1
|
Li P, Liu W, Lu W, Wang J. Biochemical indices, gene expression, and SNPs associated with salinity adaptation in juvenile chum salmon ( Oncorhynchus keta) as determined by comparative transcriptome analysis. PeerJ 2022; 10:e13585. [PMID: 36117540 PMCID: PMC9477081 DOI: 10.7717/peerj.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Chum salmon (Oncorhynchus keta) migrate from freshwater to saltwater, and incur developmental, physiological and molecular adaptations as the salinity changes. The molecular regulation for salinity adaptation in chum salmon is currently not well defined. In this study, 1-g salmon were cultured under 0 (control group, D0), 8‰ (D8), 16‰ (D16), and 24‰ (D24) salinity conditions for 42 days. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in the gill first increased and then decreased in response to higher salinity environments where D8 exhibited the highest Na+/K+ATPase and Ca2+/Mg2+-ATPase activity and D24 exhibited the lowest. Alkaline phosphatase (AKP) activity was elevated in all salinity treatment groups relative to controls, while no significant difference in acid phosphatase (ACP) activity was observed across treatment groups. De novo transcriptome sequencing in the D0 and D24 groups using RNA-Seq analysis identified 187,836 unigenes, of which 2,143 were differentially expressed in response to environmental salinity (71 up-regulated and 2,072 down-regulated). A total of 56,020 putative single nucleotide polymorphisms (SNPs) were also identified. The growth, development, osmoregulation and maturation factors of N-methyl-D-aspartate receptors (nmdas) expressed in memory formation, as well as insulin-like growth factor 1 (igf-1) and igf-binding proteins (igfbps) were further investigated using targeted qRT-PCR. The lowest expression of all these genes occurred in the low salinity environments (D8 or D16), while their highest expression occurred in the high salinity environments (D24). These results provide preliminary insight into salinity adaptation in chum salmon and a foundation for the development of marker-assisted breeding for this species.
Collapse
Affiliation(s)
- Peilun Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wei Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wanqiao Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Jilong Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| |
Collapse
|
2
|
Zhao L, He K, Xiao Q, Liu Q, Luo W, Luo J, Fu H, Li J, Wu X, Du J, Gong Q, Wang X, Yang S. Comparative transcriptome profiles of large and small bodied large-scale loaches cultivated in paddy fields. Sci Rep 2021; 11:4936. [PMID: 33654201 PMCID: PMC7925675 DOI: 10.1038/s41598-021-84519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Fish culture in paddy fields is a traditional aquaculture mode, which has a long history in East Asia. Large-scale loach (Paramisgurnus dabryanus) fast growth is suitable for paddy fields aquaculture in China. The objective of this study was to identify differential expression genes (DEGs) in the brain, liver and muscle tissues between large (LG, top 5% of maximum total length) and small (SG, top 5% of minimum total length) groups using RNA-seq. In total, 150 fish were collected each week and 450 fish were collected at twelfth week from three paddy fields for all the experimental. Histological observation found that the muscle fibre diameter of LG loaches was greater than that of SG loaches. Transcriptome results revealed that the high expression genes (HEGs) in LG loaches (fold change ≥ 2, p < 0.05) were mainly concentrated in metabolic pathways, such as "Thyroid hormone signalling pathway", "Citrate cycle (TCA cycle)", "Carbon metabolism", "Fatty acid metabolism", and "Cholesterol metabolism", and the HEGs in SG loaches were enriched in the pathways related to environmental information processing such as "Cell adhesion molecules (CAMs)", "ECM- receptor interaction" and "Rap1 signalling pathway"; cellular processes such as "Tight junction", "Focal adhesion", "Phagosome" and "Adherens junction". Furthermore, IGFs gene family may play an important role in loach growth for their different expression pattern between the two groups. These findings can enhance our understanding about the molecular mechanism of different growth and development levels of loaches in paddy fields.
Collapse
Affiliation(s)
- Liulan Zhao
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Kuo He
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qing Xiao
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiao Liu
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wei Luo
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jie Luo
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hongmei Fu
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiayao Li
- grid.412514.70000 0000 9833 2433Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 200090 China
| | - Xugan Wu
- grid.412514.70000 0000 9833 2433Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 200090 China
| | - Jun Du
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Science, Chengdu, 611731 China
| | - Quan Gong
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Science, Chengdu, 611731 China
| | - Xun Wang
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Song Yang
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
3
|
Munyandamutsa PS, Jere WL, Kassam D, Mtethiwa A. Trophic divergence of Lake Kivu cichlid fishes along a pelagic versus littoral habitat axis. Ecol Evol 2021; 11:1570-1585. [PMID: 33613990 PMCID: PMC7882941 DOI: 10.1002/ece3.7117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/16/2023] Open
Abstract
Local adaptation to the littoral and pelagic zones in two cichlid haplochromine fish species from Lake Kivu was investigated using morphometrics. Cranial variation and inferred jaw mechanics in both sexes of the two species across the two habitat types were quantified and compared. Comparisons of littoral versus pelagic populations revealed habitat-specific differences in the shape of the feeding apparatus. Also, kinematic transmission of the anterior jaw four-bar linkage that promotes greater jaw protrusion was higher in the pelagic zone than in the littoral zone for both species. Inferred bite force was likewise higher in pelagic zone fish. There were also sex-specific differences in craniofacial morphology as males exhibited longer heads than females in both habitats. As has been described for other cichlids in the East African Great Lakes, local adaptation to trophic resources in the littoral and pelagic habitats characterizes these two Lake Kivu cichlids. Similar studies involving other types of the Lake Kivu fishes are recommended to test the evidence of the observed trophic patterns and their genetic basis of divergences.
