1
|
Raza MF, Li W. Biogenic amines in honey bee cognition: neurochemical pathways and stress impacts. CURRENT OPINION IN INSECT SCIENCE 2025; 70:101376. [PMID: 40306360 DOI: 10.1016/j.cois.2025.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/27/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Honey bees, as indispensable pollinators, rely on sophisticated neuromodulatory networks to regulate learning, memory, and social behaviors, all essential for colony function, ecosystem stability, and global agricultural systems. Biogenic amines octopamine, dopamine, serotonin, and tyramine are key modulators of these cognitive and behavioral processes, regulating foraging efficiency, navigational precision, and division of labor. However, we argue that anthropogenic stressors, including pesticides, pollutants, heavy metals, and microbiome dysbiosis, disrupt aminergic pathways by impairing neurotransmitter synthesis and neuronal signaling, leading to maladaptive behaviors and colony collapse. Recent discoveries expand this paradigm, revealing those biogenic amines in floral nectar act as exogenous neurochemicals, potentially altering pollinator behavior; however, their interaction with agrochemicals remains underexplored. While most studies focus on Apis mellifera, we caution that cautious extrapolation to wild and solitary bees is critical, given the evolutionary conservation of aminergic signaling across insect taxa. Cognitive deficits observed in managed honeybees likely extend to wild pollinators, threatening pollination network resilience and food security. To address these gaps, we advocate for CRISPR-based neurogenetic tools and multi-omics approaches to dissect stress susceptibility and biogenic amine (BA) regulation. Integrating neurobiology, ecotoxicology, and conservation science is imperative to develop precision strategies that mitigate anthropogenic threats, safeguard biodiversity, and stabilize global agriculture.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Wenfeng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
2
|
Ghanem S, Akülkü İ, Güzle K, Khan Z, Mayack C. Regulation of forager honey bee appetite independent of the glucose-insulin signaling pathway. FRONTIERS IN INSECT SCIENCE 2024; 4:1335350. [PMID: 38469335 PMCID: PMC10926362 DOI: 10.3389/finsc.2024.1335350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Introduction To maintain energetic homeostasis the energetic state of the individual needs to communicate with appetite regulatory mechanisms on a regular basis. Although hunger levels indicated by the energetic state and appetite levels, the desire for food intake, tend to be correlated, and on their own are well studied, how the two cross-talk and regulate one another is less known. Insects, in contrast to vertebrates, tend to have trehalose as the primary sugar found in the hemolymph, which could possibly serve as an alternative monitor of the energetic state in comparison to the glucose-insulin signaling pathway, found in vertebrates. Methods We investigate how manipulating hemolymph sugar levels alter the biogenic amines in the honey bee brain, appetite levels, and insulin like peptide gene expression, across three age classes, to determine how the energetic state of the honey bee might be connected to appetite regulation. Results We found that only in the forager bees, with a lowering of hemolymph trehalose levels, there was an increase in octopamine and a decrease in tyramine levels in the honey bee brain that corresponded with increased appetite levels, while there was no significant changes in Insulin Like Peptide-1 or 2 gene expression. Discussion Our findings suggest that hemolymph trehalose levels aid in regulating appetite levels, in forager bees, via octopamine and tyramine, and this regulation appears to be functioning independent of the glucose insulin signaling pathway. Whether this potentially more direct and rapid appetite regulatory pathway can be generalized to other insects, which also undergo energy demanding activities, remains to be investigated.
Collapse
Affiliation(s)
- Saleh Ghanem
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
| | - İrem Akülkü
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
| | - Kübra Güzle
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
| | - Zaeema Khan
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
| | - Christopher Mayack
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
- US Department of Agriculture, Invasive Species and Pollinator Health Research Unit (ISPHRU), Western Regional Research Center (WRRC) in the Pacific West Area (PWA), Davis, CA, United States
| |
Collapse
|
3
|
Schilcher F, Scheiner R. New insight into molecular mechanisms underlying division of labor in honeybees. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101080. [PMID: 37391163 DOI: 10.1016/j.cois.2023.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
Honeybees are highly organized eusocial insects displaying a distinct division of labor. Juvenile hormone (JH) has long been hypothesized to be the major driver of behavioral transitions. However, more and more experiments in recent years have suggested that the role of this hormone is not as fundamental as hypothesized. Vitellogenin, a common egg yolk precursor protein, seems to be the major regulator of division of labor in honeybees, in connection with nutrition and the neurohormone and transmitter octopamine. Here, we review the role of vitellogenin in controlling honeybee division of labor and its modulation by JH, nutrition, and the catecholamine octopamine.
Collapse
Affiliation(s)
- Felix Schilcher
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Bachert A, Scheiner R. The ant's weapon improves honey bee learning performance. Sci Rep 2023; 13:8399. [PMID: 37225773 DOI: 10.1038/s41598-023-35540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Formic acid is the main component of the ant's major weapon against enemies. Being mainly used as a chemical defense, the acid is also exploited for recruitment and trail marking. The repelling effect of the organic acid is used by some mammals and birds which rub themselves in the acid to eliminate ectoparasites. Beekeepers across the world rely on this effect to control the parasitic mite Varroa destructor. Varroa mites are considered the most destructive pest of honey bees worldwide and can lead to the loss of entire colonies. Formic acid is highly effective against Varroa mites but can also kill the honeybee queen and worker brood. Whether formic acid can also affect the behavior of honey bees is unknown. We here study the effect of formic acid on sucrose responsiveness and cognition of honey bees treated at different live stages in field-relevant doses. Both behaviors are essential for survival of the honey bee colony. Rather unexpectedly, formic acid clearly improved the learning performance of the bees in appetitive olfactory conditioning, while not affecting sucrose responsiveness. This exciting side effect of formic acid certainly deserves further detailed investigations.
