1
|
Rivi V, Batabyal A, Benatti C, Sarti P, Blom JMC, Tascedda F, Lukowiak K. A translational and multidisciplinary approach to studying the Garcia effect, a higher form of learning with deep evolutionary roots. J Exp Biol 2024; 227:jeb247325. [PMID: 38639079 DOI: 10.1242/jeb.247325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Animals, including humans, learn and remember to avoid a novel food when its ingestion is followed, hours later, by sickness - a phenomenon initially identified during World War II as a potential means of pest control. In the 1960s, John Garcia (for whom the effect is now named) demonstrated that this form of conditioned taste aversion had broader implications, showing that it is a rapid but long-lasting taste-specific food aversion with a fundamental role in the evolution of behaviour. From the mid-1970s onward, the principles of the Garcia effect were translated to humans, showing its role in different clinical conditions (e.g. side-effects linked to chemotherapy). However, in the last two decades, the number of studies on the Garcia effect has undergone a considerable decline. Since its discovery in rodents, this form of learning was thought to be exclusive to mammals; however, we recently provided the first demonstration that a Garcia effect can be formed in an invertebrate model organism, the pond snail Lymnaea stagnalis. Thus, in this Commentary, after reviewing the experiments that led to the first characterization of the Garcia effect in rodents, we describe the recent evidence for the Garcia effect in L. stagnalis, which may pave the way for future studies in other invertebrates and mammals. This article aims to inspire future translational and ecological studies that characterize the conserved mechanisms underlying this form of learning with deep evolutionary roots, which can be used to address a range of different biological questions.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 1N4
- Department of Physical and Natural Sciences, FLAME University, Pune - 412115, Maharashtra, India
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Pierfrancesco Sarti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna Maria Catharina Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, 34148 Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
2
|
Nguyen PTX, Dorny P, Van Hoang H, Losson B, Mignon B, Bui DT. Environmental influence on abundance and infection patterns of snail intermediate hosts of liver and intestinal flukes in North and Central Vietnam. Parasitol Res 2024; 123:134. [PMID: 38358614 DOI: 10.1007/s00436-024-08148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Liver and intestinal flukes (LIF) are important groups of foodborne zoonotic trematodes (FZTs) in Southeast Asia, including Vietnam. Their complex life cycles require specific freshwater snail species as the obligatory first intermediate hosts. In 2019, we conducted a longitudinal study in Yen Bai and Thanh Hoa provinces in North and Central Vietnam, respectively, to investigate the diversity of LIF and their infection prevalence in relation to snail host abundance and environmental factors. Using a combination of morphological and molecular identification techniques, we identified 10 LIF species infecting 11 snail host species. We observed significant seasonal variation in the mean abundance of several snail host species, with the majority of snails collected during the spring. We also detected seasonal changes in LIF species composition, with the highest species richness reported in the spring. Clonorchis sinensis and Fasciola gigantica, two medically important human liver flukes in Asia, were found only in the spring in Yen Bai. Our study revealed that not all snail host species have the same probability of becoming infected, and we recorded seasonal variations in the prevalence of LIF infection in different snail species in relation to water parameters.
Collapse
Affiliation(s)
- Phuong Thi Xuan Nguyen
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Hien Van Hoang
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Bertrand Losson
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Bernard Mignon
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Dung Thi Bui
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam.