Collapse
Affiliation(s)
- Philippe S. Munyandamutsa
- Africa Centre of Excellence in Aquaculture and Fisheries ScienceDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural ResourcesLilongweCentreMalawi
- Department of Animal ProductionCollege of Agriculture, Animal Sciences and Veterinary MedicineUniversity of RwandaKK 737MusanzeNorthRwanda
| | - Wilson L. Jere
- Africa Centre of Excellence in Aquaculture and Fisheries ScienceDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural ResourcesLilongweCentreMalawi
| | - Daud Kassam
- Africa Centre of Excellence in Aquaculture and Fisheries ScienceDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural ResourcesLilongweCentreMalawi
| | - Austin Mtethiwa
- Africa Centre of Excellence in Aquaculture and Fisheries ScienceDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural ResourcesLilongweCentreMalawi
| |
Collapse
|
4
|
Dhanasiri AKS, Johny A, Xue X, Berge GM, Bogevik AS, Rise ML, Fæste CK, Fernandes JMO. Plant-Based Diets Induce Transcriptomic Changes in Muscle of Zebrafish and Atlantic Salmon. Front Genet 2020; 11:575237. [PMID: 33193686 PMCID: PMC7642599 DOI: 10.3389/fgene.2020.575237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
With the expansion of the aquaculture industry in the last two decades, there has been a large increase in the use of plant ingredients in aquafeeds, which has created new challenges in fish growth, health and welfare. Fish muscle growth is an important trait that is strongly affected by diet, but our knowledge on the effect of plant protein-based diets on global gene expression in muscle is still scant. The present study evaluated nutrigenomic effects of the inclusion of proteins from pea, soy and wheat into aquafeeds, compared to a control diet with fishmeal as the main protein source using the zebrafish model by RNA-seq; these results were extended to an important aquaculture species by analyzing selected differentially expressed genes identified in the zebrafish model on on-growing Atlantic salmon fed with equivalent plant protein-based diets. Expression of selected Atlantic salmon paralogues of the zebrafish homologs was analyzed using paralogue-specific qPCR assays. Global gene expression changes in muscle of zebrafish fed with plant-based diets were moderate, with the highest changes observed in the soy diet-fed fish, and no change for the pea diet-fed fish compared to the control diet. Among the differentially expressed genes were mylpfb, hsp90aa1.1, col2a1a, and odc1, which are important in regulating muscle growth, maintaining muscle structure and function, and muscle tissue homeostasis. Furthermore, those genes and their paralogues were differentially expressed in Atlantic salmon fed with the equivalent percentage of soy or wheat protein containing diets. Some of these genes were similarly regulated in both species while others showed species-specific regulation. The present study expands our understanding on the molecular effects of plant ingredients in fish muscle. Ultimately, the knowledge gained would be of importance for the improved formulation of sustainable plant-based diets for the aquaculture industry.
Collapse
Affiliation(s)
- Anusha K S Dhanasiri
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.,Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Amritha Johny
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gerd M Berge
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Sunndalsøra, Norway
| | - Andre S Bogevik
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Fyllingsdalen, Norway
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | |
Collapse
|
5
|
Sbragaglia V, López-Olmeda JF, Frigato E, Bertolucci C, Arlinghaus R. Size-selective mortality induces evolutionary changes in group risk-taking behaviour and the circadian system in a fish. J Anim Ecol 2020; 90:387-403. [PMID: 33064849 DOI: 10.1111/1365-2656.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Intensive and trait-selective mortality of fish and wildlife can cause evolutionary changes in a range of life-history and behavioural traits. These changes might in turn alter the circadian system due to co-evolutionary mechanisms or correlated selection responses both at behavioural and molecular levels, with knock-on effects on daily physiological processes and behavioural outputs. We examined the evolutionary impact of size-selective mortality on group risk-taking behaviour and the circadian system in a model fish species. We exposed zebrafish Danio rerio to either large or small size-selective harvesting relative to a control over five generations, followed by eight generations during which harvesting was halted to remove maternal effects. Size-selective mortality affected fine-scale timing of behaviours. In particular, small size-selective mortality, typical of specialized fisheries and gape-limited predators targeting smaller size classes, increased group risk-taking behaviuor during feeding and after simulated predator attacks. Moreover, small size-selective mortality increased early peaks of daily activity as well as extended self-feeding daily activity to the photophase compared to controls. By contrast large size-selective mortality, typical of most wild capture fisheries, only showed an almost significant effect of decreasing group risk-taking behaviour during the habituation phase and no clear changes in fine-scale timing of daily behavioural rhythms compared to controls. We also found changes in the molecular circadian core clockwork in response to both size-selective mortality treatments. These changes disappeared in the clock output pathway because both size-selected lines showed similar transcription profiles. This switch downstream to the molecular circadian core clockwork also resulted in similar overall behavioural rhythms (diurnal swimming and self-feeding in the last hours of darkness) independent of the underlying molecular clock. To conclude, our experimental harvest left an asymmetrical evolutionary legacy in group risk-taking behaviour and in fine-scale daily behavioural rhythms. Yet, the overall timing of activity showed evolutionary resistance probably maintained by a molecular switch. Our experimental findings suggest that size-selective mortality can have consequences for behaviour and physiological processes.