1
|
Cribellier A, Camilo LH, Goyal P, Muijres FT. Mosquitoes escape looming threats by actively flying with the bow wave induced by the attacker. Curr Biol 2024; 34:1194-1205.e7. [PMID: 38367617 DOI: 10.1016/j.cub.2024.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
To detect and escape looming threats, night-flying insects must rely on other senses than vision alone. Nocturnal mosquitoes can evade looming objects in the dark, but how they achieve this is still unknown. Here, we show how night-active female malaria mosquitoes escape from rapidly looming objects that simulate defensive actions of blood-hosts. First, we quantified the escape performance of flying mosquitoes from an event-triggered mechanical swatter, showing that mosquitoes use swatter-induced airflow to increase their escape success. Secondly, we used high-speed videography and deep-learning-based tracking to analyze escape flights in detail, showing that mosquitoes use banked turns to evade the threat. By combining escape kinematics data with numerical simulations of attacker-induced airflow and a mechanistic movement model, we unraveled how mosquitoes control these banked evasive maneuvers: they actively steer away from the danger, and then passively travel with the bow wave produced by the attacker. Our results demonstrate that night-flying mosquitoes can detect looming objects when visual cues are minimal, suggesting that they use attacker-induced airflow both to detect the danger and as a fluid medium to move with away from the threat. This shows that escape strategies of flying insects are more complex than previous visually induced escape flight studies suggest. As most insects are of similar or smaller sizes than mosquitoes, comparable escape strategies are expected among millions of flying insect species. The here-observed escape maneuvers are distinct from those of mosquitoes escaping from odor-baited traps, thus providing new insights for the development of novel trapping techniques for integrative vector management.
Collapse
Affiliation(s)
- Antoine Cribellier
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Leonardo Honfi Camilo
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Pulkit Goyal
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
2
|
Mulder-Rosi J, Miller JP. ENCODING OF SMALL-SCALE AIR MOTION DYNAMICS IN THE CRICKET ACHETA DOMESTICUS. J Neurophysiol 2022; 127:1185-1197. [PMID: 35353628 PMCID: PMC9018005 DOI: 10.1152/jn.00042.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cercal sensory system of the cricket mediates the detection, localization and identification of air current signals generated by predators, mates and competitors. This mechanosensory system has been used extensively for experimental and theoretical studies of sensory coding at the cellular and system levels. It is currently thought that sensory interneurons in the terminal abdominal ganglion extract information about the direction, velocity, and acceleration of the air currents in the animal's immediate environment, and project a coarse-coded representation of those parameters to higher centers. All feature detection is thought to be carried out in higher ganglia by more complex, specialized circuits. We present results that force a substantial revision of current hypotheses. Using multiple extracellular recordings and a special sensory stimulation device, we demonstrate that four well-studied interneurons in this system respond with high sensitivity and selectivity to complex dynamic multi-directional features of air currents which have a spatial scale smaller than the physical dimensions of the cerci. The INs showed much greater sensitivity for these features than for unidirectional bulk-flow stimuli used in previous studies. Thus, in addition to participating in the ensemble encoding of bulk air flow stimulus characteristics, these interneurons are capable of operating as feature detectors for naturalistic stimuli. In this sense, these interneurons are encoding and transmitting information about different aspects of their stimulus environment: they are multiplexing information. Major aspects of the stimulus-response specificity of these interneurons can be understood from the dendritic anatomy and connectivity with the sensory afferent map.