| |
Collapse
|
3
|
Rivi V, Batabyal A, Benatti C, Blom JMC, Tascedda F, Lukowiak K. Investigating the interactions between multiple memory stores in the pond snail Lymnaea stagnalis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:91-102. [PMID: 37395798 DOI: 10.1007/s00359-023-01649-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
The pond snail Lymnaea stagnalis exhibits various forms of associative learning including (1) operant conditioning of aerial respiration where snails are trained not to open their pneumostome in a hypoxic pond water environment using a weak tactile stimulus to their pneumostome as they attempt to open it; and (2) a 24 h-lasting taste-specific learned avoidance known as the Garcia effect utilizing a lipopolysaccharide (LPS) injection just after snails eat a novel food substance (carrot). Typically, lab-inbred snails require two 0.5 h training sessions to form long-term memory (LTM) for operant conditioning of aerial respiration. However, some stressors (e.g., heat shock or predator scent) act as memory enhancers and thus a single 0.5 h training session is sufficient to enhance LTM formation lasting at least 24 h. Here, we found that snails forming a food-aversion LTM following Garcia-effect training exhibited enhanced LTM following operant condition of aerial respiration if trained in the presence of the food substance (carrot) they became averse to. Control experiments led us to conclude that carrot becomes a 'sickness' risk signal and acts as a stressor, sufficient to enhance LTM formation for another conditioning procedure.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Kagan D, Hollings J, Batabyal A, Lukowiak K. Five-minute exposure to a novel appetitive food substance is sufficient time for a microRNA-dependent long-term memory to form. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:83-90. [PMID: 37382606 DOI: 10.1007/s00359-023-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
The Garcia effect is a unique form of conditioned taste aversion which requires that a novel food stimulus be followed sometime later by a sickness state associated with the novel food stimulus. The long-lasting associative memory resulting from the Garcia effect ensures that organisms avoid toxic foods in their environment. Considering its ecological relevance, we sought to investigate whether a brief encounter (5 min) with a novel, appetitive food stimulus can cause a persisting long-term memory (LTM) to form that would in turn block the Garcia effect in Lymnaea stagnalis. Furthermore, we wanted to explore whether that persisting LTM could be modified by the alteration of microRNAs via an injection of poly-L-lysine (PLL), an inhibitor of Dicer-mediated microRNA biogenesis. The Garcia effect procedure involved two observations of feeding behavior in carrot separated by a heat stress (30 °C for 1 h). Exposing snails to carrot for 5 min caused a LTM to form and persist for 1 week, effectively preventing the Garcia effect in snails. In contrast, PLL injection following the 5-min carrot exposure impaired LTM formation, allowing the Garcia effect to occur. These results provide more insight into LTM formation and the Garcia effect, an important survival mechanism.
Collapse
Affiliation(s)
- Diana Kagan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Jasper Hollings
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
5
|
Rivi V, Batabyal A, Benatti C, Blom JM, Lukowiak K. Nature versus nurture in heat stress induced learning between inbred and outbred populations of Lymnaea stagnalis. J Therm Biol 2022; 103:103170. [PMID: 35027189 DOI: 10.1016/j.jtherbio.2021.103170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
Changing environmental conditions often lead to microevolution of traits that are adaptive under the current selection pressure. Currently, one of the major selection pressures is the rise in temperatures globally that has a severe impact on the behavioral ecology of animals. However, the role of thermal stress on neuronal plasticity and memory formation is not well understood. Thermal tolerance and sensitivity to heat stress show variation across populations of the same species experiencing different thermal regimes. We used two populations of the pond snail Lymnaea stagnalis: one lab-bred W-snails and the other wild Delta snails to test heat shock induced learning and memory formation for the Garcia effect learning paradigm. In Garcia effect, a single pairing of a heat stressor (30 °C for 1h) with a novel taste results in a taste-specific negative hedonic shift lasting 24h as long-term memory (LTM) in lab bred W-snails. In this study we used a repeated heat stress procedure to test for increased or decreased sensitivity to the heat before testing for the Garcia effect. We found that lab-bred W-snails show increased sensitivity to heat stress after repeated heat exposure for 7days, leading to enhanced LTM for Garcia effect with only 15min of heat exposure instead of standard 1h. Surprisingly, the freshly collected wild snails do not show Garcia effect. Additionally, F1 generation of wild snails raised and maintained under laboratory conditions still retain their heat stress tolerance similar to their parents and do not show a Garcia effect under standard learning paradigm or even after repeated heat stressor. Thus, we found a differential effect of heat stress on memory formation in wild and lab bred snails. Most interestingly we also show that local environmental (temperature) conditions for one generation is not enough to alter thermal sensitivity in a wild population of L. stagnalis.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Mc Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
6
|
A flavonoid, quercetin, is capable of enhancing long-term memory formation if encountered at different times in the learning, memory formation, and memory recall continuum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:253-265. [PMID: 34820709 DOI: 10.1007/s00359-021-01522-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
A major extrinsic factor influencing memory and neuro-cognitive performances across taxa is diet. Studies from vertebrates have shown the effects of a flavonoid rich diet on cognitive performance, but the mechanism underlying this action is still poorly understood. A common and abundant flavonoid present in numerous food substances is quercetin (Q). The present study provides the first support for Q-modulated enhancement of cognitive function in an invertebrate model, the pond snail Lymnaea stagnalis, after an operant conditioning procedure. We found that when snails were exposed to Q 3 h before or after a single 0.5 h training session, which typically results in memory lasting ~ 3 h, they formed a long-term memory (LTM) lasting for at least 24 h. Additionally, we assessed the effects of the combined presentation of a single reinforcing stimulus (at 24 h post-training or 24 h before training) and Q-exposure on both LTM formation and reconsolidation. That is, when applied within 3 h of critical periods of memory, Q regulates four different phases: (1) acquisition (i.e., a learning event), (2) consolidation processes after acquisition, (3) memory recall, and (4) memory reconsolidation. In all these phases Q-exposure enhanced LTM persistence.