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Faculty of Life Sciences & Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Le Rouzic A, Renneville C, Millot A, Agostini S, Carmignac D, Édeline É. Unidirectional response to bidirectional selection on body size II. Quantitative genetics. Ecol Evol 2020; 10:11453-11466. [PMID: 33144977 PMCID: PMC7593195 DOI: 10.1002/ece3.6783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Anticipating the genetic and phenotypic changes induced by natural or artificial selection requires reliable estimates of trait evolvabilities (genetic variances and covariances). However, whether or not multivariate quantitative genetics models are able to predict precisely the evolution of traits of interest, especially fitness-related, life history traits, remains an open empirical question. Here, we assessed to what extent the response to bivariate artificial selection on both body size and maturity in the medaka Oryzias latipes, a model fish species, fits the theoretical predictions. Three lines (Large, Small, and Control lines) were differentially selected for body length at 75 days of age, conditional on maturity. As maturity and body size were phenotypically correlated, this selection procedure generated a bi-dimensional selection pattern on two life history traits. After removal of nonheritable trends and noise with a random effect ("animal") model, the observed selection response did not match the expected bidirectional response. For body size, Large and Control lines responded along selection gradients (larger body size and stasis, respectively), but, surprisingly, the Small did not evolve a smaller body length and remained identical to the Control line throughout the experiment. The magnitude of the empirical response was smaller than the theoretical prediction in both selected directions. For maturity, the response was opposite to the expectation (the Large line evolved late maturity compared to the Control line, while the Small line evolved early maturity, while the opposite pattern was predicted due to the strong positive genetic correlation between both traits). The mismatch between predicted and observed response was substantial and could not be explained by usual sources of uncertainties (including sampling effects, genetic drift, and error in G matrix estimates).
Collapse
Affiliation(s)
- Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement, ÉcologieCNRS, IRD, Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Clémentine Renneville
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES‐Paris)Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRAE, IRDParisFrance
| | - Alexis Millot
- Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP‐Ecotron Ile‐de‐France), UMS 3194École normale supérieure, PSL Research University, CNRSSaint‐Pierre‐lès‐NemoursFrance
| | - Simon Agostini
- Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP‐Ecotron Ile‐de‐France), UMS 3194École normale supérieure, PSL Research University, CNRSSaint‐Pierre‐lès‐NemoursFrance
| | - David Carmignac
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES‐Paris)Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRAE, IRDParisFrance
| | - Éric Édeline
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES‐Paris)Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRAE, IRDParisFrance
- ESE Ecology and Ecosystem HealthINRAEAgrocampus OuestRennesFrance
| |
Collapse
|
7
|
Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate. Mar Drugs 2020; 18:md18090472. [PMID: 32962034 PMCID: PMC7551862 DOI: 10.3390/md18090472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Fermented oyster (Crassostrea gigas) extract (FO) prevents ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis and activating osteogenesis. However, the molecular mechanisms underlying FO-mediated bone formation and growth rate are unclear. In the current study, we found that FO significantly upregulated the expression of growth-promoting genes in zebrafish larvae including insulin-like growth factor 1 (zigf-1), insulin-like growth factor binding protein 3 (zigfbp-3), growth hormone-1 (zgh-1), growth hormone receptor-1 (zghr-1), growth hormone receptor alpha (zghra), glucokinase (zgck), and cholecystokinin (zccka). In addition, zebrafish larvae treated with 100 μg/mL FO increased in total body length (3.89 ± 0.13 mm) at 12 days post fertilization (dpf) compared to untreated larvae (3.69 ± 0.02 mm); this effect was comparable to that of the β-glycerophosphate-treated zebrafish larvae (4.00 ± 0.02 mm). Furthermore, FO time- and dose-dependently increased the extracellular release of IGF-1 from preosteoblast MC3T3-E1 cells, which was accompanied by high expression of IGF-1. Pharmacological inhibition of IGF-1 receptor (IGF-1R) using picropodophyllin (PPP) significantly reduced FO-mediated vertebrae formation (from 9.19 ± 0.31 to 5.53 ± 0.35) and growth performance (from 3.91 ± 0.02 to 3.69 ± 0.01 mm) in zebrafish larvae at 9 dpf. Similarly, PPP significantly decreased FO-induced calcium deposition in MC3T3-E1 cells by inhibiting GSK-3β phosphorylation at Ser9. Additionally, DOI hydrochloride, a potent stabilizer of GSK-3β, reduced FO-induced nuclear translocation of RUNX2. Transient knockdown of IGF-1Rα/β using specific silencing RNA also resulted in a significant decrease in calcium deposition and reduction in GSK-3β phosphorylation at Ser9 in MC3T3-E1 cells. Altogether, these results indicate that FO increased phosphorylated GSK-3β at Ser9 by activating the autocrine IGF-1-mediated IGF-1R signaling pathway, thereby promoting osteogenesis and growth performance. Therefore, FO is a potential nutritional supplement for bone formation and growth.