Collapse
Affiliation(s)
- Jonas Mulder-Rosi
- Deptartment of Microbiology and Immunology, Montana State University, Bozeman Montana, United States
| | - John P Miller
- Deptartment of Microbiology and Immunology, Montana State University, Bozeman Montana, United States
| |
Collapse
|
3
|
Diurnal and nocturnal mosquitoes escape looming threats using distinct flight strategies. Curr Biol 2022; 32:1232-1246.e5. [DOI: 10.1016/j.cub.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022]
|
4
|
Sato N, Shidara H, Ogawa H. Action selection based on multiple-stimulus aspects in wind-elicited escape behavior of crickets. Heliyon 2022; 8:e08800. [PMID: 35111985 PMCID: PMC8790502 DOI: 10.1016/j.heliyon.2022.e08800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
Escape behavior is essential for animals to avoid attacks by predators. In some species, multiple escape responses could be employed. However, it remains unknown what aspects of threat stimuli affect the choice of an escape response. We focused on two distinct escape responses (running and jumping) to short airflow in crickets and examined the effects of multiple stimulus aspects including the angle, velocity, and duration on the choice between these responses. The faster and longer the airflow, the more frequently the crickets jumped. This meant that the choice of an escape response depends on both the velocity and duration of the stimulus and suggests that the neural basis for choosing an escape response includes the integration process of multiple stimulus parameters. In addition, the moving speed and distance changed depending on the stimulus velocity and duration for running but not for jumping. Running away would be more adaptive escape behavior.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
5
|
Dalgaty T, Miller JP, Vianello E, Casas J. Bio-Inspired Architectures Substantially Reduce the Memory Requirements of Neural Network Models. Front Neurosci 2021; 15:612359. [PMID: 33708069 PMCID: PMC7940538 DOI: 10.3389/fnins.2021.612359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
We propose a neural network model for the jumping escape response behavior observed in the cricket cercal sensory system. This sensory system processes low-intensity air currents in the animal's immediate environment generated by predators, competitors, and mates. Our model is inspired by decades of physiological and anatomical studies. We compare the performance of our model with a model derived through a universal approximation, or a generic deep learning, approach, and demonstrate that, to achieve the same performance, these models required between one and two orders of magnitude more parameters. Furthermore, since the architecture of the bio-inspired model is defined by a set of logical relations between neurons, we find that the model is open to interpretation and can be understood. This work demonstrates the potential of incorporating bio-inspired architectural motifs, which have evolved in animal nervous systems, into memory efficient neural network models.
Collapse
Affiliation(s)
| | - John P Miller
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | | | - Jérôme Casas
- Insect Biology Research Institute IRBI, UMR CNRS 7261, Université de Tours, Tours, France
| |
Collapse
|
6
|
Jovanic T, Winding M, Cardona A, Truman JW, Gershow M, Zlatic M. Neural Substrates of Drosophila Larval Anemotaxis. Curr Biol 2019; 29:554-566.e4. [PMID: 30744969 PMCID: PMC6380933 DOI: 10.1016/j.cub.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 11/29/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
Abstract
Animals use sensory information to move toward more favorable conditions. Drosophila larvae can move up or down gradients of odors (chemotax), light (phototax), and temperature (thermotax) by modulating the probability, direction, and size of turns based on sensory input. Whether larvae can anemotax in gradients of mechanosensory cues is unknown. Further, although many of the sensory neurons that mediate taxis have been described, the central circuits are not well understood. Here, we used high-throughput, quantitative behavioral assays to demonstrate Drosophila larvae anemotax in gradients of wind speeds and to characterize the behavioral strategies involved. We found that larvae modulate the probability, direction, and size of turns to move away from higher wind speeds. This suggests that similar central decision-making mechanisms underlie taxis in somatosensory and other sensory modalities. By silencing the activity of single or very few neuron types in a behavioral screen, we found two sensory (chordotonal and multidendritic class III) and six nerve cord neuron types involved in anemotaxis. We reconstructed the identified neurons in an electron microscopy volume that spans the entire larval nervous system and found they received direct input from the mechanosensory neurons or from each other. In this way, we identified local interneurons and first- and second-order subesophageal zone (SEZ) and brain projection neurons. Finally, silencing a dopaminergic brain neuron type impairs anemotaxis. These findings suggest that anemotaxis involves both nerve cord and brain circuits. The candidate neurons and circuitry identified in our study provide a basis for future detailed mechanistic understanding of the circuit principles of anemotaxis.
