1
|
DiBenedetto M, Helfrich KR, Pires A, Anderson EJ, Mullineaux LS. Responding to the signal and the noise: behavior of planktonic gastropod larvae in turbulence. J Exp Biol 2022; 225:274062. [DOI: 10.1242/jeb.243209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022]
Abstract
Swimming organisms may actively adjust their behavior in response to the flow around them. Ocean flows are typically turbulent, and characterized by chaotic velocity fluctuations. While some studies have observed planktonic larvae altering their behavior in response to turbulence, it is not always clear whether a plankter is responding to an individual turbulent fluctuation or to the time-averaged flow. To distinguish between these two paradigms, we conducted laboratory experiments with larvae in turbulence. We observed veliger larvae of the gastropod Crepidula fornicata in a jet-stirred turbulence tank while simultaneously measuring two-components of the fluid and larval velocity. Larvae were studied at two different stages of development, early-stage and late-stage, and their behavior was analyzed in response to different characteristics of turbulence: acceleration, dissipation, and vorticity. Our analysis considered both the effects of the time-averaged flow and the instantaneous flow around the larvae. Overall, we found that both stages of larvae increased their upward swimming speeds in response to increasing turbulence. However, we found that the early-stage larvae tended to respond to the time-averaged flow whereas the late-stage larvae tended to respond to the instantaneous flow around them. These observations indicate that larvae can integrate flow information over time and that their behavioral responses to turbulence can depend on both their present and past flow environments.
Collapse
Affiliation(s)
- Michelle DiBenedetto
- Woods Hole Oceanographic Institution, Department of Physical Oceanography, Woods Hole, 02543, USA
- Woods Hole Oceanographic Institution, Department of Biology, Woods Hole, 02543, USA
| | - Karl R. Helfrich
- Woods Hole Oceanographic Institution, Department of Physical Oceanography, Woods Hole, 02543, USA
| | - Anthony Pires
- Dickinson College, Department of Biology, Carlisle, 17013, USA
| | - Erik J. Anderson
- Grove City College, Department of Mechanical Engineering, Grove City, 16127, USA
| | - Lauren S. Mullineaux
- Woods Hole Oceanographic Institution, Department of Biology, Woods Hole, 02543, USA
| |
Collapse
|
2
|
Abstract
In many animals the head develops early, most of the body axis later. A larva composed mostly of the developing front end therefore can attain mobility and feeding earlier in development. Fossils, functional morphology, and inferred homologies indicate that feeding head larvae existed by the Early Cambrian in members of three major clades of animals: ecdysozoans, lophotrochozoans, and deuterostomes. Some of these early larval feeding mechanisms were also those of juveniles and adults (the lophophore of brachiopod larvae and possibly the ciliary band of the dipleurula of hemichordates and echinoderms); some were derived from structures that previously had other functions (appendages of the nauplius). Trochophores that swim with a preoral band of cilia, the prototroch, originated before divergence of annelids and molluscs, but evidence of larval growth and thus a prototrochal role in feeding is lacking for molluscs until the Ordovician. Feeding larvae that definitely originated much later, as in insects, teleost fish, and amphibians, develop all or nearly all of what will become the adult body axis before they begin feeding. On present evidence, head larvae, including feeding head larvae, evolved multiple times early in the evolution of bilaterian animals and never since.
Collapse
Affiliation(s)
- Richard R. Strathmann
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
| |
Collapse
|
3
|
George SB, Strathmann RR. Arms of larval seastars of Pisaster ochraceus provide versatility in muscular and ciliary swimming. PLoS One 2019; 14:e0213803. [PMID: 30870513 PMCID: PMC6417731 DOI: 10.1371/journal.pone.0213803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Larval swimming with cilia, unaided by muscles, is the presumed ancestral condition for echinoderms, but use of muscles in swimming has evolved several times. Ciliation and musculature of the arms of brachiolaria-stage larvae in the family Asteriidae provide unusual versatility in the use of muscles in swimming. The muscles affect swimming in two different ways. (1) Contraction of muscles moves the arms, propelling the larva. (2) Contraction of muscles changes orientation of the arms, thereby changing direction of ciliary currents and direction of swimming. New observations of the brachiolaria of the asteriid seastar Pisaster ochraceus demonstrate more versatility in both of these uses of muscles than had been previously described: the posterolateral arms stroke in more ways to propel the larva forward and to change the direction of swimming, and more pairs of the arms point ciliary currents in more directions for changes in direction of swimming. Morphology of brachiolariae suggests that these uses of muscles in swimming evolved before divergence of the families Stichasteridae and Asteriidae within forcipulate asteroids. This versatile use of muscles for swimming, both alone and in combination with ciliary currents, further distinguishes the swimming of these brachiolariae from swimming by larvae of other echinoderms and larvae of acorn worms in the sister phylum Hemichordata.
