1
|
Snyder RR, Blitz DM. Multiple intrinsic membrane properties are modulated in a switch from single- to dual-network activity. J Neurophysiol 2022; 128:1181-1198. [PMID: 36197020 PMCID: PMC9621714 DOI: 10.1152/jn.00337.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022] Open
Abstract
Neural network flexibility includes changes in neuronal participation between networks, such as the switching of neurons between single- and dual-network activity. We previously identified a neuron that is recruited to burst in time with an additional network via modulation of its intrinsic membrane properties, instead of being recruited synaptically into the second network. However, the modulated intrinsic properties were not determined. Here, we use small networks in the Jonah crab (Cancer borealis) stomatogastric nervous system (STNS) to examine modulation of intrinsic properties underlying neuropeptide (Gly1-SIFamide)-elicited neuronal switching. The lateral posterior gastric neuron (LPG) switches from exclusive participation in the fast pyloric (∼1 Hz) network, due to electrical coupling, to dual-network activity that includes periodic escapes from the fast rhythm via intrinsically generated oscillations at the slower gastric mill network frequency (∼0.1 Hz). We isolated LPG from both networks by pharmacology and hyperpolarizing current injection. Gly1-SIFamide increased LPG intrinsic excitability and rebound from inhibition and decreased spike frequency adaptation, which can all contribute to intrinsic bursting. Using ion substitution and channel blockers, we found that a hyperpolarization-activated current, a persistent sodium current, and calcium or calcium-related current(s) appear to be primary contributors to Gly1-SIFamide-elicited LPG intrinsic bursting. However, this intrinsic bursting was more sensitive to blocking currents when LPG received rhythmic electrical coupling input from the fast network than in the isolated condition. Overall, a switch from single- to dual-network activity can involve modulation of multiple intrinsic properties, while synaptic input from a second network can shape the contributions of these properties.NEW & NOTEWORTHY Neuropeptide-elicited intrinsic bursting was recently determined to switch a neuron from single- to dual-network participation. Here we identified multiple intrinsic properties modulated in the dual-network state and candidate ion channels underlying the intrinsic bursting. Bursting at the second network frequency was more sensitive to blocking currents in the dual-network state than when neurons were synaptically isolated from their home network. Thus, synaptic input can shape the contributions of modulated intrinsic properties underlying dual-network activity.
Collapse
Affiliation(s)
- Ryan R Snyder
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| |
Collapse
|
2
|
Toval A, Garrigos D, Kutsenko Y, Popović M, Do-Couto BR, Morales-Delgado N, Tseng KY, Ferran JL. Dopaminergic Modulation of Forced Running Performance in Adolescent Rats: Role of Striatal D1 and Extra-striatal D2 Dopamine Receptors. Mol Neurobiol 2021; 58:1782-1791. [PMID: 33394335 PMCID: PMC7932989 DOI: 10.1007/s12035-020-02252-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
Improving exercise capacity during adolescence impacts positively on cognitive and motor functions. However, the neural mechanisms contributing to enhance physical performance during this sensitive period remain poorly understood. Such knowledge could help to optimize exercise programs and promote a healthy physical and cognitive development in youth athletes. The central dopamine system is of great interest because of its role in regulating motor behavior through the activation of D1 and D2 receptors. Thus, the aim of the present study is to determine whether D1 or D2 receptor signaling contributes to modulate the exercise capacity during adolescence and if this modulation takes place through the striatum. To test this, we used a rodent model of forced running wheel that we implemented recently to assess the exercise capacity. Briefly, rats were exposed to an 8-day period of habituation in the running wheel before assessing their locomotor performance in response to an incremental exercise test, in which the speed was gradually increased until exhaustion. We found that systemic administration of D1-like (SCH23390) and/or D2-like (raclopride) receptor antagonists prior to the incremental test reduced the duration of forced running in a dose-dependent manner. Similarly, locomotor activity in the open field was decreased by the dopamine antagonists. Interestingly, this was not the case following intrastriatal infusion of an effective dose of SCH23390, which decreased motor performance during the incremental test without disrupting the behavioral response in the open field. Surprisingly, intrastriatal delivery of raclopride failed to impact the duration of forced running. Altogether, these results indicate that the level of locomotor response to incremental loads of forced running in adolescent rats is dopamine dependent and mechanistically linked to the activation of striatal D1 and extra-striatal D2 receptors.