Collapse
|
7
|
Batabyal A, Rivi V, Benatti C, Blom JMC, Lukowiak K. Long-term memory of configural learning is enhanced via CREB upregulation by the flavonoid quercetin in Lymnaea stagnalis. J Exp Biol 2021; 224:268357. [PMID: 34031691 DOI: 10.1242/jeb.242761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022]
Abstract
Animals respond to acute stressors by modifying their behaviour and physiology. The pond snail Lymnaea stagnalis exhibits configural learning (CL), a form of higher order associative learning. In CL snails develop a landscape of fear when they experience a predatory cue along with a taste of food. This experience results in a suppression of the food response; but the memory only persists for 3 h. Lymnaea has also been found to upregulate heat shock proteins (HSPs) as a result of acute heat stress, which leads to the enhancement of memory formation. A plant flavonoid quercetin blocks the upregulation of HSPs when experienced prior to heat stress. Here, we used this blocking mechanism to test the hypothesis that HSP upregulation plays a critical role in CL. Snails experienced quercetin prior to CL training and surprisingly instead of blocking memory formation it enhanced the memory such that it now persisted for at least 24 h. Quercetin exposure either prior to or after CL enhanced long-term memory (LTM) up to 48 h. We quantified mRNA levels of the transcription factor CREB1 in the Lymnaea central nervous system and found LymCREB1 to be upregulated following quercetin exposure. The enhanced LTM phenotype in L. stagnalis was most pronounced when quercetin was experienced during the consolidation phase. Additionally, quercetin exposure during the memory reconsolidation phase also led to memory enhancement. Thus, we found no support of our original hypothesis but found that quercetin exposure upregulated LymCREB1 leading to LTM formation for CL.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Veronica Rivi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
8
|
Fernell M, Rivi V, Batabyal A, Lukowiak K. The temperature sensitivity of memory formation and persistence is altered by cold acclimation in a pond snail. J Exp Biol 2021; 224:269088. [PMID: 34105727 DOI: 10.1242/jeb.242513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023]
Abstract
There are reports on the inability of inbred, laboratory-reared Lymnaea stagnalis to perform feeding and aerial respiration in the cold. It has also been suggested that laboratory-bred snails have an inability to perform aerial respiration in winter months in the laboratory. Here, we used an inbred, laboratory-reared strain of Lymnaea (the S-strain) to demonstrate that the snails are capable of performing those behaviours in a cold (4°C) environment after a 2 day acclimation period. In addition, the inbred snails were able to perform aerial respiration during winter months at room temperature (20°C) in the laboratory. The persistence of long-term memory (LTM) was extended for at least 4 weeks by placing S-strain snails into a 4°C environment following training. Typically, the cold block (CB) procedure (1 h at 4°C) immediately after a training session blocks LTM formation in the S-strain but not in a freshly collected strain. Four weeks at 4°C transformed the S-strain phenotype into one resisting the CB procedure. Thus, with a 4 week cold spell snails gain a resistance to the CB procedure, and that would explain why freshly collected snails are resistant to the procedure. However, we found that F1 progeny of a freshly collected strain reared in the laboratory were resistant to the CB procedure. This suggests that an unknown selection resulted in the S-strain being susceptible to the CB procedure.