Collapse
|
8
|
Renneville C, Millot A, Agostini S, Carmignac D, Maugars G, Dufour S, Le Rouzic A, Edeline E. Unidirectional response to bidirectional selection on body size. I. Phenotypic, life-history, and endocrine responses. Ecol Evol 2020; 10:10571-10592. [PMID: 33072281 PMCID: PMC7548191 DOI: 10.1002/ece3.6713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023] Open
Abstract
Anthropogenic perturbations such as harvesting often select against a large body size and are predicted to induce rapid evolution toward smaller body sizes and earlier maturation. However, body‐size evolvability and, hence, adaptability to anthropogenic perturbations remain seldom evaluated in wild populations. Here, we use a laboratory experiment over 6 generations to measure the ability of wild‐caught medaka fish (Oryzias latipes) to evolve in response to bidirectional size‐dependent selection mimicking opposite harvest regimes. Specifically, we imposed selection against a small body size (Large line), against a large body size (Small line) or random selection (Control line), and measured correlated responses across multiple phenotypic, life‐history, and endocrine traits. As expected, the Large line evolved faster somatic growth and delayed maturation, but also evolved smaller body sizes at hatch, with no change in average levels of pituitary gene expressions of luteinizing, follicle‐stimulating, or growth hormones (GH). In contrast, the Small medaka line was unable to evolve smaller body sizes or earlier maturation, but evolved smaller body sizes at hatch and showed marginally significant signs of increased reproductive investment, including larger egg sizes and elevated pituitary GH production. Natural selection on medaka body size was too weak to significantly hinder the effect of artificial selection, indicating that the asymmetric body‐size response to size‐dependent selection reflected an asymmetry in body‐size evolvability. Our results show that trait evolvability may be contingent upon the direction of selection and that a detailed knowledge of trait evolutionary potential is needed to forecast population response to anthropogenic change.
Collapse
Affiliation(s)
- Clémentine Renneville
- Sorbonne Université Université Paris Diderot UPEC CNRS INRAE IRD Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris) Paris France
| | - Alexis Millot
- Ecole Normale Supérieure PSL Research University Département de biologie CNRS, UMS 3194 Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance) Saint-Pierre-lès-Nemours France
| | - Simon Agostini
- Ecole Normale Supérieure PSL Research University Département de biologie CNRS, UMS 3194 Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance) Saint-Pierre-lès-Nemours France
| | - David Carmignac
- Sorbonne Université Université Paris Diderot UPEC CNRS INRAE IRD Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris) Paris France
| | - Gersende Maugars
- Muséum National d'Histoire Naturelle UMR BOREA Biologie des Organismes et Ecosystèmes Aquatiques CNRS 7208 IRD 207 SU UCN UA Paris France.,Norwegian University of Life Sciences Faculty of Veterinary Medicine Physiology Unit Oslo Norway
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle UMR BOREA Biologie des Organismes et Ecosystèmes Aquatiques CNRS 7208 IRD 207 SU UCN UA Paris France
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement,Écologie CNRS IRD Univ. Paris-Saclay Gif-sur-Yvette France
| | - Eric Edeline
- Sorbonne Université Université Paris Diderot UPEC CNRS INRAE IRD Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris) Paris France.,ESE, Ecology and Ecosystem Health INRAE Agrocampus Ouest Rennes France
| |
Collapse
|
9
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
10
|
Sucharov J, Ray K, Brooks EP, Nichols JT. Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway. PLoS Genet 2019; 15:e1008507. [PMID: 31790396 PMCID: PMC6907857 DOI: 10.1371/journal.pgen.1008507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/12/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Deleterious genetic mutations allow developmental biologists to understand how genes control development. However, not all loss of function genetic mutants develop phenotypic changes. Many deleterious mutations only produce a phenotype in a subset of mutant individuals, a phenomenon known as incomplete penetrance. Incomplete penetrance can confound analyses of gene function and our understanding of this widespread phenomenon remains inadequate. To better understand what controls penetrance, we capitalized on the zebrafish mef2ca mutant which produces craniofacial phenotypes with variable penetrance. Starting with a characterized mef2ca loss of function mutant allele, we used classical selective breeding methods to generate zebrafish strains in which mutant-associated phenotypes consistently appear with low or high penetrance. Strikingly, our selective breeding for low penetrance converted the mef2ca mutant allele behavior from homozygous lethal to homozygous viable. Meanwhile, selective breeding for high penetrance converted the mef2ca mutant allele from fully recessive to partially dominant. Comparing the selectively-bred low- and high-penetrance strains revealed that the strains initially respond similarly to the mutation, but then gene expression differences between strains emerge during development. Thus, altered temporal genetic circuitry can manifest through selective pressure to modify mutant penetrance. Specifically, we demonstrate differences in Notch signaling between strains, and further show that experimental manipulation of the Notch pathway phenocopies penetrance changes occurring through selective breeding. This study provides evidence that penetrance is inherited as a liability-threshold trait. Our finding that vertebrate animals can overcome a deleterious mutation by tuning genetic circuitry complements other reported mechanisms of overcoming deleterious mutations such as transcriptional adaptation of compensatory genes, alternative mRNA splicing, and maternal deposition of wild-type transcripts, which are not observed in our system. The selective breeding approach and the resultant genetic circuitry change we uncovered advances and expands our current understanding of genetic and developmental resilience. Some deleterious gene mutations only affect a subset of genetically mutant animals. This widespread phenomenon, known as mutant incomplete penetrance, complicates discovery of causative gene mutations in both model organisms and human disease. This study utilized the zebrafish mef2ca transcription factor mutant that produces craniofacial skeleton defects with incomplete penetrance. Selectively breeding zebrafish families for low- or high-penetrance mutants for many generations created different zebrafish strains with consistently low or high penetrance. Comparing these strains allowed us to gain insight into the mechanisms that control penetrance. Specifically, genes under the control of mef2ca are initially similarly expressed between the two strains, but differences between strains emerge during development. We found that genetic manipulation of these downstream genes mimics the effects of our selective breeding. Thus, selective breeding for penetrance can change the genetic circuitry downstream of the mutated gene. We propose that small differences in gene circuitry between individuals is one mechanism underlying susceptibility or resilience to genetic mutations.