Collapse
Affiliation(s)
- Tihana Jovanic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Michael Winding
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, UK
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Marc Gershow
- Department of Physics, New York University, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, New York University, New York, NY, USA.
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, Cambridge University, Cambridge, UK.
| |
Collapse
|
7
|
Steinmann T, Casas J. The morphological heterogeneity of cricket flow-sensing hairs conveys the complex flow signature of predator attacks. J R Soc Interface 2018. [PMID: 28637919 DOI: 10.1098/rsif.2017.0324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Arthropod flow-sensing hair length ranges over more than an order of magnitude, from 0.1 to 5 mm. Previous studies repeatedly identified the longest hairs as the most sensitive, but recent studies identified the shortest hairs as the most responsive. We resolved this apparent conflict by proposing a new model, taking into account both the initial and long-term aspects of the flow pattern produced by a lunging predator. After the estimation of the mechanical parameters of hairs, we measured the flow produced by predator mimics and compared the predicted and observed values of hair displacements in this flow. Short and long hairs respond over different time scales during the course of an attack. By harbouring a canopy of hairs of different lengths, forming a continuum, the insect can fractionize these moments. Short hairs are more agile, but are less able to harvest energy from the air. This may result in longer hairs firing their neurons earlier, despite their slower deflection. The complex interplay between hair agility and sensitivity is also modulated by the predator distance and the attack speed, characteristics defining flow properties. We conclude that the morphological heterogeneity of the hair canopy mirrors the flow complexity of an entire attack, from launch to grasp.
Collapse
Affiliation(s)
- Thomas Steinmann
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université François Rabelais, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université François Rabelais, 37200 Tours, France
| |
Collapse
|
8
|
Affiliation(s)
- P. A. Lagos
- Department of Biological Sciences Macquarie University North Ryde Sydney NSW Australia
| |
Collapse
|
9
|
Are males more scared of predators? Differential change in metabolic rate between males and females under predation risk. Physiol Behav 2017; 173:110-115. [PMID: 28167146 DOI: 10.1016/j.physbeh.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/16/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022]
Abstract
The non-consumptive effects of predation contribute to reduce preys' fitness. In this way, predation imposes a cost to animals, not only through direct consumption, but also as an energetic cost. One way used to estimate this cost in the past has been to measure the production of CO2 to estimate the change in metabolic rate because of predation. It has been proposed that this change is mediated by the insect stress neurohormone octopamine. Here we study the change in metabolic rate of the black field cricket (Teleogryllus commodus), and how the production of CO2 varies when a chemical cue from a sympatric predator is added. We hypothesised that after the addition of a predatory cue, the metabolic rate will increase. Moreover, since the pressure of predation is stronger on females, we propose that females will have a greater increase in the CO2 produce as consequence of the added cues from the predator. Our results confirmed our first hypothesis, showing an almost two-fold increase in CO2 when the predatory cue was added. However, males were the ones that showed a greater increase, in opposition to our second hypothesis. We put these results in the context of the escape theory and, in particular, the "landscape of fear" hypothesis. Also, because the timing between the increase of metabolic rate we measure here and the release of octopamine reported in previous studies do not match, we reject the idea that octopamine causes the increase in metabolism.
Collapse
|
10
|
Casas J, Steinmann T. Predator-induced flow disturbances alert prey, from the onset of an attack. Proc Biol Sci 2015; 281:rspb.2014.1083. [PMID: 25030986 DOI: 10.1098/rspb.2014.1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many prey species, from soil arthropods to fish, perceive the approach of predators, allowing them to escape just in time. Thus, prey capture is as important to predators as prey finding. We extend an existing framework for understanding the conjoint trajectories of predator and prey after encounters, by estimating the ratio of predator attack and prey danger perception distances, and apply it to wolf spiders attacking wood crickets. Disturbances to air flow upstream from running spiders, which are sensed by crickets, were assessed by computational fluid dynamics with the finite-elements method for a much simplified spider model: body size, speed and ground effect were all required to obtain a faithful representation of the aerodynamic signature of the spider, with the legs making only a minor contribution. The relationship between attack speed and the maximal distance at which the cricket can perceive the danger is parabolic; it splits the space defined by these two variables into regions differing in their values for this ratio. For this biological interaction, the ratio is no greater than one, implying immediate perception of the danger, from the onset of attack. Particular attention should be paid to the ecomechanical aspects of interactions with such small ratio, because of the high degree of bidirectional coupling of the behaviour of the two protagonists. This conclusion applies to several other predator-prey systems with sensory ecologies based on flow sensing, in air and water.