Collapse
Affiliation(s)
- Antonia Bachert
- Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute of Pharmacology and Toxicology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
5
|
Yu JX, Xiang Q, Qu JB, Hui YM, Lin T, Zeng XN, Liu JL. Octopaminergic neurons function in appetitive but not aversive olfactory learning and memory in Bactrocera dorsalis. INSECT SCIENCE 2022; 29:1747-1760. [PMID: 35189034 DOI: 10.1111/1744-7917.13023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The biogenic amine octopamine (OA, invertebrate counterpart of noradrenaline) plays critical roles in the regulation of olfactory behavior. Historically, OA has been thought to mediate appetitive but not aversive learning in honeybees, fruit flies (Drosophila), and crickets. However, this viewpoint has recently been challenged because OA activity through a β-adrenergic-like receptor drives both appetitive and aversive learning. Here, we explored the roles of OA neurons in olfactory learning and memory retrieval in Bactrocera dorsalis. We trained flies to associate an orange odor with a sucrose reward or to associate methyl eugenol, a male lure, with N,N-diethyl-3-methyl benzoyl amide (DEET) punishment. We then treated flies with OA receptor antagonists before appetitive or aversive conditioning and a memory retention test. Injection of OA receptor antagonist mianserin or epinastine into the abdomen of flies led to impaired of appetitive learning and memory retention with a sucrose reward, while aversive learning and memory retention with DEET punishment remained intact. Our results suggest that the OA signaling participates in appetitive but not aversive learning and memory retrieval in B. dorsalis through OA receptors.
Collapse
Affiliation(s)
- Jin-Xin Yu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qian Xiang
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jia-Bao Qu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yan-Min Hui
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tao Lin
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
- College of Life Sciences, Department of Biological Science, Shangrao Normal University, Shangrao, Jiangxi, China
| | - Xin-Nian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jia-Li Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Raza MF, Ali MA, Rady A, Li Z, Nie H, Su S. Neurotransmitters receptors gene drive the olfactory learning behavior of honeybee. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Borstel KJ, Stevenson PA. Individual Scores for Associative Learning in a Differential Appetitive Olfactory Paradigm Using Binary Logistic Regression Analysis. Front Behav Neurosci 2021; 15:741439. [PMID: 34650412 PMCID: PMC8505765 DOI: 10.3389/fnbeh.2021.741439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Numerous invertebrates have contributed to our understanding of the biology of learning and memory. In most cases, learning performance is documented for groups of individuals, and nearly always based on a single, typically binary, behavioural metric for a conditioned response. This is unfortunate for several reasons. Foremost, it has become increasingly apparent that invertebrates exhibit inter-individual differences in many aspects of their behaviour, and also that the conditioned response probability for an animal group does not adequately represent the behaviour of individuals in classical conditioning. Furthermore, a binary response character cannot yield a graded score for each individual. We also hypothesise that due to the complexity of a conditioned response, a single metric need not reveal an individual's full learning potential. In this paper, we report individual learning scores for freely moving adult male crickets (Gryllus bimaculatus) based on a multi-factorial analysis of a conditioned response. First, in an absolute conditioning paradigm, we video-tracked the odour responses of animals that, in previous training, received either odour plus reward (sugar water), reward alone, or odour alone to identify behavioural predictors of a conditioned response. Measures of these predictors were then analysed using binary regression analysis to construct a variety of mathematical models that give a probability for each individual that it exhibited a conditioned response (Presp). Using standard procedures to compare model accuracy, we identified the strongest model which could reliably discriminate between the different odour responses. Finally, in a differential appetitive olfactory paradigm, we employed the model after training to calculate the Presp of animals to a conditioned, and to an unconditioned odour, and from the difference a learning index for each animal. Comparing the results from our multi-factor model with a single metric analysis (head bobbing in response to a conditioned odour), revealed advantageous aspects of the model. A broad distribution of model-learning scores, with modes at low and high values, support the notion of a high degree of variation in learning capacity, which we discuss.
Collapse
Affiliation(s)
- Kim J Borstel
- Department of Physiology of Animals and Behaviour, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Paul A Stevenson
- Department of Physiology of Animals and Behaviour, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
8
|
Akülkü İ, Ghanem S, Filiztekin E, Suwannapong G, Mayack C. Age-Dependent Honey Bee Appetite Regulation Is Mediated by Trehalose and Octopamine Baseline Levels. INSECTS 2021; 12:insects12100863. [PMID: 34680632 PMCID: PMC8539172 DOI: 10.3390/insects12100863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Appetite regulation is an important function necessary to maintain energetic balance, but how honey bees accomplish this could vary as they age because they go through a number of behavioral and physiological changes during development. Here, we determine if the amount of trehalose, which is a sugar found in the hemolymph of honey bees, influences appetite levels and if this interacts with the octopamine neurotransmitter in the bee brain. To accomplish this, we decreased trehalose levels in the hemolymph by injecting an inhibitor of trehalose synthesis. In addition, we increased octopamine levels in the brain by injecting it with a syringe. We found that octopamine and trehalose interact to increase appetite in the two older age classes of bees, beyond just treating the bees with octopamine. The youngest age class did not respond to either treatment. Our results suggest that older honey bees may have an alternative pathway for regulating appetite that uses sugar levels in their hemolymph to communicate to the brain how hungry they are and that octopamine is responsible for elevating appetite levels when the bee is hungry. This pathway is different from how vertebrates regulate their appetite levels based on glucose levels in the blood. Abstract There are multiple feedback mechanisms involved in appetite regulation, which is an integral part of maintaining energetic homeostasis. Older forager honey bees, in comparison to newly emerged bees and nurse bees, are known to have highly fluctuating hemolymph trehalose levels, higher appetite changes due to starvation, and higher octopamine levels in the brain. What remains unknown is if the hemolymph trehalose and octopamine levels interact with one another and how this varies as the bee ages. We manipulated trehalose and octopamine levels across age using physiological injections and found that nurse and forager bees increase their appetite levels due to increased octopamine levels in the brain. This is further enhanced by lower trehalose levels in the hemolymph. Moreover, nurse bees with high octopamine levels in the brain and low trehalose levels had the same appetite levels as untreated forager bees. Our findings suggest that the naturally higher levels of octopamine as the bee ages may result in higher sensitivity to fluctuating trehalose levels in the hemolymph that results in a more direct way of assessing the energetic state of the individual. Consequently, forager bees have a mechanism for more precise regulation of appetite in comparison to newly emerged and nurse bees.