Collapse
Affiliation(s)
- Juliana Sucharov
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kuval Ray
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James T. Nichols
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Diaz Pauli B, Garric S, Evangelista C, Vøllestad LA, Edeline E. Selection for small body size favours contrasting sex-specific life histories, boldness and feeding in medaka, Oryzias latipes. BMC Evol Biol 2019; 19:127. [PMID: 31216987 PMCID: PMC6585084 DOI: 10.1186/s12862-019-1460-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studying variation in life-history traits and correlated behaviours, such as boldness and foraging (i.e., pace-of-life syndrome), allows us to better understand how these traits evolve in a changing environment. In fish, it is particularly relevant studying the interplay of resource abundance and size-selection. These are two environmental stressors affecting fish in natural conditions, but also associated with human-induced environmental change. For instance, fishing, one of the most important threats for freshwater and marine populations, results in both higher mortality on large-sized fish and reduced population density. RESULTS Medaka, Oryzias latipes, from lines selected for large or small size over ten generations, were exposed individually to high or low food availability from birth to adulthood. Maturation schedules, reproductive investment, growth, boldness and feeding were assessed to evaluate the effect of size-selection on the pace of life, and whether it differed between food contexts (high and low). Different food abundance and size-selection resulted in diverse life histories associated with different feeding and boldness behaviour, thus showing different pace-of-life-syndromes. High availability of food favoured faster growth, earlier maturation and increased shyness. Selection for small size led to slower growth in both males and females. But, the life-history trajectory to reach such growth was sex- and food-specific. Under low food conditions, females selected for small size showed earlier maturation, which led to slower adult growth and subsequent low willingness to feed, compared to females selected for large size. No line differences were found in females at high food conditions. In contrast, males exposed to selection for small size grew slower both as juvenile and adult, and were bolder under both feeding regimes. Therefore, the response to size-selection was more sensitive to food availability in females than in males. CONCLUSIONS We showed that size-selection (over ten generations) and resource abundance (over developmental time) led to changes in life history and behaviour. However, the effect of size-selection was sex- and context-specific, calling for precaution when drawing general conclusions on the population-level effects (or lack of them) of size-selective fishing. Conservation and management plans should consider this sex- and context-specificity.
Collapse
Affiliation(s)
- Beatriz Diaz Pauli
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, N-0316, Oslo, Norway.
| | - Sarah Garric
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, F-75252, Paris, France
| | - Charlotte Evangelista
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, N-0316, Oslo, Norway
| | - L Asbjørn Vøllestad
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, N-0316, Oslo, Norway
| | - Eric Edeline
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, F-75252, Paris, France
- ESE Ecology and Ecosystem Health, INRA, Agrocampus Ouest, 35042, Rennes, France
| |
Collapse
|
12
|
Ahi EP, Singh P, Lecaudey LA, Gessl W, Sturmbauer C. Maternal mRNA input of growth and stress-response-related genes in cichlids in relation to egg size and trophic specialization. EvoDevo 2018; 9:23. [PMID: 30519389 PMCID: PMC6271631 DOI: 10.1186/s13227-018-0112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies. RESULTS We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1). CONCLUSIONS These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
13
|
Rotwein P. The insulin-like growth factor 2 gene and locus in nonmammalian vertebrates: Organizational simplicity with duplication but limited divergence in fish. J Biol Chem 2018; 293:15912-15932. [PMID: 30154247 DOI: 10.1074/jbc.ra118.004861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/16/2018] [Indexed: 01/28/2023] Open
Abstract
The small, secreted peptide, insulin-like growth factor 2 (IGF2), is essential for fetal and prenatal growth in humans and other mammals. Human IGF2 and mouse Igf2 genes are located within a conserved linkage group and are regulated by parental imprinting, with IGF2/Igf2 being expressed from the paternally derived chromosome, and H19 from the maternal chromosome. Here, data retrieved from genomic and gene expression repositories were used to examine the Igf2 gene and locus in 8 terrestrial vertebrates, 11 ray-finned fish, and 1 lobe-finned fish representing >500 million years of evolutionary diversification. The analysis revealed that vertebrate Igf2 genes are simpler than their mammalian counterparts, having fewer exons and lacking multiple gene promoters. Igf2 genes are conserved among these species, especially in protein-coding regions, and IGF2 proteins also are conserved, although less so in fish than in terrestrial vertebrates. The Igf2 locus in terrestrial vertebrates shares additional genes with its mammalian counterparts, including tyrosine hydroxylase (Th), insulin (Ins), mitochondrial ribosomal protein L23 (Mrpl23), and troponin T3, fast skeletal type (Tnnt3), and both Th and Mrpl23 are present in the Igf2 locus in fish. Taken together, these observations support the idea that a recognizable Igf2 was present in the earliest vertebrate ancestors, but that other features developed and diversified in the gene and locus with speciation, especially in mammals. This study also highlights the need for correcting inaccuracies in genome databases to maximize our ability to accurately assess contributions of individual genes and multigene families toward evolution, physiology, and disease.