Collapse
Affiliation(s)
- Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do-Couto
- Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Department of Histology and Anatomy, Faculty of Medicine, University Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.
| |
Collapse
|
3
|
Segura OM, Abdulnoor L, Hua VV, Solano MJ, Macagno ER, Baker MW. Purinergic modulation of neuronal gap junction circuits in the CNS of the leech. J Neurosci Res 2020; 98:1232-1249. [PMID: 32096570 DOI: 10.1002/jnr.24599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 11/08/2022]
Abstract
Gap junctions (GJs) are widely distributed in brains across the animal kingdom. To visualize the GJ- coupled networks of two major mechanosensory neurons in the ganglia of medicinal leeches, we injected these cells with the GJ-permeable tracer Neurobiotin. When diffusion time was limited to only 30 min, tracer coupling was highly variable for both cells, suggesting a possible modulation of GJ permeability. In invertebrates the innexins (homologs of vertebrate pannexins) form the GJs. Because extracellular adenosine triphosphate (ATP) modulates pannexin and leech innexin hemichannel permeability and is released by leech glial cells following injury, we tested the effects of bath application of ATP after the injection of Neurobiotin and observed a significant increase in the number of neurons tracer coupled to the sensory neurons. This effect required the elevation of intracellular Ca2+ and could be produced by bath application of caffeine. Conversely, scavenging endogenous extracellular ATP with the ATPase apyrase decreased the number of coupled cells. ATP also increased electrical conductance and tracer permeability between the bilateral Retzius neurons. This modulatory effect of ATP on GJ coupling was blocked by siRNA knockdown of a P1-like adenosine receptor. Finally, exposure of leech ganglia to extracellular ATP induced a characteristic low frequency (<0.3 Hz) rhythmic bursting activity that was roughly synchronous among multiple neurons, a behavior that was significantly attenuated by the GJ blocker octanol. These findings highlight the mediation by ATP of a robust physiological mechanism for modifying neuronal circuits by rapidly recruiting neurons into active networks and entraining synchronized bursting activity.
Collapse
Affiliation(s)
- Oliva Mota Segura
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lina Abdulnoor
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vinh-Vincent Hua
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Martha J Solano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Eduardo R Macagno
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michael W Baker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Kim RC, Le D, Ma K, Heath-Heckman EAC, Whitehorn N, Kristan WB, Weisblat DA. Behavioral analysis of substrate texture preference in a leech, Helobdella austinensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:191-202. [PMID: 30721348 DOI: 10.1007/s00359-019-01317-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/02/2023]
Abstract
Leeches in the wild are often found on smooth surfaces, such as vegetation, smooth rocks or human artifacts such as bottles and cans, thus exhibiting what appears to be a "substrate texture preference". Here, we have reproduced this behavior under controlled circumstances, by allowing leeches to step about freely on a range of silicon carbide substrates (sandpaper). To begin to understand the neural mechanisms underlying this texture preference behavior, we have determined relevant parameters of leech behavior both on uniform substrates of varying textures, and in a behavior choice paradigm in which the leech is confronted with a choice between rougher and smoother substrate textures at each step. We tested two non-exclusive mechanisms which could produce substrate texture preference: (1) a Differential Diffusion mechanism, in which a leech is more likely to stop moving on a smooth surface than on a rough one, and (2) a Smoothness Selection mechanism, in which a leech is more likely to attach its front sucker (prerequisite for taking a step) to a smooth surface than to a rough one. We propose that both mechanisms contribute to the texture preference exhibited by leeches.
