and [3H]PEG-4000 clearance rates (indicators of transcellular and paracellular permeability respectively). However unidirectional Na+ efflux, urea excretion, and drinking rates were unaffected. DOMs tended to stimulate unidirectional Na+ influx rate and exerted subtle effects on the concentration-dependent kinetics of Na+ uptake, increasing maximum transport capacity. All DOM sources reduced passive Na+ efflux rates regardless of pH, but exerted negligible effects on N-waste excretion, drinking rate, net K+ loss, or [3H]PEG-4000 clearance, so the mechanism of Na+ loss reduction remains unclear. Overall, these actions appear beneficial to ionoregulatory homeostasis in zebrafish, and some may be related to physico-chemical properties of the DOMs. They are very different from those seen in a recent parallel study on Daphnia magna using the same DOM isolates, indicating that DOM actions may be both species-specific and DOM-specific.
Collapse
Affiliation(s)
- Hassan A. Al-Reasi
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - D. Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - Chris M. Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
15
|
Price ER, Brun A, Gontero-Fourcade M, Fernández-Marinone G, Cruz-Neto AP, Karasov WH, Caviedes-Vidal E. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption. Physiol Biochem Zool 2015; 88:680-4. [PMID: 26658415 DOI: 10.1086/683114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin 53706; 2Laboratorio de Biología Professor E. Caviedes Codelia, Facultad de Ciencias Humanas, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, 5700 San Luis, Argentina; 3Departmento de Zoologia, Universidade Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900 Rio Claro, São Paulo, Brazil; 4Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Madsen SS, Engelund MB, Cutler CP. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes. THE BIOLOGICAL BULLETIN 2015; 229:70-92. [PMID: 26338871 DOI: 10.1086/bblv229n1p70] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Morten B Engelund
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Christopher P Cutler
- Department of Biology, Georgia Southern University, P.O. Box 8042, Statesboro, Georgia 30460
| |
Collapse
|
17
|
Carvalho ESM, Gregório SF, Canário AVM, Power DM, Fuentes J. PTHrP regulates water absorption and aquaporin expression in the intestine of the marine sea bream (Sparus aurata, L.). Gen Comp Endocrinol 2015; 213:24-31. [PMID: 25562629 DOI: 10.1016/j.ygcen.2014.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 11/22/2022]
Abstract
Water ingestion by drinking is fundamental for ion homeostasis in marine fish. However, the fluid ingested requires processing to allow net water absorption in the intestine. The formation of luminal carbonate aggregates impacts on calcium homeostasis and requires epithelial HCO3(-) secretion to enable water absorption. In light of its endocrine importance in calcium handling and the indication of involvement in HCO3(-) secretion the present study was designed to expose the role of the parathyroid hormone-related protein (PTHrP) in HCO3(-) secretion, water absorption and the regulation of aqp1 gene expression in the anterior intestine of the sea bream. HCO3(-) secretion rapidly decreased when PTHrP(1-34) was added to anterior intestine of the sea bream mounted in Ussing chambers. The effect achieved a maximum inhibition of 60% of basal secretion rates, showing a threshold effective dose of 0.1 ng ml(-1) compatible with reported plasma values of PTHrP. When applied in combination with the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) or the phospholipase C inhibitor (U73122, 10 μmol l(-1)) the effect of PTHrP(1-34) on HCO3(-) secretion was reduced by about 50% in both cases. In parallel, bulk water absorption measured in intestinal sacs was sensitive to inhibition by PTHrP. The inhibitory action conforms to a typical dose-response curve in the range of 0.1-1000 ng ml(-1), achieves a maximal effect of 60-65% inhibition from basal rates and shows threshold significant effects at hormone levels of 0.1 ng ml(-1). The action of PTHrP in water absorption was completely abolished in the presence of the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) and was insensitive to the phospholipase C inhibitor (U73122, 10 μmol l(-1)). In vivo injections of PTHrP(1-34) or the PTH/PTHrP receptor antagonist PTHrP(7-34) evoked respectively, a significant decrease or increase of aqp1ab, but not aqp1a. Overall the present results suggest that PTHrP acts as a key regulator of carbonate aggregate formation in the intestine of marine fish via its actions on water absorption, calcium regulation and HCO3(-) secretion.