Collapse
Affiliation(s)
- İrem Akülkü
- Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 İstanbul, Turkey; (İ.A.); (S.G.); (E.F.); (C.M.)
| | - Saleh Ghanem
- Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 İstanbul, Turkey; (İ.A.); (S.G.); (E.F.); (C.M.)
| | - Elif Filiztekin
- Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 İstanbul, Turkey; (İ.A.); (S.G.); (E.F.); (C.M.)
| | - Guntima Suwannapong
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand
- Correspondence: ; Tel.: +66-3810-3088
| | - Christopher Mayack
- Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 İstanbul, Turkey; (İ.A.); (S.G.); (E.F.); (C.M.)
| |
Collapse
|
9
|
Opposing Actions of Octopamine and Tyramine on Honeybee Vision. Biomolecules 2021; 11:biom11091374. [PMID: 34572588 PMCID: PMC8468255 DOI: 10.3390/biom11091374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light.
Collapse
|
10
|
Scheiner R, Lim K, Meixner MD, Gabel MS. Comparing the Appetitive Learning Performance of Six European Honeybee Subspecies in a Common Apiary. INSECTS 2021; 12:insects12090768. [PMID: 34564208 PMCID: PMC8468525 DOI: 10.3390/insects12090768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This study is the first to compare the associative learning performance of six honeybee subspecies from different European regions in a common apiary. We quantified sucrose responsiveness prior to appetitive olfactory proboscis extension learning to dissociate effects of motivation and cognition. Our results show that Apis mellifera iberiensis displayed a significantly poorer learning performance compared to other Apis subspecies from across Europe, which did not differ from each other. Possible causes are discussed. Abstract The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous subspecies in its native range. How far adaptation to local habitats has affected the cognitive skills of the different subspecies is an intriguing question that we investigate in this study. Naturally mated queens of the following five subspecies from different parts of Europe were transferred to Southern Germany: A. m. iberiensis from Portugal, A. m. mellifera from Belgium, A. m. macedonica from Greece, A. m. ligustica from Italy, and A. m. ruttneri from Malta. We also included the local subspecies A. m. carnica in our study. New colonies were built up in a common apiary where the respective queens were introduced. Worker offspring from the different subspecies were compared in classical olfactory learning performance using the proboscis extension response. Prior to conditioning, we measured individual sucrose responsiveness to investigate whether possible differences in learning performances were due to differential responsiveness to the sugar water reward. Most subspecies did not differ in their appetitive learning performance. However, foragers of the Iberian honeybee, A. m. iberiensis, performed significantly more poorly, despite having a similar sucrose responsiveness. We discuss possible causes for the poor performance of the Iberian honeybees, which may have been shaped by adaptation to the local habitat.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (K.L.); (M.S.G.)
- Correspondence:
| | - Kayun Lim
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (K.L.); (M.S.G.)
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Marina D. Meixner
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, Erlenstraße 9, 35274 Kirchhain, Germany;
| | - Martin S. Gabel
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (K.L.); (M.S.G.)
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, Erlenstraße 9, 35274 Kirchhain, Germany;
| |
Collapse
|
11
|
Page RE. Societies to genes: can we get there from here? Genetics 2021; 219:iyab104. [PMID: 34849914 PMCID: PMC8633090 DOI: 10.1093/genetics/iyab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the organization and evolution of social complexity is a major task because it requires building an understanding of mechanisms operating at different levels of biological organization from genes to social interactions. I discuss here, a unique forward genetic approach spanning more than 30 years beginning with human-assisted colony-level selection for a single social trait, the amount of pollen honey bees (Apis mellifera L.) store. The goal was to understand a complex social trait from the social phenotype to genes responsible for observed trait variation. The approach combined the results of colony-level selection with detailed studies of individual behavior and physiology resulting in a mapped, integrated phenotypic architecture composed of correlative relationships between traits spanning anatomy, physiology, sensory response systems, and individual behavior that affect individual foraging decisions. Colony-level selection reverse engineered the architecture of an integrated phenotype of individuals resulting in changes in the social trait. Quantitative trait locus (QTL) studies combined with an exceptionally high recombination rate (60 kb/cM), and a phenotypic map, provided a genotype-phenotype map of high complexity demonstrating broad QTL pleiotropy, epistasis, and epistatic pleiotropy suggesting that gene pleiotropy or tight linkage of genes within QTL integrated the phenotype. Gene expression and knockdown of identified positional candidates revealed genes affecting foraging behavior and confirmed one pleiotropic gene, a tyramine receptor, as a target for colony-level selection that was under selection in two different tissues in two different life stages. The approach presented here has resulted in a comprehensive understanding of the structure and evolution of honey bee social organization.