Collapse
Affiliation(s)
- Maria Fernell
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Veronica Rivi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anuradha Batabyal
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
9
|
Rivi V, Batabyal A, Juego K, Kakadiya M, Benatti C, Blom JMC, Lukowiak K. To eat or not to eat: a Garcia effect in pond snails (Lymnaea stagnalis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:479-495. [PMID: 34052874 DOI: 10.1007/s00359-021-01491-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023]
Abstract
Taste aversion learning is universal. In animals, a single presentation of a novel food substance followed hours later by visceral illness causes animals to avoid that taste. This is known as bait-shyness or the Garcia effect. Humans demonstrate this by avoiding a certain food following the development of nausea after ingesting that food ('Sauce Bearnaise effect'). Here, we show that the pond snail Lymnaea stagnalis is capable of the Garcia effect. A single 'pairing' of a novel taste, a carrot slurry followed hours later by a heat shock stressor (HS) is sufficient to suppress feeding response elicited by carrot for at least 24 h. Other food tastes are not suppressed. If snails had previously been exposed to carrot as their food source, the Garcia-like effect does not occur when carrot is 'paired' with the HS. The HS up-regulates two heat shock proteins (HSPs), HSP70 and HSP40. Blocking the up-regulation of the HSPs by a flavonoid, quercetin, before the heat shock, prevented the Garcia effect in the snails. Finally, we found that snails exhibit Garcia effect following a period of food deprivation but the long-term memory (LTM) phenotype can be observed only if the animals are tested in a food satiated state.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Karla Juego
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Mili Kakadiya
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
10
|
Swinton C, Swinton E, Phillips I, Lukowiak K. A thermal stressor, propranolol and long-term memory formation in freshly collected Lymnaea. J Exp Biol 2021; 224:jeb.242293. [PMID: 33795418 DOI: 10.1242/jeb.242293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
A heat stressor (1 h at 30°C) in Lymnaea stagnalis before operant conditioning training of aerial respiration is sufficient to enhance long-term memory (LTM) formation in 'average' cognitive ability, laboratory-reared, inbred snails. However, in freshly collected outbred snails, the same heat stressor blocks LTM formation in 'smart' cognitive phenotype but not in average cognitive phenotype strains. Here, we hypothesize that (1) preventing the stress associated with the heat stressor before training allows LTM to form in the smart phenotype strains; and (2) alleviating the stress before a memory recall session allows a formed LTM to be recalled in the smart phenotype strains. We found that an injection of propranolol, which mitigates the stressor, before snails experience the heat stressor enabled two strains of the smart phenotype snails to form LTM, consistent with our first hypothesis. However, the injection of propranolol before a memory test session did not alleviate a memory recall block in the smart phenotype snails. Thus, our second hypothesis was not supported. Therefore, smart cognitive phenotype snails encountering a heat stressor have an inability to form LTM, but this inability can be overcome by the pre-injection of propranolol.
Collapse
Affiliation(s)
- Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Iain Phillips
- Water Security Agency, Saskatoon, SK S7N 3R3, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
11
|
Kamada S, Nagayama T. Anxiety induces long-term memory forgetting in the crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:459-467. [PMID: 33881581 DOI: 10.1007/s00359-021-01487-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
When two male crayfish encounter, agonistic bouts are initiated and a winner-loser relationship is established. Larger animals are more likely to win with their physical advantage, but they are frequently beaten by small dominant animals with previous winning experience. This winner effect remains for several days. In mammals, anxiety impairs learning and induces memory forgetting. In this study, dominant crayfish were exposed to electrical shocks two days after their first win, after which they were paired with large or small naive opponents the following day. Our results showed that electrical shock-applied dominant animals were beaten by large naive opponents, but overcame small naive opponents, suggesting that electrical shocks cause animals to forget their previous winner effect. Electrical shocks appeared to elicit serotonin-mediated anxiety since electrical shocks had no effect on mianserin-injected dominant animals. A 0.5 µM serotonin injection induced a caused anxiety-like reaction, while a 1.0 µM serotonin injection-induced no changes in posture and walking activity. For pairings between dominant and naive animals 1 day after serotonin injection, 0.5 µM serotonin caused similar forgetting of the winner effect, but 1.0 µM serotonin had no effect. Serotonin of low concentrations mediated anxiety and stimulated forgetting of the winner's memory.
Collapse
Affiliation(s)
- Satomi Kamada
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan.
| |
Collapse
|
12
|
Soudavari R, Batabyal A, Lukowiak K. In the great pond snail (Lymnaea stagnalis), two stressors that individually enhance memory in combination block memory formation. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stress plays an important role in memory formation in the great pond snail (Lymnaea stagnalis (Linnaeus, 1758)). Individual stressors have been shown to enhance or to perturb long-term memory (LTM) formation. However, when snails perceive a combination of two stressors, it is unclear the outcome with regards to LTM formation. Here we first show that when L. stagnalis are exposed individually to either a predator stressor (crayfish effluent (CE), which is a kairomone) or a thermal stressor (30 °C), LTM formation is enhanced. In their natural environment, L. stagnalis may experience temperatures approaching 30 °C and they may encounter crayfish at the same time. How such a combination of stressors alters adaptive behaviour is unknown. Here we show that when these two stressors are combined, LTM formation is blocked. Since boiling CE inactivates the kairomone, we used previously boiled CE that we combined with the thermal stressor and found that LTM formation is again enhanced. These data show that (i) it cannot accurately be predicted how a combination of stressors when combined interact to alter LTM formation and (ii) there is a difference between hot CE and room temperature CE.