Collapse
Affiliation(s)
- Edison S M Carvalho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sílvia F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
18
|
Martos-Sitcha JA, Campinho MA, Mancera JM, Martínez-Rodríguez G, Fuentes J. Vasotocin and isotocin regulate aquaporin 1 function in the sea bream. J Exp Biol 2015; 218:684-93. [DOI: 10.1242/jeb.114546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Aquaporins (AQPs) are specific transmembrane water channels with an important function in water homeostasis. In terrestrial vertebrates, AQP2 function is regulated by vasopressin (AVP) to accomplish key functions in osmoregulation. The endocrine control of aquaporin function in teleosts remains little studied. Therefore, in this study we investigated the regulatory role of vasotocin (AVTR) and isotocin (ITR) receptors in Aqp1 paralog gene function in the teleost gilthead sea bream (Sparus aurata). The complete coding regions of Aqp1a, Aqp1b, AVTR V1a2-type, AVTR V2-type and ITR from sea bream were isolated. A Xenopus oocyte-swelling assay was used to functionally characterize AQP1 function and regulation by AVT and IT through their cognate receptors. Microinjection of oocytes with Aqp1b mRNA revealed regulation of water transport via PKA (IBMX+forskolin sensitive), whereas Aqp1a mRNA injection had the same effect via PKC signaling (PDBU sensitive). In the absence of expressed receptors, AVT and IT (10−8 mol l−1) were unable to modify AQP1 function. AVT regulated AQP1a and AQP1b function only when the AVTR V2-type was co-expressed. IT regulated AQP1a function, but not AQP1b, only when ITR was present. Considering that Aqp1a and Aqp1b gene expression in the sea bream intestine is highly salinity dependent in vivo, our results in ovo demonstrate a regulatory role for AVT and IT in AQP1 function in the sea bream in the processing of intestinal fluid to achieve osmoregulation.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior Investigaciones Científicas (ICMAN-CSIC), Puerto Real, Cádiz E-11510, Spain
| | - Marco Antonio Campinho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior Investigaciones Científicas (ICMAN-CSIC), Puerto Real, Cádiz E-11510, Spain
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
19
|
Rubino JG, Zimmer AM, Wood CM. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism. Comp Biochem Physiol A Mol Integr Physiol 2014; 183:45-56. [PMID: 25545914 DOI: 10.1016/j.cbpa.2014.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
Abstract
In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport.
Collapse
Affiliation(s)
- Julian G Rubino
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Alex M Zimmer
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
| | - Chris M Wood
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Dept. of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
20
|
Pelster B, Wood CM, Speers-Roesch B, Driedzic WR, Almeida-Val V, Val A. Gut transport characteristics in herbivorous and carnivorous serrasalmid fish from ion-poor Rio Negro water. J Comp Physiol B 2014; 185:225-41. [DOI: 10.1007/s00360-014-0879-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/11/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
|
21
|
Madsen SS, Bujak J, Tipsmark CK. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport? ACTA ACUST UNITED AC 2014; 217:3108-21. [PMID: 24948644 DOI: 10.1242/jeb.105098] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the salinity-dependent expression dynamics of seven aquaporin paralogs (aqp1a, aqp3a, aqp7, aqp8ab, aqp10a, aqp10b and aqp11a) in several tissues of euryhaline Japanese medaka (Oryzias latipes). All paralogs except aqp7 and aqp10a had a broad tissue distribution, and several were affected by salinity in both osmoregulatory and non-osmoregulatory tissues. In the intestine, aqp1a, aqp7, aqp8ab and aqp10a decreased upon seawater (SW) acclimation in both long-term acclimated fish and during 1-3 days of the transition period. In the gill, aqp3a was lower and aqp10a higher in SW than in freshwater (FW). In the kidney no aqps were affected by salinity. In the skin, aqp1a and aqp3a were lower in SW than in FW. In the liver, aqp8ab and aqp10a were lower in SW than in FW. Furthermore, six Na(+),K(+)-ATPase α-subunit isoform transcripts were analysed in the