Collapse
Affiliation(s)
- Rachel C Kim
- Department of Molecular and Cell Biology, University of California, 385 LSA, Berkeley, CA, 94720-3200, USA
| | - Dylan Le
- Division of Biological Sciences, University of California San Diego, 3119 Pacific Hall, La Jolla, CA, 92093, USA
| | - Kenny Ma
- Department of Molecular and Cell Biology, University of California, 385 LSA, Berkeley, CA, 94720-3200, USA
| | - Elizabeth A C Heath-Heckman
- Department of Molecular and Cell Biology, University of California, 385 LSA, Berkeley, CA, 94720-3200, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Nathan Whitehorn
- Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
| | - William B Kristan
- Division of Biological Sciences, University of California San Diego, 3119 Pacific Hall, La Jolla, CA, 92093, USA
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, 385 LSA, Berkeley, CA, 94720-3200, USA.
| |
Collapse
|
5
|
Neveu CL, Costa RM, Homma R, Nagayama S, Baxter DA, Byrne JH. Unique Configurations of Compression and Truncation of Neuronal Activity Underlie l-DOPA-Induced Selection of Motor Patterns in Aplysia. eNeuro 2017; 4:ENEURO.0206-17.2017. [PMID: 29071298 PMCID: PMC5654236 DOI: 10.1523/eneuro.0206-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 μM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA.
Collapse
Affiliation(s)
- Curtis L Neveu
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Renan M Costa
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ryota Homma
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
6
|
Adamatzky A, Sirakoulis GC. Building exploration with leeches Hirudo verbana. Biosystems 2015; 134:48-55. [DOI: 10.1016/j.biosystems.2015.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 11/26/2022]
|
7
|
Adamatzky A. On exploration of geometrically constrained space by medicinal leeches Hirudo verbana. Biosystems 2015; 130:28-36. [PMID: 25766395 DOI: 10.1016/j.biosystems.2015.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 11/28/2022]
Abstract
Leeches are fascinating creatures: they have simple modular nervous circuitry yet exhibit a rich spectrum of behavioural modes. Leeches could be ideal blue-prints for designing flexible soft robots which are modular, multi-functional, fault-tolerant, easy to control, capable for navigating using optical, mechanical and chemical sensorial inputs, have autonomous inter-segmental coordination and adaptive decision-making. With future designs of leech-robots in mind we study how leeches behave in geometrically constrained spaces. Core results of the paper deal with leeches exploring a row of rooms arranged along a narrow corridor. In laboratory experiments we find that rooms closer to ends of the corridor are explored by leeches more often than rooms in the middle of the corridor. Also, in series of scoping experiments, we evaluate leeches capabilities to navigating in mazes towards sources of vibration and chemo-attraction. We believe our results lay foundation for future developments of robots mimicking behaviour of leeches.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Centre and Bristol Robotics Lab, University of the West of England, UK
| |
Collapse
|
8
|
Sharples SA, Koblinger K, Humphreys JM, Whelan PJ. Dopamine: a parallel pathway for the modulation of spinal locomotor networks. Front Neural Circuits 2014; 8:55. [PMID: 24982614 PMCID: PMC4059167 DOI: 10.3389/fncir.2014.00055] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/11/2014] [Indexed: 12/24/2022] Open
Abstract
The spinal cord contains networks of neurons that can produce locomotor patterns. To readily respond to environmental conditions, these networks must be flexible yet at the same time robust. Neuromodulators play a key role in contributing to network flexibility in a variety of invertebrate and vertebrate networks. For example, neuromodulators contribute to altering intrinsic properties and synaptic weights that, in extreme cases, can lead to neurons switching between networks. Here we focus on the role of dopamine in the control of stepping networks in the spinal cord. We first review the role of dopamine in modulating rhythmic activity in the stomatogastric ganglion (STG) and the leech, since work from these preparations provides a foundation to understand its role in vertebrate systems. We then move to a discussion of dopamine’s role in modulation of swimming in aquatic species such as the larval xenopus, lamprey and zebrafish. The control of terrestrial walking in vertebrates by dopamine is less studied and we review current evidence in mammals with a focus on rodent species. We discuss data suggesting that the source of dopamine within the spinal cord is mainly from the A11 area of the diencephalon, and then turn to a discussion of dopamine’s role in modulating walking patterns from both in vivo and in vitro preparations. Similar to the descending serotonergic system, the dopaminergic system may serve as a potential target to promote recovery of locomotor function following spinal cord injury (SCI); evidence suggests that dopaminergic agonists can promote recovery of function following SCI. We discuss pharmacogenetic and optogenetic approaches that could be deployed in SCI and their potential tractability. Throughout the review we draw parallels with both noradrenergic and serotonergic modulatory effects on spinal cord networks. In all likelihood, a complementary monoaminergic enhancement strategy should be deployed following SCI.