Collapse
Affiliation(s)
- Peter Rotwein
- From the Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
14
|
Locatello L, Santon M, Mazzoldi C, Rasotto MB. The marbled goby, Pomatoschistus marmoratus, as a promising species for experimental evolution studies. ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0339-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Uusi-Heikkilä S, Sävilammi T, Leder E, Arlinghaus R, Primmer CR. Rapid, broad-scale gene expression evolution in experimentally harvested fish populations. Mol Ecol 2017; 26:3954-3967. [PMID: 28500794 DOI: 10.1111/mec.14179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/19/2023]
Abstract
Gene expression changes potentially play an important role in adaptive evolution under human-induced selection pressures, but this has been challenging to demonstrate in natural populations. Fishing exhibits strong selection pressure against large body size, thus potentially inducing evolutionary changes in life history and other traits that may be slowly reversible once fishing ceases. However, there is a lack of convincing examples regarding the speed and magnitude of fisheries-induced evolution, and thus, the relevant underlying molecular-level effects remain elusive. We use wild-origin zebrafish (Danio rerio) as a model for harvest-induced evolution. We experimentally demonstrate broad-scale gene expression changes induced by just five generations of size-selective harvesting, and limited genetic convergence following the cessation of harvesting. We also demonstrate significant allele frequency changes in genes that were differentially expressed after five generations of size-selective harvesting. We further show that nine generations of captive breeding induced substantial gene expression changes in control stocks likely due to inadvertent selection in the captive environment. The large extent and rapid pace of the gene expression changes caused by both harvest-induced selection and captive breeding emphasizes the need for evolutionary enlightened management towards sustainable fisheries.
Collapse
Affiliation(s)
| | | | - Erica Leder
- Department of Biology, University of Turku, Turku, Finland.,Natural History Museum, University of Oslo, Oslo, Norway.,Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
16
|
Wu P, Li YL, Cheng J, Chen L, Zhu X, Feng ZG, Zhang JS, Chu WY. Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi). BMC Genomics 2016; 17:1008. [PMID: 27931190 PMCID: PMC5146901 DOI: 10.1186/s12864-016-3373-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
Background Clock genes are considered to be the molecular core of biological clock in vertebrates and they are directly involved in the regulation of daily rhythms in vertebrate tissues such as skeletal muscles. Fish myotomes are composed of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. To date, there is no report on the characterization of the circadian clock system components of slow muscles in fish. Results In the present study, the molecular clock components (clock, arntl1/2, cry1/2/3, cry-dash, npas2, nr1d1/2, per1/2/3, rorα and tim genes) and their daily transcription levels were characterized in slow and fast muscles of Chinese perch (Siniperca chuatsi). Among the 15 clock genes, nrld2 and per3 had no daily rhythmicity in slow muscles, and cry2/3 and tim displayed no daily rhythmicity in fast muscles of the adult fish. In the slow muscles, the highest expression of the most clock paralogs occurred at the dark period except arntl1, nr1d1, nr1d2 and tim. With the exception of nr1d2 and tim, the other clock genes had an acrophase at the light period in fast muscles. The circadian expression of the myogenic regulatory factors (mrf4 and myf5), mstn and pnca showed either a positive or a negative correlation with the transcription pattern of the clock genes in both types of muscles. Conclusions It was the first report to unravel the molecular clock components of the slow and fast muscles in vertebrates. The expressional pattern differences of the clock genes between the two types of muscle fibers suggest that the clock system may play key roles on muscle type-specific tissue maintenance and function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3373-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Wu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Yu-Long Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Jia Cheng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Lin Chen
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Zhi-Guo Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Jian-She Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China. .,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| | - Wu-Ying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China. .,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
17
|
Taniyama N, Kaneko N, Inatani Y, Miyakoshi Y, Shimizu M. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta). Gen Comp Endocrinol 2016; 236:146-156. [PMID: 27444127 DOI: 10.1016/j.ygcen.2016.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/23/2023]
Abstract
Insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1 and RNA/DNA ratio are endocrine and biochemical parameters used as growth indices in fish, however, they are subjected to environmental modulation. Chum salmon (Oncorhynchus keta) migrate from freshwater (FW) to seawater (SW) at fry/juvenile stage weighing around 1g and suffer growth-dependent mortality during the early phase of their marine life. In order to reveal environmental modulation of the IGF/IGFBP system and establish a reliable growth index for juvenile chum salmon, we examined effects of SW transfer and fasting on IGF-I, IGFBP-1 and RNA/DNA ratio, and correlated them to individual growth rate. Among serum IGF-I, liver and muscle igf-1, igfbp-1a, igfbp-1b and RNA/DNA ratio examined, muscle RNA/DNA ratio and muscle igfbp-1a responded to SW transfer. Serum IGF-I, liver igf-1 and liver RNA/DNA ratio were sensitive to nutritional change by being reduced in 1week in both FW and SW while muscle igf-1 was reduced 2weeks after fasting. In contrast, igfbp-1a in both tissues was increased by 2weeks of fasting and igfbp-1b in the liver of SW fish was increased in 1week. These results suggest that the sensitivity of igf-1 and igfbp-1s to fasting differs between tissues and subtypes, respectively. When chum salmon juveniles in SW were marked and subjected to feeding or fasting, serum IGF-I showed the highest correlation with individual growth rate. Liver igfbp-1a and -1b, and muscle igf-1 exhibited moderate correlation coefficients with growth rate. These results show that serum IGF-I is superior to the other parameters as a growth index in juvenile chum salmon in term of its stability to salinity change, high sensitivity to fasting and strong relationship with growth rate. On the one hand, when collecting blood from chum salmon fry/juveniles is not practical, measuring liver igfbp-1a and -1b, or/and muscle igf-1 is an alternative.
