1
|
Ishida IG, Sethi S, Mohren TL, Abbott L, Maimon G. Neuronal calcium spikes enable vector inversion in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568537. [PMID: 38077032 PMCID: PMC10705278 DOI: 10.1101/2023.11.24.568537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A typical neuron signals to downstream cells when it is depolarized and firing sodium spikes. Some neurons, however, also fire calcium spikes when hyperpolarized. The function of such bidirectional signaling remains unclear in most circuits. Here we show how a neuron class that participates in vector computation in the fly central complex employs hyperpolarization-elicited calcium spikes to invert two-dimensional mathematical vectors. When cells switch from firing sodium to calcium spikes, this leads to a ~180° realignment between the vector encoded in the neuronal population and the fly's internal heading signal, thus inverting the vector. We show that the calcium spikes rely on the T-type calcium channel Ca-α1T, and argue, via analytical and experimental approaches, that these spikes enable vector computations in portions of angular space that would otherwise be inaccessible. These results reveal a seamless interaction between molecular, cellular and circuit properties for implementing vector math in the brain.
Collapse
Affiliation(s)
- Itzel G. Ishida
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Sachin Sethi
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Thomas L. Mohren
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - L.F. Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| |
Collapse
|
2
|
Sten TH, Li R, Hollunder F, Eleazer S, Ruta V. Male-male interactions shape mate selection in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565582. [PMID: 37961193 PMCID: PMC10635267 DOI: 10.1101/2023.11.03.565582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Males of many species have evolved behavioral traits to both attract females and repel rivals. Here, we explore mate selection in Drosophila from both the male and female perspective to shed light on how these key components of sexual selection - female choice and male-male competition - work in concert to guide reproductive strategies. We find that male flies fend off competing suitors by interleaving their courtship of a female with aggressive wing flicks, which both repel competitors and generate a 'song' that obscures the female's auditory perception of other potential mates. Two higher-order circuit nodes - P1a and pC1x neurons - are coordinately recruited to allow males to flexibly interleave these agonistic actions with courtship displays, assuring they persistently pursue females until their rival falters. Together, our results suggest that female mating decisions are shaped by male-male interactions, underscoring how a male's ability to subvert his rivals is central to his reproductive success.
Collapse
Affiliation(s)
- Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
- Present address: Department of Biology, Stanford University, Stanford, CA
| | - Rufei Li
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Florian Hollunder
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Shadé Eleazer
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
3
|
Lapshin DN, Vorontsov DD. Mapping the Auditory Space of Culex pipiens Female Mosquitoes in 3D. INSECTS 2023; 14:743. [PMID: 37754711 PMCID: PMC10532353 DOI: 10.3390/insects14090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The task of directional hearing faces most animals that possess ears. They approach this task in different ways, but a common trait is the use of binaural cues to find the direction to the source of sound. In insects, the task is further complicated by their small size and, hence, minute temporal and level differences between two ears. A single symmetric flagellar particle velocity receiver, such as the antenna of a mosquito, should not be able to discriminate between the two opposite directions along the vector of the sound wave. Paired antennae of mosquitoes presume the usage of binaural hearing, but its mechanisms are expected to be significantly different from the ones typical for the pressure receivers. However, the directionality of flagellar auditory organs has received little attention. Here, we measured the in-flight orientation of antennae in female Culex pipiens pipiens mosquitoes and obtained a detailed physiological mapping of the Johnston's organ directionality at the level of individual sensory units. By combining these data, we created a three-dimensional model of the mosquito's auditory space. The orientation of the antennae was found to be coordinated with the neuronal asymmetry of the Johnston's organs to maintain a uniformly shaped auditory space, symmetric relative to a flying mosquito. The overlap of the directional characteristics of the left and right sensory units was found to be optimal for binaural hearing focused primarily in front of, above and below a flying mosquito.