Collapse
Affiliation(s)
- Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Jennifer M Humphreys
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Department of Clinical Neurosciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
9
|
Riluzole suppresses postinhibitory rebound in an excitatory motor neuron of the medicinal leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:759-75. [PMID: 24890185 DOI: 10.1007/s00359-014-0919-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 04/06/2014] [Accepted: 05/17/2014] [Indexed: 12/12/2022]
Abstract
Postinhibitory rebound (PIR) is an intrinsic property often exhibited by neurons involved in generating rhythmic motor behaviors. Cell DE-3, a dorsal excitatory motor neuron in the medicinal leech exhibits PIR responses that persist for several seconds following the offset of hyperpolarizing stimuli and are suppressed in reduced Na(+) solutions or by Ca(2+) channel blockers. The long duration and Na(+) dependence of PIR suggest a possible role for persistent Na(+) current (I NaP). In vertebrate neurons, the neuroprotective agent riluzole can produce a selective block of I NaP. This study demonstrates that riluzole inhibits cell DE-3 PIR in a concentration- and Ca(2+)-dependent manner. In 1.8 mM Ca(2+) solution, 50-100 µM riluzole selectively blocked the late phase of PIR, an effect similar to that of the neuromodulator serotonin. However, 200 µM riluzole blocked both the early and late phases of PIR. Increasing extracellular Ca(2+) to 10 mM strengthened PIR, but high riluzole concentrations continued to suppress both phases of PIR. These results indicate that riluzole may suppress PIR via a nonspecific inhibition of Ca(2+) conductances and suggest that a Ca(2+)-activated nonspecific current (I(CAN)), rather than I NaP, may underlie the Na(+)-dependent component of PIR.
Collapse
|
10
|
Ramirez JM. The integrative role of the sigh in psychology, physiology, pathology, and neurobiology. PROGRESS IN BRAIN RESEARCH 2014; 209:91-129. [PMID: 24746045 DOI: 10.1016/b978-0-444-63274-6.00006-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Sighs, tears, grief, distress" expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Bötzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Titlow J, Majeed ZR, Nicholls JG, Cooper RL. Intracellular recording, sensory field mapping, and culturing identified neurons in the leech, Hirudo medicinalis. J Vis Exp 2013:e50631. [PMID: 24299987 PMCID: PMC3969890 DOI: 10.3791/50631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The freshwater leech, Hirudo medicinalis, is a versatile model organism that has been used to address scientific questions in the fields of neurophysiology, neuroethology, and developmental biology. The goal of this report is to consolidate experimental techniques from the leech system into a single article that will be of use to physiologists with expertise in other nervous system preparations, or to biology students with little or no electrophysiology experience. We demonstrate how to dissect the leech for recording intracellularly from identified neural circuits in the ganglion. Next we show how individual cells of known function can be removed from the ganglion to be cultured in a Petri dish, and how to record from those neurons in culture. Then we demonstrate how to prepare a patch of innervated skin to be used for mapping sensory or motor fields. These leech preparations are still widely used to address basic electrical properties of neural networks, behavior, synaptogenesis, and development. They are also an appropriate training module for neuroscience or physiology teaching laboratories.
Collapse
Affiliation(s)
- Josh Titlow
- Department of Biology, University of Kentucky
| | | | | | | |
Collapse
|