Collapse
Affiliation(s)
- Romina Soudavari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anuradha Batabyal
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
13
|
Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol 2021; 33:e12911. [PMID: 33350018 DOI: 10.1111/jne.12911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.
Collapse
Affiliation(s)
- Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Fodor I, Hussein AAA, Benjamin PR, Koene JM, Pirger Z. The unlimited potential of the great pond snail, Lymnaea stagnalis. eLife 2020; 9:e56962. [PMID: 32539932 PMCID: PMC7297532 DOI: 10.7554/elife.56962] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Only a limited number of animal species lend themselves to becoming model organisms in multiple biological disciplines: one of these is the great pond snail, Lymnaea stagnalis. Extensively used since the 1970s to study fundamental mechanisms in neurobiology, the value of this freshwater snail has been also recognised in fields as diverse as host-parasite interactions, ecotoxicology, evolution, genome editing and 'omics', and human disease modelling. While there is knowledge about the natural history of this species, what is currently lacking is an integration of findings from the laboratory and the field. With this in mind, this article aims to summarise the applicability of L. stagnalis and points out that this multipurpose model organism is an excellent, contemporary choice for addressing a large range of different biological questions, problems and phenomena.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| | - Ahmed AA Hussein
- Department of Ecological Sciences, Faculty of Sciences, Vrije UniversiteitAmsterdamNetherlands
| | - Paul R Benjamin
- Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Joris M Koene
- Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| |
Collapse
|
15
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
16
|
Swinton E, Swinton C, Lukowiak K. Shell damage leads to enhanced memory formation in Lymnaea. ACTA ACUST UNITED AC 2019; 222:jeb.207571. [PMID: 31431472 DOI: 10.1242/jeb.207571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/11/2019] [Indexed: 12/14/2022]
Abstract
Ecologically relevant stressors alter the ability of the pond snail, Lymnaea stagnalis, to form long-term memory (LTM). Here, we show that an environmentally relevant stressor, shell damage, has a dramatic effect on the enhancement of LTM formation. Damage in the form of a shell clip 24 h before operant conditioning training resulted in long-term memory (LTM) formation following a single 0.5 h training session (TS). Typically, in these snails, two 0.5 h TSs with a 1 h interval between the sessions are required to cause LTM formation. We show here that even with a 72 h interval between shell clip and training, memory enhancement still occurred. The stress associated with shell clip could be mitigated by an ongoing high-Ca2 + pond water environment, an injection of propranolol and a DNA methylation blocker. However, use of an anaesthetic (MgCl2) during the clip or intermittent exposure to the high-Ca2 + pond water environment did not mitigate the stress associated with the shell clip. Shell clip was also sufficient to cause juvenile snails, which neither learn nor form memory, to gain the capacity to form LTM. Together, the experiments demonstrate that shell clipping is an environmentally relevant stressor that can cause enhancement of LTM formation.
Collapse
Affiliation(s)
- Erin Swinton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Cayley Swinton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
17
|
Porto RR, de Oliveira Alvares L. Role of HSP70 in Plasticity and Memory. HEAT SHOCK PROTEINS IN NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-24285-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Rothwell CM, Lukowiak K. Strain transformation: Enhancement of invertebrate memory in a new rearing environment. J Exp Biol 2019; 222:jeb.205112. [DOI: 10.1242/jeb.205112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/24/2019] [Indexed: 11/20/2022]
Abstract
Memory formation is influenced by a variety of factors, including the environmental conditions in which an organism is reared. Here, we studied the memory-forming ability of the lab-bred B-strain of Lymnaea following a change in their rearing environment from Brock University to the University of Calgary. We have previously demonstrated that this move enhances memory-forming ability and here we studied the magnitude of this phenotypic change. Once reared to adulthood at the University of Calgary, the B-strain animals were first tested to determine how many training sessions were required for the formation of long-term memory (LTM) to occur. Following this change in environment, the B-strain transformed into a ‘smart’ lab-bred strain requiring only a single 0.5 h session to form LTM. Next, we tested whether exposure to physiologically relevant stressors would block the formation of LTM in this ‘transformed’ B-strain, as this obstruction has previously been observed in ‘smart’ snails collected from the wild. Interestingly, neither stressor tested in this study perturbed memory formation in this ‘transformed’ lab-bred strain. Additionally, both the ‘smart’ memory phenotype, as well as the increased stress resiliency, were observed in the second generation of ‘transformed’ B-strain at both the juvenile and adult stages. This suggests that a change in rearing environment can contribute to the memory-forming ability of lab-bred Lymnaea.