Collapse
Affiliation(s)
- Dmitry N. Lapshin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, 127994 Moscow, Russia;
| | - Dmitry D. Vorontsov
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia
| |
Collapse
|
4
|
Brown AD, Hayward T, Portfors CV, Coffin AB. On the value of diverse organisms in auditory research: From fish to flies to humans. Hear Res 2023; 432:108754. [PMID: 37054531 PMCID: PMC10424633 DOI: 10.1016/j.heares.2023.108754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Historically, diverse organisms have contributed to our understanding of auditory function. In recent years, the laboratory mouse has become the prevailing non-human model in auditory research, particularly for biomedical studies. There are many questions in auditory research for which the mouse is the most appropriate (or the only) model system available. But mice cannot provide answers for all auditory problems of basic and applied importance, nor can any single model system provide a synthetic understanding of the diverse solutions that have evolved to facilitate effective detection and use of acoustic information. In this review, spurred by trends in funding and publishing and inspired by parallel observations in other domains of neuroscience, we highlight a few examples of the profound impact and lasting benefits of comparative and basic organismal research in the auditory system. We begin with the serendipitous discovery of hair cell regeneration in non-mammalian vertebrates, a finding that has fueled an ongoing search for pathways to hearing restoration in humans. We then turn to the problem of sound source localization - a fundamental task that most auditory systems have been compelled to solve despite large variation in the magnitudes and kinds of spatial acoustic cues available, begetting varied direction-detecting mechanisms. Finally, we consider the power of work in highly specialized organisms to reveal exceptional solutions to sensory problems - and the diverse returns of deep neuroethological inquiry - via the example of echolocating bats. Throughout, we consider how discoveries made possible by comparative and curiosity-driven organismal research have driven fundamental scientific, biomedical, and technological advances in the auditory field.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA, 98105 USA; Virginia-Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Seattle, WA, 98195 USA.
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
5
|
Suver MP, Medina AM, Nagel KI. Active antennal movements in Drosophila can tune wind encoding. Curr Biol 2023; 33:780-789.e4. [PMID: 36731464 PMCID: PMC9992063 DOI: 10.1016/j.cub.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Insects use their antennae to smell odors,1,2 detect auditory cues,3,4 and sense mechanosensory stimuli such as wind5 and objects,6,7,8 frequently by combining sensory processing with active movements. Genetic access to antennal motor systems would therefore provide a powerful tool for dissecting the circuit mechanisms underlying active sensing, but little is known about how the most genetically tractable insect, Drosophila melanogaster, moves its antennae. Here, we use deep learning to measure how tethered Drosophila move their antennae in the presence of sensory stimuli and identify genetic reagents for controlling antennal movement. We find that flies perform both slow adaptive movements and fast flicking movements in response to wind-induced deflections, but not the attractive odor apple cider vinegar. Next, we describe four muscles in the first antennal segment that control antennal movements and identify genetic driver lines that provide access to two groups of antennal motor neurons and an antennal muscle. Through optogenetic inactivation, we provide evidence that antennal motor neurons contribute to active movements with different time courses. Finally, we show that activation of antennal motor neurons and muscles can adjust the gain and acuity of wind direction encoding by antennal displacement. Together, our experiments provide insight into the neural control of antennal movement and suggest that active antennal positioning in Drosophila may tune the precision of wind encoding.
Collapse
Affiliation(s)
- Marie P Suver
- Neuroscience Institute, NYU Langone Medical Center, 435 E 30(th) St., New York, NY 10016, USA
| | - Ashley M Medina
- Neuroscience Institute, NYU Langone Medical Center, 435 E 30(th) St., New York, NY 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU Langone Medical Center, 435 E 30(th) St., New York, NY 10016, USA.
| |
Collapse
|
6
|
Dorkenwald S, McKellar CE, Macrina T, Kemnitz N, Lee K, Lu R, Wu J, Popovych S, Mitchell E, Nehoran B, Jia Z, Bae JA, Mu S, Ih D, Castro M, Ogedengbe O, Halageri A, Kuehner K, Sterling AR, Ashwood Z, Zung J, Brittain D, Collman F, Schneider-Mizell C, Jordan C, Silversmith W, Baker C, Deutsch D, Encarnacion-Rivera L, Kumar S, Burke A, Bland D, Gager J, Hebditch J, Koolman S, Moore M, Morejohn S, Silverman B, Willie K, Willie R, Yu SC, Murthy M, Seung HS. FlyWire: online community for whole-brain connectomics. Nat Methods 2022; 19:119-128. [PMID: 34949809 PMCID: PMC8903166 DOI: 10.1038/s41592-021-01330-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/25/2021] [Indexed: 11/09/2022]
Abstract
Due to advances in automated image acquisition and analysis, whole-brain connectomes with 100,000 or more neurons are on the horizon. Proofreading of whole-brain automated reconstructions will require many person-years of effort, due to the huge volumes of data involved. Here we present FlyWire, an online community for proofreading neural circuits in a Drosophila melanogaster brain and explain how its computational and social structures are organized to scale up to whole-brain connectomics. Browser-based three-dimensional interactive segmentation by collaborative editing of a spatially chunked supervoxel graph makes it possible to distribute proofreading to individuals located virtually anywhere in the world. Information in the edit history is programmatically accessible for a variety of uses such as estimating proofreading accuracy or building incentive systems. An open community accelerates proofreading by recruiting more participants and accelerates scientific discovery by requiring information sharing. We demonstrate how FlyWire enables circuit analysis by reconstructing and analyzing the connectome of mechanosensory neurons.