Collapse
Affiliation(s)
- Natsumi Taniyama
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Nobuto Kaneko
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yu Inatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yasuyuki Miyakoshi
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, 3-373 Kitakashiwagi, Eniwa, Hokkaido 061-1433, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
18
|
Rauwerda H, Wackers P, Pagano JFB, de Jong M, Ensink W, Dekker R, Nehrdich U, Spaink HP, Jonker M, Breit TM. Mother-Specific Signature in the Maternal Transcriptome Composition of Mature, Unfertilized Zebrafish Eggs. PLoS One 2016; 11:e0147151. [PMID: 26799215 PMCID: PMC4723340 DOI: 10.1371/journal.pone.0147151] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022] Open
Abstract
Maternal mRNA present in mature oocytes plays an important role in the proper development of the early embryo. As the composition of the maternal transcriptome in general has been studied with pooled mature eggs, potential differences between individual eggs are unknown. Here we present a transcriptome study on individual zebrafish eggs from clutches of five mothers in which we focus on the differences in maternal mRNA abundance per gene between and within clutches. To minimize technical interference, we used mature, unfertilized eggs from siblings. About half of the number of analyzed genes was found to be expressed as maternal RNA. The expressed and non-expressed genes showed that maternal mRNA accumulation is a non-random process, as it is related to specific biological pathways and processes relevant in early embryogenesis. Moreover, it turned out that overall the composition of the maternal transcriptome is tightly regulated as about half of the expressed genes display a less than twofold expression range between the observed minimum and maximum expression values of a gene in the experiment. Even more, the maximum gene-expression difference within clutches is for 88% of the expressed genes lower than twofold. This means that expression differences observed in maternally expressed genes are primarily caused by differences between mothers, with only limited variability between eggs from the same mother. This was underlined by the fact that 99% of the expressed genes were found to be differentially expressed between any of the mothers in an ANOVA test. Furthermore, linking chromosome location, transcription factor binding sites, and miRNA target sites of the genes in clusters of distinct and unique mother-specific gene-expression, suggest biological relevance of the mother-specific signatures in the maternal transcriptome composition. Altogether, the maternal transcriptome composition of mature zebrafish oocytes seems to be tightly regulated with a distinct mother-specific signature.
Collapse
Affiliation(s)
- Han Rauwerda
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Wackers
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna F. B. Pagano
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark de Jong
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim Ensink
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Rob Dekker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Ulrike Nehrdich
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, the Netherlands
| | - Martijs Jonker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo M. Breit
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Fukuda M, Kaneko N, Kawaguchi K, Hevrøy EM, Hara A, Shimizu M. Development of a time-resolved fluoroimmunoassay for salmon insulin-like growth factor binding protein-1b. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:66-73. [DOI: 10.1016/j.cbpa.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
|
20
|
Kocmarek AL, Ferguson MM, Danzmann RG. Comparison of growth-related traits and gene expression profiles between the offspring of neomale (XX) and normal male (XY) rainbow trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:229-243. [PMID: 25634055 DOI: 10.1007/s10126-015-9612-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
All-female lines of fish are created by crossing sex reversed (XX genotype) males with normal females. All-female lines avoid the deleterious phenotypic effects that are typical of precocious maturation in males. To determine whether all-female and mixed sex populations of rainbow trout (Oncorhynchus mykiss) differ in performance, we compared the growth and gene expression profiles in progeny groups produced by crossing a XX male and a XY male to the same five females. Body weight and length were measured in the resulting all-female (XX) and mixed sex (XX/XY) offspring groups. Microarray experiments with liver and white muscle were used to determine if the gene expression profiles of large and small XX offspring differ from those in large and small XX/XY offspring. We detected no significant differences in body length and weight between offspring groups but XX offspring were significantly less variable in the value of these traits. A large number of upregulated genes were shared between the large XX and large XX/XY offspring; the small XX and small XX/XY offspring also shared similar expression profiles. No GO category differences were seen in the liver or between the large XX and large XX/XY offspring in the muscle. The greatest differences between the small XX and small XX/XY offspring were in the genes assigned to the "small molecule metabolic process" and "cellular metabolic process" GO level 3 categories. Similarly, genes within these categories as well as the category "macromolecule metabolic process" were more highly expressed in small compared to large XX fish.