intestine but none showed a consistent response to salinity, suggesting that water transport is not regulated at this level. In contrast, mRNA of the Na(+),K(+),2Cl(-)-cotransporter type-2 strongly increased in the intestine in SW compared with FW fish. Using custom-made antibodies, Aqp1a, Aqp8ab and Aqp10a were localized in the apical region of enterocytes of FW fish. Apical staining intensity strongly decreased, vanished or moved to subapical regions, when fish were acclimated to SW, supporting the lower mRNA expression in SW. Western blots confirmed the decrease in Aqp1a and Aqp10a in SW. The strong decrease in aquaporin expression in the intestine of SW fish is surprising, and challenges the paradigm for transepithelial intestinal water absorption in SW fishes.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| | - Joanna Bujak
- Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| |
Collapse
|
22
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Bile enhances glucose uptake, reduces permeability, and modulates effects of lectins, trypsin inhibitors and saponins on intestinal tissue. Comp Biochem Physiol A Mol Integr Physiol 2014; 168:96-109. [DOI: 10.1016/j.cbpa.2013.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 12/24/2022]
|
24
|
Kwong RWM, Kumai Y, Perry SF. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio). PLoS One 2013; 8:e70764. [PMID: 23967101 PMCID: PMC3743848 DOI: 10.1371/journal.pone.0070764] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/23/2013] [Indexed: 01/17/2023] Open
Abstract
Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (Ku) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H+-ATPase-rich cells or Na+/K+-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca2+-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
25
|
Liew HJ, De Boeck G, Wood CM. An in vitro study of urea, water, ion and CO2/HCO3− transport in the gastrointestinal tract of the dogfish shark (Squalus acanthias): the influence of feeding. J Exp Biol 2013; 216:2063-72. [DOI: 10.1242/jeb.082313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARY
In vitro gut sac preparations made from the cardiac stomach (stomach 1), pyloric stomach (stomach 2), intestine (spiral valve) and colon were used to examine the impact of feeding on transport processes in the gastrointestinal tract of the dogfish shark. Preparations were made from animals that were euthanized after 1–2 weeks of fasting, or at 24–48 h after voluntary feeding on a 3% ration of teleost fish (hake). Sacs were incubated under initially symmetrical conditions with dogfish saline on both surfaces. In comparison to an earlier in vivo study, the results confirmed that feeding caused increases in H+ secretion in both stomach sections, but an increase in Cl− secretion only in stomach 2. Na+ absorption, rather than Na+ secretion, occurred in both stomach sections after feeding. All sections of the tract absorbed water and the intestine strongly absorbed Na+ and Cl−, regardless of feeding condition. The results also confirmed that feeding increased water absorption in the intestine (but not in the colon), and had little influence on the handling of Ca2+ and Mg2+, which exhibited negligible absorption across the tract. However, K+ was secreted in the intestine in both fasted and fed preparations. Increased intestinal water absorption occurred despite net osmolyte secretion into the mucosal saline. The largest changes occurred in urea and CO2/HCO3− fluxes. In fasted preparations, urea was absorbed at a low rate in all sections except the intestine, where it was secreted. Instead of an increase in intestinal urea secretion predicted from in vivo data, feeding caused a marked switch to net urea absorption. This intestinal urea transport occurred at a rate comparable to urea reabsorption rates reported at gills and kidney, and was apparently active, establishing a large serosal-to-mucosal concentration gradient. Feeding also greatly increased intestinal CO2/HCO3− secretion; if interpreted as HCO3− transport, the rates were in the upper range of those reported in marine teleosts. Phloretin (0.25 mmol l−1, applied mucosally) completely blocked the increases in intestinal urea absorption and CO2/HCO3− secretion caused by feeding, but had no effect on Na+, Cl− or water absorption.