Collapse
Affiliation(s)
- Robert E Page
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Disentangling Ethiopian Honey Bee ( Apis mellifera) Populations Based on Standard Morphometric and Genetic Analyses. INSECTS 2021; 12:insects12030193. [PMID: 33668715 PMCID: PMC7996220 DOI: 10.3390/insects12030193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary We conducted this population study of Ethiopian honey bees, using morphometric and genetic methods, to decipher their controversial classification. These honey bees are highly diverse and showed differentiation based on size and genetic information according to prevailing agro-ecological conditions, demonstrating morphological and molecular signatures of local adaptation. The results of both morphometric and genetic analyses suggest that Ethiopian honey bees differ from populations in the neighboring geographic regions and are characterized by extensive gene flow within the country, enhanced by honey bee colony trade. Consequently, future research that includes studying traits of vitality, behavior and colony performance of honey bees in remaining pocket areas of highland agro-ecological zones could contribute to the development of appropriate conservation management. Abstract The diversity and local differentiation of honey bees are subjects of broad general interest. In particular, the classification of Ethiopian honey bees has been a subject of debate for decades. Here, we conducted an integrated analysis based on classical morphometrics and a putative nuclear marker (denoted r7-frag) for elevational adaptation to classify and characterize these honey bees. Therefore, 660 worker bees were collected out of 66 colonies from highland, midland and lowland agro-ecological zones (AEZs) and were analyzed in reference to populations from neighboring countries. Multivariate morphometric analyses show that our Ethiopian samples are separate from Apis mellifera scutellata, A. m. jemenitica, A. m. litorea and A. m. monticola, but are closely related to A. m. simensis reference. Linear discriminant analysis showed differentiation according to AEZs in the form of highland, midland and lowland ecotypes. Moreover, size was positively correlated with elevation. Similarly, our Ethiopian samples were differentiated from A. m. monticola and A. m. scutellata based on r7-frag. There was a low tendency towards genetic differentiation between the Ethiopian samples, likely impacted by increased gene flow. However, the differentiation slightly increased with increasing elevational differences, demonstrated by the highland bees that showed higher differentiation from the lowland bees (FST = 0.024) compared to the midland bees (FST = 0.015). An allelic length polymorphism was detected (denoted as d) within r7-frag, showing a patterned distribution strongly associated with AEZ (X2 = 11.84, p < 0.01) and found predominantly in highland and midland bees of some pocket areas. In conclusion, the Ethiopian honey bees represented in this study are characterized by high gene flow that suppresses differentiation.
Collapse
|
13
|
Wang Y, Amdam GV, Daniels BC, Page RE. Tyramine and its receptor TYR1 linked behavior QTL to reproductive physiology in honey bee workers (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104093. [PMID: 32763247 DOI: 10.1016/j.jinsphys.2020.104093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Honey bees (Apis mellifera) provide an excellent model for studying how complex social behavior evolves and is regulated. Social behavioral traits such as the division of labor have been mapped to specific genomic regions in quantitative trait locus (QTL) studies. However, relating genomic mapping to gene function and regulatory mechanism remains a big challenge for geneticists. In honey bee workers, division of labor is known to be regulated by reproductive physiology, but the genetic basis of this regulation remains unknown. In this case, QTL studies have identified tyramine receptor 1 (TYR1) as a candidate gene in region pln2, which is associated with multiple worker social traits and reproductive anatomy. Tyramine (TA), a neurotransmitter, regulates physiology and behavior in diverse insect species including honey bees. Here, we examine directly the effects of TYR1 and TA on worker reproductive physiology, including ovariole number, ovary function and the production of vitellogenin (VG, an egg yolk precursor). First, we used a pharmacology approach to demonstrate that TA affects ovariole number during worker larval development and increases ovary maturation during the adult stage. Second, we used a gene knockdown approach to show that TYR1 regulates vg transcription in adult workers. Finally, we estimated correlations in gene expression and propose that TYR1 may regulate vg transcription by coordinating hormonal and nutritional signals. Taken together, our results suggest TYR1 and TA play important roles in regulating worker reproductive physiology, which in turn regulates social behavior. Our study exemplifies a successful forward-genetic strategy going from QTL mapping to gene function.
Collapse
Affiliation(s)
- Ying Wang
- Banner Health Corporation, PO Box 16423, Phoenix, AZ 85012, USA
| | - Gro V Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA; Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, 1430 Aas, Norway
| | - Bryan C Daniels
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University, PO Box 872701, Tempe, AZ 85287, USA
| | - Robert E Page
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA; Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
14
|
Cyr A, Thériault F, Chartier S. Revisiting the XOR problem: a neurorobotic implementation. Neural Comput Appl 2020. [DOI: 10.1007/s00521-019-04522-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Peng T, Schroeder M, Grüter C. Octopamine increases individual and collective foraging in a neotropical stingless bee. Biol Lett 2020; 16:20200238. [PMID: 32516562 DOI: 10.1098/rsbl.2020.0238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The biogenic amine octopamine (OA) is a key modulator of individual and social behaviours in honeybees, but its role in the other group of highly eusocial bees, the stingless bees, remains largely unknown. In honeybees, OA mediates reward perception and affects a wide range of reward-seeking behaviours. Thus, we tested the hypothesis that OA increases individual foraging effort and collective food source exploitation in the neotropical stingless bee Plebeia droryana. OA treatment caused a significant increase in the number of bees at artificial sucrose feeders and a 1.73-times higher individual foraging frequency. This effect can be explained by OA lowering the sucrose response threshold and, thus, increasing the perceived value of the food source. Our results demonstrate that, similar to its effects on honeybees, OA increases both individual and collective food source exploitation in P. droryana. This suggests that, despite having evolved many complex behaviours independently, OA might have similar regulatory effects on foraging behaviours in the two groups of highly eusocial bees.