Collapse
Affiliation(s)
- Andrea L Kocmarek
- Department of Integrative Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario, N1G 2W1, Canada,
| | | | | |
Collapse
|
21
|
Mareco EA, Garcia de la Serrana D, Johnston IA, Dal-Pai-Silva M. Characterization of the transcriptome of fast and slow muscle myotomal fibres in the pacu (Piaractus mesopotamicus). BMC Genomics 2015; 16:182. [PMID: 25886905 PMCID: PMC4372171 DOI: 10.1186/s12864-015-1423-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/28/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Pacu (Piaractus mesopotamicus) is a member of the Characiform family native to the Prata Basin (South America) and a target for the aquaculture industry. A limitation for the development of a selective breeding program for this species is a lack of available genetic information. The primary objectives of the present study were 1) to increase the genetic resources available for the species, 2) to exploit the anatomical separation of myotomal fibres types to compare the transcriptomes of slow and fast muscle phenotypes and 3) to systematically investigate the expression of Ubiquitin Specific Protease (USP) family members in fast and slow muscle in response to fasting and refeeding. RESULTS We generated 0.6 Tb of pair-end reads from slow and fast skeletal muscle libraries. Over 665 million reads were assembled into 504,065 contigs with an average length of 1,334 bp and N50 = 2,772 bp. We successfully annotated nearly 47% of the transcriptome and identified around 15,000 unique genes and over 8000 complete coding sequences. 319 KEGG metabolic pathways were also annotated and 380 putative microsatellites were identified. 956 and 604 genes were differentially expressed between slow and fast skeletal muscle, respectively. 442 paralogues pairs arising from the teleost-specific whole genome duplication were identified, with the majority showing different expression patterns between fibres types (301 in slow and 245 in fast skeletal muscle). 45 members of the USP family were identified in the transcriptome. Transcript levels were quantified by qPCR in a separate fasting and refeeding experiment. USP genes in fast muscle showed a similar transient increase in expression with fasting as the better characterized E3 ubiquitin ligases. CONCLUSION We have generated a 53-fold coverage transcriptome for fast and slow myotomal muscle in the pacu (Piaractus mesopotamicus) significantly increasing the genetic resources available for this important aquaculture species. We describe significant differences in gene expression between muscle fibre types for fundamental components of general metabolism, the Pi3k/Akt/mTor network and myogenesis, including detailed analysis of paralogue expression. We also provide a comprehensive description of USP family member expression between muscle fibre types and with changing nutritional status.
Collapse
Affiliation(s)
- Edson A Mareco
- Institute of Biosciences of Botucatu, São Paulo State University - UNESP, Botucatu, 18618-970, São Paulo, Brazil. .,School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | - Ian A Johnston
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | - Maeli Dal-Pai-Silva
- Institute of Biosciences of Botucatu, São Paulo State University - UNESP, Botucatu, 18618-970, São Paulo, Brazil.
| |
Collapse
|
22
|
Fuentes EN, Valdés JA, Molina A, Björnsson BT. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system. Gen Comp Endocrinol 2013; 192:136-48. [PMID: 23791761 DOI: 10.1016/j.ygcen.2013.06.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| | | | | | | |
Collapse
|
23
|
Duffy TA, Picha ME, Borski RJ, Conover DO. Circulating levels of plasma IGF-I during recovery from size-selective harvesting in Menidia menidia. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:222-7. [PMID: 23752122 DOI: 10.1016/j.cbpa.2013.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 02/02/2023]
Abstract
Selection for growth-related traits in domesticated fishes often results in predictable changes within the growth hormone-insulin-like growth factor (GH-IGF-1) axis. Little is known about the mechanisms controlling changes in growth capacity resulting from fishery-induced evolution. We took advantage of a long-term study where Menidia menidia were selected for size at age over multiple generations to mimic fisheries-induced selection. This selection regime produced three populations with significant differences in intrinsic growth rate. These growth differences partially rebounded, but persisted even after selection was relaxed, resulting in fast, intermediate, and slow-growing lines. Plasma IGF-1 was measured in these populations as a potential target of selection on growth. IGF-1 was significantly correlated with current length and mass, and was positively correlated with growth rate (g d(-1)) in two lines, indicating it may be an appropriate indicator of growth capacity. The slow-growing line exhibited higher overall IGF-1 levels relative to the depressed IGF-1 seen in the fast-growing line, contrary to our prediction. We offer possible explanations for this unusual pattern and argue that somatic growth is likely to be under control of mechanism(s) downstream to IGF-1. IGF-1 provides an interesting basis for understanding endocrine control of growth in response to artificial selection and recovery.
Collapse
Affiliation(s)
- Tara A Duffy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| | | | | | | |
Collapse
|