Collapse
Affiliation(s)
- Hon Jung Liew
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada, V0R 1B0
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Gudrun De Boeck
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada, V0R 1B0
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Chris M. Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada, V0R 1B0
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
26
|
Harter TS, Verreth JAJ, Heinsbroek LTN, Schrama JW. Isoenergetic replacement of fat by starch in diets for African catfish (Clarias gariepinus): effect on water fluxes in the gastro intestinal tract. PLoS One 2013; 8:e55245. [PMID: 23372842 PMCID: PMC3555821 DOI: 10.1371/journal.pone.0055245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/23/2012] [Indexed: 01/06/2023] Open
Abstract
The effect of an isoenergetic replacement of dietary fat by starch, on chyme characteristics and water fluxes in the gastro intestinal tract (GIT) was assessed. Adult African catfish (Clarias gariepinus) were fed a starch (SD) or fat (FD) diet and groups of fish were dissected at 2, 5 and 8 h after the consumption of a single meal. Chyme was collected quantitatively and was analysed for osmolality and dry matter (DM) content. Postprandial water fluxes were calculated, while using yttrium oxide (Y(2)O(3)) as an inert marker to account for the absorption of DM along the GIT. The largest differences in chyme characteristics between diets were observed in the stomach and decreased towards subsequent compartments. A high initial osmotic pressure was measured in the stomach for both diets (up to 498 ± 2 mOsm kg(-1)) and was likely the driver for the endogeneous water influx to this compartment. Large additions of water were recorded to the stomach and proximal intestine for both diets and absorption of water took place in the mid- and distal intestine. Interestingly, the dietary treatment had an impact on water balance in the stomach and proximal intestine of the fish, but not in the mid- and distal intestine. A strong complementary relationship suggested that 59% of the water fluxes in the proximal intestine could be explained by previous additions to the stomach. Therefore, a higher dietary inclusion of starch led to a shift in water additions from the proximal intestine to the stomach. However, the sum of water additions to the GIT was not different between diets and was on average 6.52 ± 0.85 ml water g(-1) DM. The interactions between osmoregulation and digestion, in the GIT of fed freshwater fish, deserve further attention in future research.
Collapse
Affiliation(s)
- Till S. Harter
- Aquaculture and Fisheries Group, Wageningen University, Wageningen, The Netherlands
| | - Johan A. J. Verreth
- Aquaculture and Fisheries Group, Wageningen University, Wageningen, The Netherlands
| | | | - Johan W. Schrama
- Aquaculture and Fisheries Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
27
|
Engelund MB, Chauvigné F, Christensen BM, Finn RN, Cerdà J, Madsen SS. Differential expression and novel permeability properties of three aquaporin 8 paralogs from seawater-challenged Atlantic salmon smolts. J Exp Biol 2013; 216:3873-85. [DOI: 10.1242/jeb.087890] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Summary
Aquaporins may facilitate transepithelial water absorption in the intestine of seawater (SW) acclimated fish. Here we have characterized three full-length aqp8 paralogs from Atlantic salmon (Salmo salar). Bayesian inference revealed that each paralog is a representative of the three major classes of aqp8aa, aqp8ab and aqp8b genes found in other teleosts. The permeability properties were studied by heterologous expression in Xenopus laevis oocytes, and the expression levels examined by qPCR, immunofluorescence and immunoelectron microscopy, and immunoblotting of membrane fractions from intestines of SW challenged smolts. All three Aqp8 paralogs were permeable to water and urea, whereas Aqp8ab and -8b were, surprisingly, also permeable to glycerol. The mRNA tissue distribution of each paralog was distinct although some tissues, such as the intestine showed redundant expression of more than one paralog. Immunofluorescence microscopy localized Aqp8aa(1+2) to intracellular compartments of the liver and intestine, and Aqp8ab and Aqp8b to apical plasma membrane domains of the intestinal epithelium, with Aqp8b also in goblet cells. In a control experiment with rainbow trout, immunoelectron microscopy confirmed abundant labeling of Aqp8ab and -8b at apical plasma membranes of enterocytes in the middle intestine and also in subapical vesicular structures. During SW-challenge, Aqp8ab showed significantly increased levels of protein expression in plasma membrane enriched fractions of the intestine. These data indicate that the Atlantic salmon Aqp8 paralogs have neofunctionalized on a transcriptional as well as on a functional level, and that Aqp8ab may play a central role in the intestinal transcellular uptake of water during SW acclimation.