Collapse
Affiliation(s)
- Sophie B. George
- Biology Department, Georgia Southern University, Statesboro, Georgia, United States of America
| | - Richard R. Strathmann
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| |
Collapse
|
4
|
Ferner MC, Hodin J, Ng G, Gaylord B. Brief exposure to intense turbulence induces a sustained life-history shift in echinoids. ACTA ACUST UNITED AC 2019; 222:jeb.187351. [PMID: 30573667 DOI: 10.1242/jeb.187351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
In coastal ecosystems, attributes of fluid motion can prompt animal larvae to rise or sink in the water column and to select microhabitats within which they attach and commit to a benthic existence. In echinoid (sea urchin and sand dollar) larvae living along wave-exposed shorelines, intense turbulence characteristic of surf zones can cause individuals to undergo an abrupt life-history shift characterized by precocious entry into competence - the stage at which larvae will settle and complete metamorphosis in response to local cues. However, the mechanistic details of this turbulence-triggered onset of competence remain poorly defined. Here, we evaluate in a series of laboratory experiments the time course of this turbulence effect, both the rapidity with which it initiates and whether it perdures. We found that larvae become competent with turbulence exposures as brief as 30 s, with longer exposures inducing a greater proportion of larvae to become competent. Intriguingly, larvae can remember such exposures for a protracted period (at least 24 h), a pattern reminiscent of long-term potentiation. Turbulence also induces short-term behavioral responses that last less than 30 min, including cessation of swimming, that facilitate sinking and thus contact of echinoid larvae with the substratum. Together, these results yield a novel perspective on how larvae find their way to suitable adult habitat at the critical settlement transition, and also open new experimental opportunities to elucidate the mechanisms by which planktonic animals respond to fluid motion.
Collapse
Affiliation(s)
- Matthew C Ferner
- San Francisco Bay National Estuarine Research Reserve and Estuary & Ocean Science Center, San Francisco State University, Tiburon, CA 94920, USA
| | - Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Gabriel Ng
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| | - Brian Gaylord
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
5
|
Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats. Proc Natl Acad Sci U S A 2018; 115:E7532-E7540. [PMID: 30037993 DOI: 10.1073/pnas.1804558115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine population dynamics often depend on dispersal of larvae with infinitesimal odds of survival, creating selective pressure for larval behaviors that enhance transport to suitable habitats. One intriguing possibility is that larvae navigate using physical signals dominating their natal environments. We tested whether flow-induced larval behaviors vary with adults' physical environments, using congeneric snail larvae from the wavy continental shelf (Tritia trivittata) and from turbulent inlets (Tritia obsoleta). Turbulence and flow rotation (vorticity) induced both species to swim more energetically and descend more frequently. Accelerations, the strongest signal from waves, induced a dramatic response in T. trivittata but almost no response in competent T. obsoleta Early stage T. obsoleta did react to accelerations, ruling out differences in sensory capacities. Larvae likely distinguished turbulent vortices from wave oscillations using statocysts. Statocysts' ability to sense acceleration would also enable detection of low-frequency sound from wind and waves. T. trivittata potentially hear and react to waves that provide a clear signal over the continental shelf, whereas T. obsoleta effectively "go deaf" to wave motions that are weak in inlets. Their contrasting responses to waves would cause these larvae to move in opposite directions in the water columns of their respective adult habitats. Simulations showed that the congeners' transport patterns would diverge over the shelf, potentially reinforcing the separate biogeographic ranges of these otherwise similar species. Responses to turbulence could enhance settlement but are unlikely to aid large-scale navigation, whereas shelf species' responses to waves may aid retention over the shelf via Stokes drift.