Collapse
Affiliation(s)
- Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kai Kuehner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zoe Ashwood
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Jonathan Zung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | | | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Christa Baker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Sandeep Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin Burke
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - James Hebditch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Selden Koolman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Merlin Moore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sarah Morejohn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ben Silverman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kyle Willie
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ryan Willie
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Computer Science Department, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
7
|
Butterworth NJ, Wallman JF. Flies getting filthy: The precopulatory mating behaviours of three mud‐dwelling species of Australian
Lispe
(Diptera: Muscidae). Ethology 2021. [DOI: 10.1111/eth.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - James F. Wallman
- Faculty of Science University of Technology Sydney Ultimo NSW Australia
| |
Collapse
|
8
|
Römer H. Directional hearing in insects: biophysical, physiological and ecological challenges. ACTA ACUST UNITED AC 2020; 223:223/14/jeb203224. [PMID: 32737067 DOI: 10.1242/jeb.203224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sound localisation is a fundamental attribute of the way that animals perceive their external world. It enables them to locate mates or prey, determine the direction from which a predator is approaching and initiate adaptive behaviours. Evidence from different biological disciplines that has accumulated over the last two decades indicates how small insects with body sizes much smaller than the wavelength of the sound of interest achieve a localisation performance that is similar to that of mammals. This Review starts by describing the distinction between tympanal ears (as in grasshoppers, crickets, cicadas, moths or mantids) and flagellar ears (specifically antennae in mosquitoes and fruit flies). The challenges faced by insects when receiving directional cues differ depending on whether they have tympanal or flagellar years, because the latter respond to the particle velocity component (a vector quantity) of the sound field, whereas the former respond to the pressure component (a scalar quantity). Insects have evolved sophisticated biophysical solutions to meet these challenges, which provide binaural cues for directional hearing. The physiological challenge is to reliably encode these cues in the neuronal activity of the afferent auditory system, a non-trivial problem in particular for those insect systems composed of only few nerve cells which exhibit a considerable amount of intrinsic and extrinsic response variability. To provide an integrative view of directional hearing, I complement the description of these biophysical and physiological solutions by presenting findings on localisation in real-world situations, including evidence for localisation in the vertical plane.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
9
|
Suver MP, Matheson AMM, Sarkar S, Damiata M, Schoppik D, Nagel KI. Encoding of Wind Direction by Central Neurons in Drosophila. Neuron 2019; 102:828-842.e7. [PMID: 30948249 PMCID: PMC6533146 DOI: 10.1016/j.neuron.2019.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 11/30/2022]
Abstract
Wind is a major navigational cue for insects, but how wind direction is decoded by central neurons in the insect brain is unknown. Here we find that walking flies combine signals from both antennae to orient to wind during olfactory search behavior. Movements of single antennae are ambiguous with respect to wind direction, but the difference between left and right antennal displacements yields a linear code for wind direction in azimuth. Second-order mechanosensory neurons share the ambiguous responses of a single antenna and receive input primarily from the ipsilateral antenna. Finally, we identify novel "wedge projection neurons" that integrate signals across the two antennae and receive input from at least three classes of second-order neurons to produce a more linear representation of wind direction. This study establishes how a feature of the sensory environment-wind direction-is decoded by neurons that compare information across two sensors.