Collapse
Affiliation(s)
- Tianfei Peng
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Maximilian Schroeder
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
16
|
Scheiner R, Frantzmann F, Jäger M, Mitesser O, Helfrich-Förster C, Pauls D. A Novel Thermal-Visual Place Learning Paradigm for Honeybees ( Apis mellifera). Front Behav Neurosci 2020; 14:56. [PMID: 32351370 PMCID: PMC7174502 DOI: 10.3389/fnbeh.2020.00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Honeybees (Apis mellifera) have fascinating navigational skills and learning capabilities in the field. To decipher the mechanisms underlying place learning in honeybees, we need paradigms to study place learning of individual honeybees under controlled laboratory conditions. Here, we present a novel visual place learning arena for honeybees which relies on high temperatures as aversive stimuli. Honeybees learn to locate a safe spot in an unpleasantly warm arena, relying on a visual panorama. Bees can solve this task at a temperature of 46°C, while at temperatures above 48°C bees die quickly. This new paradigm, which is based on pioneering work on Drosophila, allows us now to investigate thermal-visual place learning of individual honeybees in the laboratory, for example after controlled genetic knockout or pharmacological intervention.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Felix Frantzmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maria Jäger
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Biocenter, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Junca P, Garnery L, Sandoz JC. Genotypic trade-off between appetitive and aversive capacities in honeybees. Sci Rep 2019; 9:10313. [PMID: 31311964 PMCID: PMC6635639 DOI: 10.1038/s41598-019-46482-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/20/2019] [Indexed: 11/23/2022] Open
Abstract
Honey bees can learn both appetitive and aversive associations, using two olfactory conditioning protocols. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting extension response (SER) involves associating the odor CS with an electric or thermal shock US. Here, we investigated the relationship between bees’ appetitive and aversive learning capacities at the individual level and the influence of bees’ genotype. As learning performance was shown to depend on an individuals’ sensitivity to the US, we systematically measured four different traits in each individual bee: sensitivity to sucrose, PER learning performance with a sucrose US, sensitivity to temperature, SER learning with a temperature US. First, we confirmed for both conditioning types that learning performance correlates with US responsiveness. Second, we found a trade-off between appetitive and aversive learning performances: bees that were better appetitive learners (and had a lower sucrose US threshold) learned less efficiently in the aversive conditioning (and had a higher temperature US threshold). Because the honey bee queen typically mates with 15–20 males, the workers from a honey bee hive belong to as many different patrilines, allowing for the search of the genetic determinism of cognitive abilities. Using microsatellite analysis, we show that a genetic determinism underlies the trade-off between appetitive and aversive capacities, with appetitively vs aversively biased patrilines. The honey bee hive thus appears as a genetically structured cognitive community.
Collapse
Affiliation(s)
- Pierre Junca
- Evolution, Genomes, Behavior and Ecology, CNRS, Univ Paris-Sud, IRD (UMR 9191), 1 avenue de la Terrasse, Gif-sur-Yvette, 91198, France
| | - Lionel Garnery
- Evolution, Genomes, Behavior and Ecology, CNRS, Univ Paris-Sud, IRD (UMR 9191), 1 avenue de la Terrasse, Gif-sur-Yvette, 91198, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Univ Paris-Sud, IRD (UMR 9191), 1 avenue de la Terrasse, Gif-sur-Yvette, 91198, France.
| |
Collapse
|
18
|
Montero-Mendieta S, Tan K, Christmas MJ, Olsson A, Vilà C, Wallberg A, Webster MT. The genomic basis of adaptation to high-altitude habitats in the eastern honey bee (Apis cerana). Mol Ecol 2019; 28:746-760. [PMID: 30576015 DOI: 10.1111/mec.14986] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023]
Abstract
The eastern honey bee (Apis cerana) is of central importance for agriculture in Asia. It has adapted to a wide variety of environmental conditions across its native range in southern and eastern Asia, which includes high-altitude regions. eastern honey bees inhabiting mountains differ morphologically from neighbouring lowland populations and may also exhibit differences in physiology and behaviour. We compared the genomes of 60 eastern honey bees collected from high and low altitudes in Yunnan and Gansu provinces, China, to infer their evolutionary history and to identify candidate genes that may underlie adaptation to high altitude. Using a combination of FST -based statistics, long-range haplotype tests and population branch statistics, we identified several regions of the genome that appear to have been under positive selection. These candidate regions were strongly enriched for coding sequences and had high haplotype homozygosity and increased divergence specifically in highland bee populations, suggesting they have been subjected to recent selection in high-altitude habitats. Candidate loci in these genomic regions included genes related to reproduction and feeding behaviour in honey bees. Functional investigation of these candidate loci is necessary to fully understand the mechanisms of adaptation to high-altitude habitats in the eastern honey bee.
Collapse
Affiliation(s)
| | - Ken Tan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Hewlett SE, Delahunt Smoleniec JD, Wareham DM, Pyne TM, Barron AB. Biogenic amine modulation of honey bee sociability and nestmate affiliation. PLoS One 2018; 13:e0205686. [PMID: 30359390 PMCID: PMC6201892 DOI: 10.1371/journal.pone.0205686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines modulate a range of social behaviours, including sociability and mechanisms of group cohesion, in both vertebrates and invertebrates. Here, we tested if the biogenic amines modulate honey bee (Apis mellifera) sociability and nestmate affiliation. We examined the consequences of treatments with biogenic amines, agonists and antagonists on a bee’s approach to, and subsequent social interactions with, conspecifics in both naturally hive-reared bees and isolated bees. We used two different treatment methods. Bees were first treated topically with compounds dissolved in the solvent dimethylformamide (dMF) applied to the dorsal thorax, but dMF had a significant effect on the locomotion and behaviour of the bees during the behavioural test that interfered with their social responses. Our second method used microinjection to deliver biogenic amines to the head capsule via the ocellar tract. Microinjection of dopamine and a dopamine antagonist had strong effects on bee sociability, likelihood of interaction with bees, and nestmate affiliation. Octopamine treatment reduced social interaction with other bees, and serotonin increased the likelihood of social interactions. HPLC measurements showed that isolation reduced brain levels of biogenic amines compared to hive-reared bees. Our findings suggest that dopamine is an important neurochemical component of social motivation in bees. This finding advances a comparative understanding of the processes of social evolution.
Collapse
Affiliation(s)
- Susie E. Hewlett
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail: (SH); (AB)
| | | | - Deborah M. Wareham
- Department of Health Professions, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas M. Pyne
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail: (SH); (AB)
| |
Collapse
|
20
|
|
21
|
Gage SL, Kramer C, Calle S, Carroll M, Heien M, DeGrandi-Hoffman G. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees ( Apis mellifera). ACTA ACUST UNITED AC 2018; 221:jeb.161489. [PMID: 29361577 DOI: 10.1242/jeb.161489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Nosema sp. is an internal parasite of the honey bee, Apis mellifera, and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae, as well as the neurochemistry of odor learning and memory under normal and parasitic conditions.