Collapse
Affiliation(s)
- Cailin M. Rothwell
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
19
|
Sunada H, Watanabe T, Hatakeyama D, Lee S, Forest J, Sakakibara M, Ito E, Lukowiak K. Pharmacological effects of cannabinoids on learning and memory in Lymnaea. ACTA ACUST UNITED AC 2018; 220:3026-3038. [PMID: 28855319 DOI: 10.1242/jeb.159038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
Abstract
Cannabinoids are hypothesized to play an important role in modulating learning and memory formation. Here, we identified mRNAs expressed in Lymnaeastagnalis central nervous system that encode two G-protein-coupled receptors (Lymnaea CBr-like 1 and 2) that structurally resemble mammalian cannabinoid receptors (CBrs). We found that injection of a mammalian CBr agonist WIN 55,212-2 (WIN 55) into the snail before operant conditioning obstructed learning and memory formation. This effect of WIN 55 injection persisted for at least 4 days following its injection. A similar obstruction of learning and memory occurred when a severe traumatic stimulus was delivered to L. stagnalis In contrast, injection of a mammalian CBr antagonist AM 251 enhanced long-term memory formation in snails and reduced the duration of the effects of the severe traumatic stressor on learning and memory. Neither WIN 55 nor AM 251 altered normal homeostatic aerial respiratory behaviour elicited in hypoxic conditions. Our results suggest that putative cannabinoid receptors mediate stressful stimuli that alter learning and memory formation in Lymnaea This is also the first demonstration that putative CBrs are present in Lymnaea and play a key role in learning and memory formation.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1.,Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0811, Japan
| | - Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sangmin Lee
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jeremy Forest
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Manabu Sakakibara
- School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka 410-0321, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan .,Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
20
|
Shymansky T, Hughes E, Rothwell CM, Lukowiak K. Propranolol disrupts consolidation of emotional memory in Lymnaea. Neurobiol Learn Mem 2018; 149:1-9. [DOI: 10.1016/j.nlm.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 01/30/2023]
|
21
|
Tan R, Lukowiak K. Combining Factors That Individually Enhance Memory in Lymnaea. THE BIOLOGICAL BULLETIN 2018; 234:37-44. [PMID: 29694801 DOI: 10.1086/697197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When applied individually, thermal stress (1 hour at 30 °C) and (-)epicatechin (a flavonol found in green tea, e.g.) each enhance long-term memory formation following operant conditioning of Lymnaea aerial respiratory behavior. Snails demonstrate enhanced long-term memory formation when trained in epicatechin-treated pond water or when placed in 30 °C pond water for 1 hour, 1 hour prior to training in pond water. We ask here whether the combined application of epicatechin + thermal stress enhances long-term memory retention length beyond the maximal lengths of the individual factors alone. We report that the applied combination of epicatechin + thermal stress has a synergistic memory-enhancing effect; that is, when the two are applied in combination, memory persists longer than when either is applied alone. We then ask whether quercetin, a heat shock protein blocker, will affect the memory enhancement produced by the combined treatment of thermal stress and epicatechin. We report that quercetin does not decrease the memory enhancement of epicatechin, but it does decrease the memory enhancement by thermal stress; and it also decreases the memory persistence of snails exposed to both treatments in combination.