Collapse
Affiliation(s)
- Marie P Suver
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Andrew M M Matheson
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sinekdha Sarkar
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Matthew Damiata
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - David Schoppik
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Katherine I Nagel
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
10
|
Batchelor AV, Wilson RI. Sound localization behavior in Drosophila melanogaster depends on inter-antenna vibration amplitude comparisons. ACTA ACUST UNITED AC 2019; 222:222/3/jeb191213. [PMID: 30733260 DOI: 10.1242/jeb.191213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022]
Abstract
Drosophila melanogaster hear with their antennae: sound evokes vibration of the distal antennal segment, and this vibration is transduced by specialized mechanoreceptor cells. The left and right antennae vibrate preferentially in response to sounds arising from different azimuthal angles. Therefore, by comparing signals from the two antennae, it should be possible to obtain information about the azimuthal angle of a sound source. However, behavioral evidence of sound localization has not been reported in Drosophila Here, we show that walking D. melanogaster do indeed turn in response to lateralized sounds. We confirm that this behavior is evoked by vibrations of the distal antennal segment. The rule for turning is different for sounds arriving from different locations: flies turn toward sounds in their front hemifield, but they turn away from sounds in their rear hemifield, and they do not turn at all in response to sounds from 90 or -90 deg. All of these findings can be explained by a simple rule: the fly steers away from the antenna with the larger vibration amplitude. Finally, we show that these behaviors generalize to sound stimuli with diverse spectro-temporal features, and that these behaviors are found in both sexes. Our findings demonstrate the behavioral relevance of the antenna's directional tuning properties. They also pave the way for investigating the neural implementation of sound localization, as well as the potential roles of sound-guided steering in courtship and exploration.
Collapse
Affiliation(s)
- Alexandra V Batchelor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
11
|
Lapshin DN, Vorontsov DD. Directional and frequency characteristics of auditory neurons in Culex male mosquitoes. J Exp Biol 2019; 222:jeb.208785. [DOI: 10.1242/jeb.208785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022]
Abstract
The paired auditory organ of mosquito, the Johnston's organ (JO), being the receiver of particle velocity component of sound, is directional by its structure. However, to date almost no physiological measurements of its directionality was done. In addition, the recent finding on the grouping of the JO auditory neurons into the antiphase pairs demanded confirmation by different methods. Using the vector superposition of the signals produced by two orthogonally oriented speakers, we measured the directional characteristics of individual units as well as their relations in physiologically distinguishable groups – pairs or triplets. The feedback stimulation method allowed to discriminate responses of the two simultaneously recorded units, and to show that they indeed responded in antiphase. Units of different frequency tuning as well as high-sensitive units (thresholds of 27 dB SPVL and below) were found in every angular sector of the JO, providing the mosquito with the ability to produce complex auditory behaviors.
Collapse
Affiliation(s)
- Dmitry N. Lapshin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute) Bolshoy Karetny per. 19, Moscow, 127994, Russia
| | - Dmitry D. Vorontsov
- Koltzov Institute of Developmental Biology Russian Academy of Sciences Vavilova 26, Moscow, 119334, Russia
| |
Collapse
|
12
|
Morley EL, Jonsson T, Robert D. Auditory sensitivity, spatial dynamics, and amplitude of courtship song in Drosophila melanogaster. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:734. [PMID: 30180716 DOI: 10.1121/1.5049791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Acoustic communication is an important component of courtship in Drosophila melanogaster. It takes the form of courtship song produced by males through the unilateral extension and vibration of a wing. Following the paradigm of sender-receiver matching, song content is assumed to match tuning in the auditory system, however, D. melanogaster audition is nonlinear and tuning dependent upon signal amplitude. At low stimulus amplitudes or in the absence of sound the antenna is tuned into song frequency, but as amplitude increases the antenna's resonance is shifted up by hundreds of Hertz. Accurate measurements of song amplitude have been elusive because of the strong dependency of amplitude upon the spatial geometry between sender and receiver. Here, D. melanogaster auditory directional sensitivity and the geometric position between the courting flies are quantified. It is shown that singing occurs primarily from positions resulting in direct stimulation of the female antenna. Using this information, it is established that the majority of song is louder than theoretically predicted and at these sound levels the female antenna should not amplify or be tuned into song. The study implies that Drosophila hearing, and, in particular, its active mechanisms, could function in a broader context than previously surmised.