Collapse
Affiliation(s)
- Stephanie L Gage
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA .,Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Catherine Kramer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Samantha Calle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Mark Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Michael Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA.,Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
22
|
Scheiner R, Entler BV, Barron AB, Scholl C, Thamm M. The Effects of Fat Body Tyramine Level on Gustatory Responsiveness of Honeybees ( Apis mellifera) Differ between Behavioral Castes. Front Syst Neurosci 2017; 11:55. [PMID: 28848405 PMCID: PMC5550709 DOI: 10.3389/fnsys.2017.00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/17/2017] [Indexed: 11/13/2022] Open
Abstract
Division of labor is a hallmark of social insects. In the honeybee (Apis mellifera) each sterile female worker performs a series of social tasks. The most drastic changes in behavior occur when a nurse bee, who takes care of the brood and the queen in the hive, transitions to foraging behavior. Foragers provision the colony with pollen, nectar or water. Nurse bees and foragers differ in numerous behaviors, including responsiveness to gustatory stimuli. Differences in gustatory responsiveness, in turn, might be involved in regulating division of labor through differential sensory response thresholds. Biogenic amines are important modulators of behavior. Tyramine and octopamine have been shown to increase gustatory responsiveness in honeybees when injected into the thorax, thereby possibly triggering social organization. So far, most of the experiments investigating the role of amines on gustatory responsiveness have focused on the brain. The potential role of the fat body in regulating sensory responsiveness and division of labor has large been neglected. We here investigated the role of the fat body in modulating gustatory responsiveness through tyramine signaling in different social roles of honeybees. We quantified levels of tyramine, tyramine receptor gene expression and the effect of elevating fat body tyramine titers on gustatory responsiveness in both nurse bees and foragers. Our data suggest that elevating the tyramine titer in the fat body pharmacologically increases gustatory responsiveness in foragers, but not in nurse bees. This differential effect of tyramine on gustatory responsiveness correlates with a higher natural gustatory responsiveness of foragers, with a higher tyramine receptor (Amtar1) mRNA expression in fat bodies of foragers and with lower baseline tyramine titers in fat bodies of foragers compared to those of nurse bees. We suggest that differential tyramine signaling in the fat body has an important role in the plasticity of division of labor through changing gustatory responsiveness.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Brian V Entler
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Christina Scholl
- Behavioral Physiology and Sociobiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology, Biocenter, University of WürzburgWürzburg, Germany
| |
Collapse
|
23
|
Wallberg A, Schöning C, Webster MT, Hasselmann M. Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees. PLoS Genet 2017; 13:e1006792. [PMID: 28542163 PMCID: PMC5444601 DOI: 10.1371/journal.pgen.1006792] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/01/2017] [Indexed: 01/14/2023] Open
Abstract
Understanding the genetic basis of adaption is a central task in biology. Populations of the honey bee Apis mellifera that inhabit the mountain forests of East Africa differ in behavior and morphology from those inhabiting the surrounding lowland savannahs, which likely reflects adaptation to these habitats. We performed whole genome sequencing on 39 samples of highland and lowland bees from two pairs of populations to determine their evolutionary affinities and identify the genetic basis of these putative adaptations. We find that in general, levels of genetic differentiation between highland and lowland populations are very low, consistent with them being a single panmictic population. However, we identify two loci on chromosomes 7 and 9, each several hundred kilobases in length, which exhibit near fixation for different haplotypes between highland and lowland populations. The highland haplotypes at these loci are extremely rare in samples from the rest of the world. Patterns of segregation of genetic variants suggest that recombination between haplotypes at each locus is suppressed, indicating that they comprise independent structural variants. The haplotype on chromosome 7 harbors nearly all octopamine receptor genes in the honey bee genome. These have a role in learning and foraging behavior in honey bees and are strong candidates for adaptation to highland habitats. Molecular analysis of a putative breakpoint indicates that it may disrupt the coding sequence of one of these genes. Divergence between the highland and lowland haplotypes at both loci is extremely high suggesting that they are ancient balanced polymorphisms that greatly predate divergence between the extant honey bee subspecies. Identifying the genes and genetic changes responsible for environmental adaptation is an important step towards understanding how species evolve. The honey bee Apis mellifera has adapted to a variety of habitats across its worldwide geographical distribution. Here we aim to identify the genetic basis of adaptation in honey bees living at high altitudes in the mountains of East Africa, which differ in appearance and behavior from their lowland relatives. We compare whole genome sequences from highland and lowland populations and find that, although in general they are extremely similar, there are two specific chromosomal regions (representing 1.4% of the genome) where they are strongly differentiated. These regions appear to represent structural rearrangements that are strongly correlated with altitude and contain many genes. One of these genomic regions harbors a set of octopamine receptor genes, which we hypothesize regulate differences in learning and foraging behavior between highland and lowland bees. The extremely high divergence between highland and lowland genetic variants in these regions indicates that they have an ancient origin and were likely to have been involved in environmental adaptation even before honey bees came to inhabit their current range.
Collapse
Affiliation(s)
- Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Matthew T. Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (MTW); (MH)
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- * E-mail: (MTW); (MH)
| |
Collapse
|
24
|
Carroll MJ, Brown N, Goodall C, Downs AM, Sheenan TH, Anderson KE. Honey bees preferentially consume freshly-stored pollen. PLoS One 2017; 12:e0175933. [PMID: 28430801 PMCID: PMC5400263 DOI: 10.1371/journal.pone.0175933] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 04/03/2017] [Indexed: 11/19/2022] Open
Abstract
Honey bees (Apis mellifera) collect and store both honey and pollen in preserved forms. Pollen storage involves the addition of honey or nectar and oral secretions to pollen granules. It is controversial whether the duration of pollen storage alters the palatability or nutritive value of the pollen storage medium. We examined how bees utilize different-aged stored pollen during an extended pollen flow. The deposition of pollen into wax cells and subsequent consumption were monitored daily on 18 brood frames from 6 colonies over an 8d observation period. Despite a greater abundance of older stored pollen cells on brood frames, bees showed a marked preference for the consumption of freshly-stored pollen. Two to four day-old pollen cell contents were significantly more likely to be consumed, while pollen cell contents more than seven days old were eaten at much lower rates. Similar experiments that controlled for cell abundance and spatial effects using cage assays yielded the same result. One day-old stored pollen was consumed approximately three times more often than 10d-old stored pollen, and two times more often than 5d-old stored pollen. These consumption preferences for freshly-stored pollen occurred despite a lack of clear developmental advantages. Young adult workers reared for 7 days on 1d-, 5d-, or 10d-old stored pollen showed no difference in body mass, stored pollen consumption, hindgut fecal material accumulation, or hypopharyngeal gland (HPG) protein titers, suggesting that different-aged pollen stores did not vary in their nutritional value to adult bees. These findings are inconsistent with the hypothesis promoting a period of microbially-mediated, “beebread maturation” that results in greater palatability or nutritive value for aged pollen stores. Rather, stored pollen that is not eaten in the first few days accumulates as excess stores preserved in a less preferred, but nutritionally-similar state.