Collapse
|
22
|
Rothwell CM, Spencer GE, Lukowiak K. The effect of rearing environment on memory formation. J Exp Biol 2018; 221:jeb.180521. [DOI: 10.1242/jeb.180521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 11/20/2022]
Abstract
Lymnaea stagnalis is a well-studied model system for determining how changes in the environment influence associative learning and memory formation. For example, some wild strains of Lymnaea, collected from separate geographic locations show superior memory-forming abilities compared to others. Here, we have studied memory formation in two laboratory-bred Lymnaea strains, derived from the same original population in The Netherlands. The two strains were reared in two different laboratories at the University of Calgary (C-strain) and at Brock University (B-strain) for many years and were found to differ in their memory-forming ability. Specifically, the C-strain required only two training sessions to form long-term memory (LTM) whereas the B-strain required four sessions to form LTM. Additionally, the LTM formed by the B-strain persisted for a shorter amount of time than the memory formed by the C-strain. Thus, despite being derived from the same original population, the C- and B-strains have developed different memory-forming abilities. Next, we raised the two strains from embryos ‘Away’ from home (i.e. in the other laboratory) over two generations and assessed their memory-forming abilities. The B-strain reared and maintained at the University of Calgary demonstrated improved memory-forming ability within a single generation, while the C-strain reared at Brock University retained their normal LTM forming ability across two subsequent generations. This suggests that local environmental factors may contribute to the behavioural divergence observed between these two laboratory-bred strains.
Collapse
Affiliation(s)
- Cailin M. Rothwell
- Hotchkiss Brain Institute, Cumming School and Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School and Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
23
|
Sunada H, Riaz H, de Freitas E, Lukowiak K, Swinton C, Swinton E, Protheroe A, Shymansky T, Komatsuzaki Y, Lukowiak K. Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation. ACTA ACUST UNITED AC 2017; 219:1337-45. [PMID: 27208033 DOI: 10.1242/jeb.134296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/31/2016] [Indexed: 12/30/2022]
Abstract
Environmentally relevant stressors alter the memory-forming process in Lymnaea following operant conditioning of aerial respiration. One such stressor is heat. Previously, we found that following a 1 h heat shock, long-term memory (LTM) formation was enhanced. We also had shown that the heat stressor activates at least two heat shock proteins (HSPs): HSP40 and HSP70. Here, we tested two hypotheses: (1) the production of HSPs is necessary for enhanced LTM formation; and (2) blocking DNA methylation prevents the heat stressor-induced enhancement of LTM formation. We show here that the enhancing effect of the heat stressor on LTM formation occurs even if snails experienced the stressor 3 days previously. We further show that a flavonoid, quercetin, which inhibits HSP activation, blocks the enhancing effect of the heat stressor on LTM formation. Finally, we show that injection of a DNA methylation blocker, 5-AZA, before snails experience the heat stressor prevents enhancement of memory formation.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Hamza Riaz
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Emily de Freitas
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Kai Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Yoshimasa Komatsuzaki
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
24
|
Rothwell CM, Lukowiak KD. Impairing DNA methylation obstructs memory enhancement for at least 24 hours in Lymnaea. Commun Integr Biol 2017; 10:e1306616. [PMID: 28702126 PMCID: PMC5501202 DOI: 10.1080/19420889.2017.1306616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022] Open
Abstract
Stressor-induced memory enhancement has previously been shown to involve DNA methylation in the mollusc Lymnaea stagnalis. Specifically, injection of the DNA methylation inhibitor 5-AZA one hour before exposure to a memory-enhancing stressor obstructs memory augmentation. However, the duration of the influence of 5-AZA on this memory enhancement has not yet been examined. In this study, 2 memory-enhancing stressors (a thermal stress and exposure to the scent of a predator) were used to examine whether injection of the DNA methylation inhibitor 5-AZA 24 hours before stress exposure would still impair memory enhancement. Indeed, it was observed that memory is still obstructed when 5-AZA is injected 24 hours before exposure to either of these stressors in Lymnaea. Understanding that 5-AZA still effectively impairs memory enhancement after a period of 24 hours is valuable because it indicates that experimental manipulations do not need to be made within one hour after the injection of this DNA methylation inhibitor and can instead be made within one day (i.e. 24 hours). These results will allow for a future examination of the possible involvement of DNA methylation in memory enhancement related to longer-term stressors or environmental changes. This study further elucidates the involvement of epigenetic changes in memory enhancement in Lymnaea, providing insight into the process of memory formation in this mollusc.