Collapse
Affiliation(s)
- Erica L Morley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Thorin Jonsson
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Daniel Robert
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
13
|
Brüggemeier B, Porter MA, Vigoreaux JO, Goodwin SF. Female Drosophila melanogaster respond to song-amplitude modulations. Biol Open 2018; 7:bio032003. [PMID: 29666051 PMCID: PMC6031343 DOI: 10.1242/bio.032003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Males in numerous animal species use mating songs to attract females and intimidate competitors. We demonstrate that modulations in song amplitude are behaviourally relevant in the fruit fly Drosophila We show that Drosophilamelanogaster females prefer amplitude modulations that are typical of melanogaster song over other modulations, which suggests that amplitude modulations are processed auditorily by D. melanogaster Our work demonstrates that receivers can decode messages in amplitude modulations, complementing the recent finding that male flies actively control song amplitude. To describe amplitude modulations, we propose the concept of song amplitude structure (SAS) and discuss similarities and differences to amplitude modulation with distance (AMD).This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Birgit Brüggemeier
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
- AudioLabs, Fraunhofer-Institut für Integrierte Schaltungen, 91058 Erlangen, Germany
| | - Mason A Porter
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
- CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, UK
| | - Jim O Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| |
Collapse
|
14
|
Iglesias PP, Soto EM, Soto IM, Colines B, Hasson E. The influence of developmental environment on courtship song in cactophilicDrosophila. J Evol Biol 2018; 31:957-967. [DOI: 10.1111/jeb.13277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Patricia P. Iglesias
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA); CONICET; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Eduardo M. Soto
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA); CONICET; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Ignacio M. Soto
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA); CONICET; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Betina Colines
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA); CONICET; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA); CONICET; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
15
|
Patella P, Wilson RI. Functional Maps of Mechanosensory Features in the Drosophila Brain. Curr Biol 2018; 28:1189-1203.e5. [PMID: 29657118 PMCID: PMC5952606 DOI: 10.1016/j.cub.2018.02.074] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 01/04/2023]
Abstract
Johnston's organ is the largest mechanosensory organ in Drosophila. It contributes to hearing, touch, vestibular sensing, proprioception, and wind sensing. In this study, we used in vivo 2-photon calcium imaging and unsupervised image segmentation to map the tuning properties of Johnston's organ neurons (JONs) at the site where their axons enter the brain. We then applied the same methodology to study two key brain regions that process signals from JONs: the antennal mechanosensory and motor center (AMMC) and the wedge, which is downstream of the AMMC. First, we identified a diversity of JON response types that tile frequency space and form a rough tonotopic map. Some JON response types are direction selective; others are specialized to encode amplitude modulations over a specific range (dynamic range fractionation). Next, we discovered that both the AMMC and the wedge contain a tonotopic map, with a significant increase in tonotopy-and a narrowing of frequency tuning-at the level of the wedge. Whereas the AMMC tonotopic map is unilateral, the wedge tonotopic map is bilateral. Finally, we identified a subregion of the AMMC/wedge that responds preferentially to the coherent rotation of the two mechanical organs in the same angular direction, indicative of oriented steady air flow (directional wind). Together, these maps reveal the broad organization of the primary and secondary mechanosensory regions of the brain. They provide a framework for future efforts to identify the specific cell types and mechanisms that underlie the hierarchical re-mapping of mechanosensory information in this system.
Collapse
Affiliation(s)
- Paola Patella
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
16
|
Fast intensity adaptation enhances the encoding of sound in Drosophila. Nat Commun 2018; 9:134. [PMID: 29317624 PMCID: PMC5760620 DOI: 10.1038/s41467-017-02453-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
To faithfully encode complex stimuli, sensory neurons should correct, via adaptation, for stimulus properties that corrupt pattern recognition. Here we investigate sound intensity adaptation in the Drosophila auditory system, which is largely devoted to processing courtship song. Mechanosensory neurons (JONs) in the antenna are sensitive not only to sound-induced antennal vibrations, but also to wind or gravity, which affect the antenna's mean position. Song pattern recognition, therefore, requires adaptation to antennal position (stimulus mean) in addition to sound intensity (stimulus variance). We discover fast variance adaptation in Drosophila JONs, which corrects for background noise over the behaviorally relevant intensity range. We determine where mean and variance adaptation arises and how they interact. A computational model explains our results using a sequence of subtractive and divisive adaptation modules, interleaved by rectification. These results lay the foundation for identifying the molecular and biophysical implementation of adaptation to the statistics of natural sensory stimuli.