Collapse
Affiliation(s)
| | - François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries - Institut de Ciències del Mar, CSIC
| | | | | | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries - Institut de Ciències del Mar, CSIC
| | | |
Collapse
|
28
|
Gregório SF, Carvalho ESM, Encarnação S, Wilson JM, Power DM, Canário AVM, Fuentes J. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.). ACTA ACUST UNITED AC 2012; 216:470-9. [PMID: 23038737 DOI: 10.1242/jeb.073742] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The processing of intestinal fluid, in addition to a high drinking rate, is essential for osmoregulation in marine fish. This study analyzed the long-term response of the sea bream (Sparus aurata L.) to relevant changes of external salinity (12, 35 and 55 p.p.t.), focusing on the anterior intestine and in the less-often studied rectum. Intestinal water absorption, epithelial HCO(3)(-) secretion and gene expression of the main molecular mechanisms (SLC26a6, SLC26a3, SLC4a4, atp6v1b, CFTR, NKCC1 and NKCC2) involved in Cl(-) and HCO(3)(-) movements were examined. The anion transporters SLC26a6 and SLC26a3 are expressed severalfold higher in the anterior intestine, while the expression of Atp6v1b (V-type H(+)-ATPase β-subunit) is severalfold higher in the rectum. Prolonged exposure to altered external salinity was without effect on water absorption but was associated with concomitant changes in intestinal fluid content, epithelial HCO(3)(-) secretion and salinity-dependent expression of SLC26a6, SLC26a3 and SLC4a4 in the anterior intestine. However, the most striking response to external salinity was obtained in the rectum, where a 4- to 5-fold increase in water absorption was paralleled by a 2- to 3-fold increase in HCO(3)(-) secretion in response to a salinity of 55 p.p.t. In addition, the rectum of high salinity-acclimated fish shows a sustained (and enhanced) secretory current (I(sc)), identified in vitro in Ussing chambers and confirmed by the higher expression of CFTR and NKCC1 and by immunohistochemical protein localization. Taken together, the present results suggest a functional anterior-posterior specialization with regard to intestinal fluid processing and subsequently to salinity adaptation of the sea bream. The rectum becomes more active at higher salinities and functions as the final controller of intestinal function in osmoregulation.
Collapse
Affiliation(s)
- Sílvia F Gregório
- Centre of Marine Sciences (CCMar), CIMAR - Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
29
|
Sundell KS, Sundh H. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins. Front Physiol 2012; 3:388. [PMID: 23060812 PMCID: PMC3460234 DOI: 10.3389/fphys.2012.00388] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/11/2012] [Indexed: 01/17/2023] Open
Abstract
The anadromous salmonid life cycle includes both fresh water (FW) and seawater (SW) stages. The parr-smolt transformation (smoltification) pre-adapt the fish to SW while still in FW. The osmoregulatory organs change their mode of action from a role of preventing water inflow in FW, to absorb ions to replace water lost by osmosis in SW. During smoltification, the drinking rate increases, in the intestine the ion and fluid transport increases and is further elevated after SW entry. In SW, the intestine absorbs ions to create an inwardly directed water flow which is accomplished by increased Na+, K+-ATPase (NKA) activity in the basolateral membrane, driving ion absorption via ion channels and/or co-transporters. This review will aim at discussing the expression patterns of the ion transporting proteins involved in intestinal fluid absorption in the FW stage, during smoltification and after SW entry. Of equal importance for intestinal fluid absorption as the active absorption of ions is the permeability of the epithelium to ions and water. During the smoltification the increase in NKA activity and water uptake in SW is accompanied by decreased paracellular permeability suggesting a redirection of the fluid movement from a paracellular route in FW, to a transcellular route in SW. Increased transcellular fluid absorption could be achieved by incorporation of aquaporins (AQPs) into the enterocyte membranes and/or by a change in fatty acid profile of the enterocyte lipid bilayer. An increased incorporation of unsaturated fatty acids into the membrane phospholipids will increase water permeability by enhancing the fluidity of the membrane. A second aim of the present review is therefore to discuss the presence and regulation of expression of AQPs in the enterocyte membrane as well as to discuss the profile of fatty acids present in the membrane phospholipids during different stages of the salmonid lifecycle.