Collapse
Affiliation(s)
- Jérôme Casas
- Institut Universitaire de France IUF and Institut de Recherche sur la Biologie de l'Insecte, University of Tours, IRBI UMR CNRS 7261, Av. Monge, 37200 Tours, France
| | - Thomas Steinmann
- Institut Universitaire de France IUF and Institut de Recherche sur la Biologie de l'Insecte, University of Tours, IRBI UMR CNRS 7261, Av. Monge, 37200 Tours, France
| |
Collapse
|
11
|
Jacob PF, Hedwig B. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer). J Neurophysiol 2015; 114:2649-60. [PMID: 26334014 PMCID: PMC4643095 DOI: 10.1152/jn.00669.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022] Open
Abstract
The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation.
Collapse
Affiliation(s)
- Pedro F Jacob
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; and Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; and
| |
Collapse
|
12
|
Pfeiffer K, French AS. Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor. Front Physiol 2015; 6:303. [PMID: 26578975 PMCID: PMC4626565 DOI: 10.3389/fphys.2015.00303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
13
|
Morice S, Pincebourde S, Darboux F, Kaiser W, Casas J. Predator-prey pursuit-evasion games in structurally complex environments. Integr Comp Biol 2013; 53:767-79. [PMID: 23720527 DOI: 10.1093/icb/ict061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pursuit and evasion behaviors in many predator-prey encounters occur in a geometrically structured environment. The physical structures in the environment impose strong constraints on the perception and behavioral responses of both antagonists. Nevertheless, no experimental or theoretical study has tackled the issue of quantifying the role of the habitat's architecture on the joint trajectories during a predator-prey encounter. In this study, we report the influence of microtopography of forest leaf litter on the pursuit-evasion trajectories of wolf spiders Pardosa sp. attacking the wood cricket Nemobius sylvestris. Fourteen intact leaf litter samples of 1 m × 0.5 m were extracted from an oak-beech forest floor in summer and winter, with later samples having the most recently fallen leaves. Elevation was mapped at a spatial resolution of 0.5 mm using a laser scanner. Litter structuring patterns were identified by height transects and experimental semi-variograms. Detailed analysis of all visible leaf-fragments of one sample enabled us to relate the observed statistical patterns to the underlying geometry of individual elements. Video recording of pursuit-evasion sequences in arenas with flat paper or leaf litter enabled us to estimate attack and fleeing distances as a function of substrate. The compaction index, the length of contiguous flat surfaces, and the experimental variograms showed that the leaf litter was smoother in summer than in winter. Thus, weathering as well as biotic activities compacted and flattened the litter over time. We found good agreement between the size of the structuring unit of leaf litter and the distance over which attack and escape behaviors both were initiated (both ∼3 cm). There was a four-fold topographical effect on pursuit-escape sequences; compared with a flat surface, leaf litter (1) greatly reduced the likelihood of launching a pursuit, (2) reduced pursuit and escape distances by half, (3) put prey and predator on par in terms of pursuit and escape distances, and (4) reduced the likelihood of secondary pursuits, after initial escape of the prey, to nearly zero. Thus, geometry of the habitat strongly modulates the rules of pursuit-evasion in predator-prey interactions in the wild.
Collapse
Affiliation(s)
- Sylvie Morice
- *Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, 37200 Tours, France; INRA, UR0272, UR Science du sol, Centre de recherche Val de Loire, CS 40001, F-45075 Orléans Cedex 2, France
| | | | | | | | | |
Collapse
|