Collapse
Affiliation(s)
- Mark J. Carroll
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Nicholas Brown
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Craig Goodall
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Alexandra M. Downs
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Timothy H. Sheenan
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Kirk E. Anderson
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
- Center for Insect Science, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
25
|
Scheiner R, Reim T, Søvik E, Entler BV, Barron AB, Thamm M. Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. ACTA ACUST UNITED AC 2017; 220:1443-1450. [PMID: 28167800 DOI: 10.1242/jeb.152496] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/30/2017] [Indexed: 01/12/2023]
Abstract
Honeybees are well known for their complex division of labor. Each bee sequentially performs a series of social tasks during its life. The changes in social task performance are linked to gross differences in behavior and physiology. We tested whether honeybees performing different social tasks (nursing versus foraging) would differ in their gustatory responsiveness and associative learning behavior in addition to their daily tasks in the colony. Further, we investigated the role of the biogenic amine tyramine and its receptors in the behavior of nurse bees and foragers. Tyramine is an important insect neurotransmitter, which has long been neglected in behavioral studies as it was believed to only act as the metabolic precursor of the better-known amine octopamine. With the increasing number of characterized tyramine receptors in diverse insects, we need to understand the functions of tyramine on its own account. Our findings suggest an important role for tyramine and its two receptors in regulating honeybee gustatory responsiveness, social organization and learning behavior. Foragers, which were more responsive to gustatory stimuli than nurse bees and performed better in appetitive learning, also differed from nurse bees in their tyramine brain titers and in the mRNA expression of a tyramine receptor in the brain. Pharmacological activation of tyramine receptors increased gustatory responsiveness of nurse bees and foragers and improved appetitive learning in nurse bees. These data suggest that a large part of the behavioral differences between honeybees may be directly linked to tyramine signaling in the brain.
Collapse
Affiliation(s)
- Ricarda Scheiner
- University of Würzburg, Behavioral Physiology & Sociobiology, Biocenter, Am Hubland, Würzburg 97074, Germany .,University of Potsdam, Institute for Biochemistry and Biology, Potsdam 14476, Germany
| | - Tina Reim
- University of Potsdam, Institute for Biochemistry and Biology, Potsdam 14476, Germany
| | - Eirik Søvik
- Macquarie University, Department of Biological Sciences, Sydney, NSW 2109, Australia.,Volda University College, Department of Science and Mathematics, Volda 6100, Norway
| | - Brian V Entler
- Macquarie University, Department of Biological Sciences, Sydney, NSW 2109, Australia
| | - Andrew B Barron
- Macquarie University, Department of Biological Sciences, Sydney, NSW 2109, Australia
| | - Markus Thamm
- University of Würzburg, Behavioral Physiology & Sociobiology, Biocenter, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
26
|
Urlacher E, Tarr IS, Mercer AR. Social modulation of stress reactivity and learning in young worker honey bees. PLoS One 2014; 9:e113630. [PMID: 25470128 PMCID: PMC4254648 DOI: 10.1371/journal.pone.0113630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval.
Collapse
Affiliation(s)
- Elodie Urlacher
- Department of Zoology, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
- * E-mail:
| | - Ingrid S. Tarr
- Department of Zoology, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - Alison R. Mercer
- Department of Zoology, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
27
|
Reim T, Scheiner R. Division of labour in honey bees: age- and task-related changes in the expression of octopamine receptor genes. INSECT MOLECULAR BIOLOGY 2014; 23:833-841. [PMID: 25187440 DOI: 10.1111/imb.12130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The honey bee (Apis mellifera L.) has developed into an important ethological model organism for social behaviour and behavioural plasticity. Bees perform a complex age-dependent division of labour with the most pronounced behavioural differences occurring between in-hive bees and foragers. Whereas nurse bees, for example, stay inside the hive and provide the larvae with food, foragers leave the hive to collect pollen and nectar for the entire colony. The biogenic amine octopamine appears to play a major role in division of labour but the molecular mechanisms involved are unknown. We here investigated the role of two characterized octopamine receptors in honey bee division of labour. AmOctαR1 codes for a Ca(2+) -linked octopamine receptor. AmOctβR3/4 codes for a cyclic adenosine monophosphate-coupled octopamine receptor. Messenger RNA expression of AmOctαR1 in different brain neuropils correlates with social task, whereas expression of AmOctβR3/4 changes with age rather than with social role per se. Our results for the first time link the regulatory role of octopamine in division of labour to specific receptors and brain regions. They are an important step forward in our understanding of complex behavioural organization in social groups.