Collapse
|
17
|
Albert JT, Kozlov AS. Comparative Aspects of Hearing in Vertebrates and Insects with Antennal Ears. Curr Biol 2017; 26:R1050-R1061. [PMID: 27780047 DOI: 10.1016/j.cub.2016.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of hearing in terrestrial animals has resulted in remarkable adaptations enabling exquisitely sensitive sound detection by the ear and sophisticated sound analysis by the brain. In this review, we examine several such characteristics, using examples from insects and vertebrates. We focus on two strong and interdependent forces that have been shaping the auditory systems across taxa: the physical environment of auditory transducers on the small, subcellular scale, and the sensory-ecological environment within which hearing happens, on a larger, evolutionary scale. We briefly discuss acoustical feature selectivity and invariance in the central auditory system, highlighting a major difference between insects and vertebrates as well as a major similarity. Through such comparisons within a sensory ecological framework, we aim to emphasize general principles underlying acute sensitivity to airborne sounds.
Collapse
Affiliation(s)
- Joerg T Albert
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Andrei S Kozlov
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
18
|
Debelle A, Courtiol A, Ritchie MG, Snook RR. Mate choice intensifies motor signalling in Drosophila. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Azevedo AW, Wilson RI. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons. Neuron 2017; 96:446-460.e9. [PMID: 28943231 DOI: 10.1016/j.neuron.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/26/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na+ and K+ conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Coen P, Xie M, Clemens J, Murthy M. Sensorimotor Transformations Underlying Variability in Song Intensity during Drosophila Courtship. Neuron 2016; 89:629-44. [PMID: 26844835 DOI: 10.1016/j.neuron.2015.12.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/05/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022]
Abstract
Diverse animal species, from insects to humans, utilize acoustic signals for communication. Studies of the neural basis for song or speech production have focused almost exclusively on the generation of spectral and temporal patterns, but animals can also adjust acoustic signal intensity when communicating. For example, humans naturally regulate the loudness of speech in accord with a visual estimate of receiver distance. The underlying mechanisms for this ability remain uncharacterized in any system. Here, we show that Drosophila males modulate courtship song amplitude with female distance, and we investigate each stage of the sensorimotor transformation underlying this behavior, from the detection of particular visual stimulus features and the timescales of sensory processing to the modulation of neural and muscle activity that generates song. Our results demonstrate an unanticipated level of control in insect acoustic communication and uncover novel computations and mechanisms underlying the regulation of acoustic signal intensity.
Collapse
Affiliation(s)
- Philip Coen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Marjorie Xie
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
21
|
Matsuo E, Seki H, Asai T, Morimoto T, Miyakawa H, Ito K, Kamikouchi A. Organization of projection neurons and local neurons of the primary auditory center in the fruit fly
Drosophila melanogaster. J Comp Neurol 2016; 524:1099-164. [DOI: 10.1002/cne.23955] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Eriko Matsuo
- Graduate School of ScienceNagoya UniversityNagoya464‐8602 Japan
| | - Haruyoshi Seki
- School of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji Tokyo Japan
| | - Tomonori Asai
- Graduate School of ScienceNagoya UniversityNagoya464‐8602 Japan
| | - Takako Morimoto
- School of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji Tokyo Japan
| | - Hiroyoshi Miyakawa
- School of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji Tokyo Japan
| | - Kei Ito
- Institute of Molecular and Cellular BiosciencesThe University of TokyoYayoi, Bunkyo‐ku Tokyo113‐0032 Japan
| | - Azusa Kamikouchi
- Graduate School of ScienceNagoya UniversityNagoya464‐8602 Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyTokyo102‐0076 Japan
| |
Collapse
|
22
|
Kamikouchi A. Auditory neuroscience in fruit flies. Neurosci Res 2013; 76:113-8. [PMID: 23707240 DOI: 10.1016/j.neures.2013.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Since the first analysis of the Drosophila courtship song more than 50 years ago, the molecular and neural mechanisms underlying the acoustic communication between fruit flies has been studied extensively. The results of recent studies utilizing a wide array of genetic tools provide novel insights into the anatomic and functional characteristics of the auditory and other mechanosensory systems in the fruit fly. Johnston's hearing organ, the antennal ear of the fruit fly, serves as a complex sensor not only for near-field sound but also for gravity and wind. These auditory and non-auditory signals travel in parallel from the fly ear to the brain, feeding into neural pathways similar to the auditory and vestibular pathways of the human brain. This review discusses these recent findings and outlines auditory neuroscience in flies.
Collapse
Affiliation(s)
- Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
23
|
Neuronal encoding of sound, gravity, and wind in the fruit fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:253-62. [PMID: 23494584 DOI: 10.1007/s00359-013-0806-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 01/01/2023]
Abstract
The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they 'freeze' in place. Based on recent studies, Johnston's hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston's organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.
Collapse
|