Collapse
|
6
|
Fuchs HL, Specht JA, Adams DK, Christman AJ. Turbulence induces metabolically costly behaviors and inhibits food capture in oyster larvae, causing net energy loss. ACTA ACUST UNITED AC 2018; 220:3419-3431. [PMID: 28978637 DOI: 10.1242/jeb.161125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022]
Abstract
Planktotrophic invertebrate larvae require energy to develop, disperse and settle successfully, and it is unknown how their energetics are impacted by turbulence. Ciliated larvae gain metabolic energy from their phytoplankton food to offset the energetic costs of growth, development and ciliary activity for swimming and feeding. Turbulence may affect the energetic balance by inducing behaviors that alter the metabolic costs and efficiency of swimming, by raising the encounter rate with food particles and by inhibiting food capture. We used experiments and an empirical model to quantify the net rate of energy gain, swimming efficiency and food capture efficiency for eyed oyster larvae (Crassostrea virginica) in turbulence. At dissipation rates representative of coastal waters, larvae lost energy even when food concentrations were very high. Both feeding activity and turbulence-induced behaviors incurred high metabolic costs. Swimming efficiency was concave up versus dissipation rate, suggesting that ciliary activity for food handling became more costly while swimming became more efficient with turbulence intensity. Though counter-intuitive, swimming may have become more efficient in turbulence because vorticity-induced rotation caused larvae to swim more horizontally, which requires less effort than swimming vertically against the pull of gravity. Overall, however, larvae failed to offset high activity costs with food energy gains because turbulence reduced food capture efficiency more than it enhanced food encounter rates. Younger, smaller larvae may have some energetic advantages, but competent larvae would lose energy at turbulence intensities they experience frequently, suggesting that turbulence-induced starvation may account for much of oysters' high larval mortality.
Collapse
Affiliation(s)
- Heidi L Fuchs
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jaclyn A Specht
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diane K Adams
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Adam J Christman
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
7
|
Wheeler JD, Chan KYK, Anderson EJ, Mullineaux LS. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence. ACTA ACUST UNITED AC 2017; 219:1303-10. [PMID: 27208032 PMCID: PMC4874563 DOI: 10.1242/jeb.129502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
Abstract
Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology–flow interactions. Highlighted Article: Pre-competent, 6-armed larval urchins swim faster and are less stable in experimental turbulent flow than younger 4-armed larvae, suggesting a potential age/morphology-driven differential transport mechanism in ambient flow conditions.
Collapse
Affiliation(s)
- Jeanette D Wheeler
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Kit Yu Karen Chan
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Erik J Anderson
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Department of Mechanical Engineering, Grove City College, Grove City, PA 16127, USA
| | - Lauren S Mullineaux
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
8
|
|
9
|
Fuchs HL, Christman AJ, Gerbi GP, Hunter EJ, Diez FJ. Directional flow sensing by passively stable larvae. J Exp Biol 2015; 218:2782-92. [DOI: 10.1242/jeb.125096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mollusk larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behavior was quantified as a response to strain rate, vorticity and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats.
Collapse
Affiliation(s)
- Heidi L. Fuchs
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Adam J. Christman
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gregory P. Gerbi
- Physics Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Elias J. Hunter
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - F. Javier Diez
- Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Abstract
When animals swim in aquatic habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. We addressed this issue using microscopic larvae of invertebrates in "fouling communities" growing on docks and ships to ask how swimming affects the transport of larvae between moving water and surfaces from which they disperse and onto which they recruit. Field measurements of the motion of water over fouling communities were used to design realistic turbulent wavy flow in a laboratory wave-flume over early-stage fouling communities. Fine-scale measurements of rapidly-varying water-velocity fields were made using particle-image velocimetry, and of dye-concentration fields (analog for chemical cues from the substratum) were made using planar laser-induced fluorescence. We used individual-based models of larvae that were swimming, passively sinking, passively rising, or were passive and neutrally buoyant to determine how their trajectories were affected by their motion through the water, rotation by local shear, and transport by ambient flow. Swimmers moved up and down in the turbulent flow more than did neutrally buoyant larvae. Although more of the passive sinkers landed on substrata below them, and more passive risers on surfaces above, swimming was the best strategy for landing on surfaces if their location was not predictable (as is true for fouling communities). When larvae moved within 5 mm of surfaces below them, passive sinkers and neutrally-buoyant larvae landed on the substratum, whereas many of the swimmers were carried away, suggesting that settling larvae should stop swimming as they near a surface. Swimming and passively-rising larvae were best at escaping from a surface below them, as precompetent larvae must do to disperse away. Velocities, vorticities, and odor-concentrations encountered by larvae fluctuated rapidly, with peaks much higher than mean values. Encounters with concentrations of odor or with vorticities above threshold increased as larvae neared the substratum. Although microscopic organisms swim slowly, their locomotory behavior can affect where they are transported by the movement of ambient water as well as the signals they encounter when they move within a few centimeters of surfaces.