Collapse
Affiliation(s)
- T Reim
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
28
|
Scheiner R, Steinbach A, Claßen G, Strudthoff N, Scholz H. Octopamine indirectly affects proboscis extension response habituation in Drosophila melanogaster by controlling sucrose responsiveness. JOURNAL OF INSECT PHYSIOLOGY 2014; 69:107-117. [PMID: 24819202 DOI: 10.1016/j.jinsphys.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Octopamine is an important neurotransmitter in insects with multiple functions. Here, we investigated the role of this amine in a simple form of learning (habituation) in the fruit fly Drosophila melanogaster. Specifically, we asked if octopamine is necessary for normal habituation of a proboscis extension response (PER) to different sucrose concentrations. In addition, we analyzed the relationship between responsiveness to sucrose solutions applied to the tarsus and habituation of the proboscis extension response in the same individual. The Tyramine-β-hydroxylase (Tβh) mutant lacks the enzyme catalyzing the final step of octopamine synthesis. This mutant was significantly less responsive to sucrose than controls. The reduced responsiveness directly led to faster habituation. Systemic application of octopamine or induction of octopamine synthesis by Tβh expression in a cluster of octopaminergic neurons within the suboesophageal ganglion restored sucrose responsiveness and habituation of octopamine mutants to control level. Further analyses imply that the reduced sucrose responsiveness of Tβh mutants is related to a lower sucrose preference, probably due to a changed carbohydrate metabolism, since Tβh mutants survived significantly longer under starved conditions. These findings suggest a pivotal role for octopamine in regulating sucrose responsiveness in fruit flies. Further, octopamine indirectly influences non-associative learning and possibly associative appetitive learning by regulating the evaluation of the sweet component of a sucrose reward.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Universität Potsdam, Institut für Biochemie und Biologie, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Anne Steinbach
- Universität Potsdam, Institut für Biochemie und Biologie, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gerbera Claßen
- Universität zu Köln, Institut für Zoologie, Zülpicher Strasse 47b, Biozentrum, 50674 Köln, Germany
| | - Nicole Strudthoff
- Universität zu Köln, Institut für Zoologie, Zülpicher Strasse 47b, Biozentrum, 50674 Köln, Germany
| | - Henrike Scholz
- Universität zu Köln, Institut für Zoologie, Zülpicher Strasse 47b, Biozentrum, 50674 Köln, Germany.
| |
Collapse
|
29
|
Pamir E, Szyszka P, Scheiner R, Nawrot MP. Rapid learning dynamics in individual honeybees during classical conditioning. Front Behav Neurosci 2014; 8:313. [PMID: 25309366 PMCID: PMC4164006 DOI: 10.3389/fnbeh.2014.00313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023] Open
Abstract
Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla–Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.
Collapse
Affiliation(s)
- Evren Pamir
- Bernstein Center for Computational Neuroscience Berlin, Germany ; Neuroinformatics and Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin Germany ; Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Paul Szyszka
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Ricarda Scheiner
- Department of Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg Würzburg, Germany
| | - Martin P Nawrot
- Bernstein Center for Computational Neuroscience Berlin, Germany ; Neuroinformatics and Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin Germany
| |
Collapse
|
30
|
Scheiner R, Toteva A, Reim T, Søvik E, Barron AB. Differences in the phototaxis of pollen and nectar foraging honey bees are related to their octopamine brain titers. Front Physiol 2014; 5:116. [PMID: 24734024 PMCID: PMC3975121 DOI: 10.3389/fphys.2014.00116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
The biogenic amine octopamine is an important neuromodulator, neurohormone and neurotransmitter in insects. We here investigate the role of octopamine signaling in honey bee phototaxis. Our results show that groups of bees differ naturally in their phototaxis. Pollen forgers display a lower light responsiveness than nectar foragers. The lower phototaxis of pollen foragers coincides with higher octopamine titers in the optic lobes but is independent of octopamine receptor gene expression. Increasing octopamine brain titers reduces responsiveness to light, while tyramine application enhances phototaxis. These findings suggest an involvement of octopamine signaling in honey bee phototaxis and possibly division of labor, which is hypothesized to be based on individual differences in sensory responsiveness.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Department of Biochemistry and Biology, University of Potsdam Potsdam, Germany
| | - Anna Toteva
- Department of Biochemistry and Biology, University of Potsdam Potsdam, Germany
| | - Tina Reim
- Department of Biochemistry and Biology, University of Potsdam Potsdam, Germany
| | - Eirik Søvik
- Department of Biological Sciences, Macquarie University Sydney, NSW, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
31
|
Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1117-27. [PMID: 24072064 DOI: 10.1007/s00359-013-0854-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Division of labor among eusocial insect workers is a hallmark of advanced social organization, but its underlying neural mechanisms are not well understood. We investigated whether differences in whole-brain levels of the biogenic amines dopamine (DA), serotonin (5HT), and octopamine (OA) are associated with task specialization and genotype in similarly sized and aged workers of the leaf-cutting ant Acromyrmex echinatior, a polyandrous species in which genotype correlates with worker task specialization. We compared amine levels of foragers and waste management workers to test for an association with worker task, and young in-nest workers across patrilines to test for a genetic influence on brain amine levels. Foragers had higher levels of DA and OA and a higher OA:5HT ratio than waste management workers. Patrilines did not significantly differ in amine levels or their ratios, although patriline affected worker body size, which correlated with amine levels despite the small size range sampled. Levels of all three amines were correlated within individuals in both studies. Among patrilines, mean levels of DA and OA, and OA and 5HT were also correlated. Our results suggest that differences in biogenic amines could regulate worker task specialization, but may be not be significantly affected by genotype.
Collapse
|
32
|
Improved Cholinergic Transmission is Detrimental to Behavioural Plasticity in Honeybees (Apis mellifera). BIOLOGY 2012; 1:508-20. [PMID: 24832506 PMCID: PMC4009804 DOI: 10.3390/biology1030508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 11/29/2022]
Abstract
Unravelling the role of neuromessenger processes in learning and memory has long interested researchers. We investigated the effects of an acetylcholinesterase blocker, Methyl Parathion (MeP), on honeybee learning. We used visual and olfactory tasks to test whether MeP had a detrimental effect on the acquisition of new knowledge when this new knowledge contradicts previously acquired one. Our results indicate that treatment with MeP prior to conditioning was significantly detrimental to the acquisition of incongruous (but not irrelevant or congruous) new knowledge due to improved recall. The neurobiological and ecotoxicological consequences of these results are discussed.
Collapse
|
33
|
|