Collapse
Affiliation(s)
- Kristina S Sundell
- Fish Endocrinology Laboratory, Department of Biology and Environmental Sciences, University of Gothenburg Gothenburg, Sweden
| | | |
Collapse
|
30
|
Kwong RWM, Kumai Y, Perry SF. Evidence for a role of tight junctions in regulating sodium permeability in zebrafish (Danio rerio) acclimated to ion-poor water. J Comp Physiol B 2012; 183:203-13. [PMID: 22843140 DOI: 10.1007/s00360-012-0700-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/07/2012] [Accepted: 07/14/2012] [Indexed: 11/29/2022]
Abstract
Freshwater teleosts are challenged by diffusive ion loss across permeable epithelia including gills and skin. Although the mechanisms regulating ion loss are poorly understood, a significant component is thought to involve paracellular efflux through pathways formed via tight junction proteins. The mammalian orthologue (claudin-4) of zebrafish (Danio rerio) tight junction protein, claudin-b, has been proposed to form a cation-selective barrier regulating the paracellular loss of Na(+). The present study investigated the cellular localization and regulation of claudin-b, as well as its potential contribution to Na(+) homeostasis in adult zebrafish acclimated to ion-poor water. Using a green fluorescent protein-expressing line of transgenic zebrafish, we found that claudin-b was expressed along the lamellar epithelium as well as on the filament in the inter-lamellar regions. Co-localization of claudin-b and Na(+)/K(+)-ATPase was observed, suggesting its interaction with mitochondrion-rich cells. Claudin-b also appeared to be associated with other cell types, including the pavement cells. In the kidney, claudin-b was expressed predominantly in the collecting tubules. In addition, exposure to ion-poor water caused a significant increase in claudin-b abundance as well as a decrease in Na(+) efflux, suggesting a possible role for claudin-b in regulating paracellular Na(+) loss. Interestingly, the whole-body uptake of a paracellular permeability marker, polyethylene glycol-400, increased significantly after prolonged exposure to ion-poor water, indicating that an increase in epithelial permeability is not necessarily coupled with an increase in passive Na(+) loss. Overall, our study suggests that in ion-poor conditions, claudin-b may contribute to a selective reduction in passive Na(+) loss in zebrafish.
Collapse
|
31
|
Carvalho ESM, Gregório SF, Power DM, Canário AVM, Fuentes J. Water absorption and bicarbonate secretion in the intestine of the sea bream are regulated by transmembrane and soluble adenylyl cyclase stimulation. J Comp Physiol B 2012; 182:1069-80. [PMID: 22752677 DOI: 10.1007/s00360-012-0685-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/04/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
In the marine fish intestine luminal, HCO₃⁻ can remove divalent ions (calcium and magnesium) by precipitation in the form of carbonate aggregates. The process of epithelial HCO₃⁻ secretion is under endocrine control, therefore, in this study we aimed to characterize the involvement of transmembrane (tmACs) and soluble (sACs) adenylyl cyclases on the regulation of bicarbonate secretion (BCS) and water absorption in the intestine of the sea bream (Sparus aurata). We observed that all sections of sea bream intestine are able to secrete bicarbonate as measured by pH-Stat in Ussing chambers. In addition, gut sac preparations reveal net water absorption in all segments of the intestine, with significantly higher absorption rates in the anterior intestine that in the rectum. BCS and water absorption are positively correlated in all regions of the sea bream intestinal tract. Furthermore, stimulation of tmACs (10 μM FK + 500 μM IBMX) causes a significant decrease in BCS, bulk water absorption and short circuit current (Isc) in a region dependent manner. In turn, stimulation of sACs with elevated HCO₃⁻ results in a significant increase in BCS, and bulk water absorption in the anterior intestine, an action completely reversed by the sAC inhibitor KH7 (200 μM). Overall, the results reveal a functional relationship between BCS and water absorption in marine fish intestine and modulation by tmACs and sAC. In light of the present observations, it is hypothesized that the endocrine effects on intestinal BCS and water absorption mediated by tmACs are locally and reciprocally modulated by the action of sACs in the fish enterocyte, thus fine-tuning the process of carbonate aggregate production in the intestinal lumen.
Collapse
Affiliation(s)
- Edison S M Carvalho
- Centre of Marine Sciences (CCMar), CIMAR-Laboratório Associado, Universidade do Algarve, Faro, Portugal
| | | | | | | | | |
Collapse
|