Collapse
Affiliation(s)
- M A R Koehl
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - T Cooper
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
11
|
Fuchs HL, Gerbi GP, Hunter EJ, Christman AJ, Diez FJ. Hydrodynamic sensing and behavior by oyster larvae in turbulence and waves. J Exp Biol 2015; 218:1419-32. [DOI: 10.1242/jeb.118562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/06/2015] [Indexed: 11/20/2022]
Abstract
Hydrodynamic signals from turbulence and waves may provide marine invertebrate larvae with behavioral cues that affect the pathways and energetic costs of larval delivery to adult habitats. Oysters (Crassostrea virginica) live in sheltered estuaries with strong turbulence and small waves, but their larvae can be transported into coastal waters with large waves. These contrasting environments have different ranges of hydrodynamic signals, because turbulence generally produces higher spatial velocity gradients, whereas waves can produce higher temporal velocity gradients. To understand how physical processes affect oyster larval behavior, transport, and energetics, we exposed larvae to different combinations of turbulence and waves in flow tanks with 1) wavy turbulence, 2) a seiche, and 3) rectilinear accelerations. We quantified behavioral responses of individual larvae to local instantaneous flows using two-phase, infrared particle-image velocimetry. Both high dissipation rates and high wave-generated accelerations induced most larvae to swim faster upward. High dissipation rates also induced some rapid, active dives, whereas high accelerations induced only weak active dives. In both turbulence and waves, faster swimming and active diving were achieved through an increase in propulsive force and power output that would carry a high energetic cost. Swimming costs could be offset if larvae reaching surface waters had a higher probability of being transported shoreward by Stokes drift, whereas diving costs could be offset by enhanced settlement or predator avoidance. These complex behaviors suggest that larvae integrate multiple hydrodynamic signals to manage dispersal tradeoffs, spending more energy to raise the probability of successful transport to suitable locations.
Collapse
|
12
|
A Hydrodynamic Modelling Framework for Strangford Lough Part 1: Tidal Model. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2014. [DOI: 10.3390/jmse2010046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Armstrong AF, Blackburn HN, Allen JD. A Novel Report of Hatching Plasticity in the Phylum Echinodermata. Am Nat 2013; 181:264-72. [DOI: 10.1086/668829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Fuchs HL, Hunter EJ, Schmitt EL, Guazzo RA. Active downward propulsion by oyster larvae in turbulence. ACTA ACUST UNITED AC 2012; 216:1458-69. [PMID: 23264488 DOI: 10.1242/jeb.079855] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oyster larvae (Crassostrea virginica) could enhance their settlement success by moving toward the seafloor in the strong turbulence associated with coastal habitats. We characterized the behavior of individual oyster larvae in grid-generated turbulence by measuring larval velocities and flow velocities simultaneously using infrared particle image velocimetry. We estimated larval behavioral velocities and propulsive forces as functions of the kinetic energy dissipation rate ε, strain rate γ, vorticity ξ and acceleration α. In calm water most larvae had near-zero vertical velocities despite propelling themselves upward (swimming). In stronger turbulence all larvae used more propulsive force, but relative to the larval axis, larvae propelled themselves downward (diving) instead of upward more frequently and more forcefully. Vertical velocity magnitudes of both swimmers and divers increased with turbulence, but the swimming velocity leveled off as larvae were rotated away from their stable, velum-up orientation in strong turbulence. Diving speeds rose steadily with turbulence intensity to several times the terminal fall velocity in still water. Rapid dives may require a switch from ciliary swimming to another propulsive mode such as flapping the velum, which would become energetically efficient at the intermediate Reynolds numbers attained by larvae in strong turbulence. We expected larvae to respond to spatial or temporal velocity gradients, but although the diving frequency changed abruptly at a threshold acceleration, the variation in propulsive force and behavioral velocity was best explained by the dissipation rate. Downward propulsion could enhance oyster larval settlement by raising the probability of larval contact with oyster reef patches.
Collapse
Affiliation(s)
- Heidi L Fuchs
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|