Collapse
Affiliation(s)
- Cailin M Rothwell
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ken D Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Abram PK, Cusumano A, Abram K, Colazza S, Peri E. Testing the habituation assumption underlying models of parasitoid foraging behavior. PeerJ 2017; 5:e3097. [PMID: 28321365 PMCID: PMC5357337 DOI: 10.7717/peerj.3097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/15/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Habituation, a form of non-associative learning, has several well-defined characteristics that apply to a wide range of physiological and behavioral responses in many organisms. In classic patch time allocation models, habituation is considered to be a major mechanistic component of parasitoid behavioral strategies. However, parasitoid behavioral responses to host cues have not previously been tested for the known, specific characteristics of habituation. METHODS In the laboratory, we tested whether the foraging behavior of the egg parasitoid Trissolcus basalis shows specific characteristics of habituation in response to consecutive encounters with patches of host (Nezara viridula) chemical contact cues (footprints), in particular: (i) a training interval-dependent decline in response intensity, and (ii) a training interval-dependent recovery of the response. RESULTS As would be expected of a habituated response, wasps trained at higher frequencies decreased their behavioral response to host footprints more quickly and to a greater degree than those trained at low frequencies, and subsequently showed a more rapid, although partial, recovery of their behavioral response to host footprints. This putative habituation learning could not be blocked by cold anesthesia, ingestion of an ATPase inhibitor, or ingestion of a protein synthesis inhibitor. DISCUSSION Our study provides support for the assumption that diminishing responses of parasitoids to chemical indicators of host presence constitutes habituation as opposed to sensory fatigue, and provides a preliminary basis for exploring the underlying mechanisms.
Collapse
Affiliation(s)
- Paul K Abram
- Université de Montréal, Institut de Recherche en Biologie Végétale, Montréal, Canada
| | - Antonino Cusumano
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy.,Department of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Katrina Abram
- Université de Montréal, Institut de Recherche en Biologie Végétale, Montréal, Canada
| | - Stefano Colazza
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Ezio Peri
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
26
|
Khomich AS, Axenov-Gribanov DV, Bodilovskaya OA, Shirokova YA, Shchapova EP, Lubyaga YA, Shatilina ZM, Emshanova VA, Golubev AP. Assessment of the joint effect of thermal stress, pollution, and parasitic infestation on the activity of antioxidative enzymes in pulmonate mollusk Lymnaea stagnalis. CONTEMP PROBL ECOL+ 2017. [DOI: 10.1134/s1995425517020068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Hughes E, Shymansky T, Swinton E, Lukowiak KS, Swinton C, Sunada H, Protheroe A, Phillips I, Lukowiak K. Strain-specific differences of the effects of stress on memory in Lymnaea. J Exp Biol 2017; 220:891-899. [DOI: 10.1242/jeb.149161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Stress alters the ability to form, recall and maintain memory according to the Yerkes–Dodson/Hebb (YDH) law. The effects of environmentally relevant stressors, such as low environmental calcium and crowding, on learning and memory have previously been described in a laboratory-reared ‘average’ strain of Lymnaea stagnalis (i.e. the Dutch strain) as well as two strains of freshly collected L. stagnalis with enhanced memory formation abilities (i.e. ‘smart’ snails). Here, we use L. stagnalis to study the effects of other environmentally relevant stressors on memory formation in two other strains of freshly collected snails, one ‘smart’ and one ‘average’. The stressors we examined are thermal, resource restriction combined with food odour, predator detection and, for the first time, tissue injury (shell damage). We show that the same stressor has significantly different effects on memory formation depending on whether snails are ‘smart’ or ‘average’. Specifically, our data suggest that a stressor or a combination of stressors act to enhance memory in ‘average’ snails but obstruct memory formation in ‘smart’ snails. These results are consistent with the YDH law and our hypothesis that ‘smart’ snails are more easily stressed than ‘average’ snails.
Collapse
Affiliation(s)
- Emily Hughes
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Kai S. Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Iain Phillips
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
28
|
Qualitatively different memory states in Lymnaea as shown by differential responses to propranolol. Neurobiol Learn Mem 2016; 136:63-73. [DOI: 10.1016/j.nlm.2016.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023]
|
29
|
Carpenter S, Rothwell CM, Wright ML, de Hoog E, Walker S, Hudson E, Spencer GE. Extending the duration of long-term memories: Interactions between environmental darkness and retinoid signaling. Neurobiol Learn Mem 2016; 136:34-46. [PMID: 27646787 DOI: 10.1016/j.nlm.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
Abstract
Retinoid signaling plays an important role in hippocampal-dependent vertebrate memories. However, we have previously demonstrated that retinoids are also involved in the formation of long-term implicit memory following operant conditioning of the invertebrate mollusc Lymnaea stagnalis. Furthermore, we have discovered an interaction between environmental light/dark conditions and retinoid signaling and the ability of both to convert intermediate-term memory into long-term memory. In this study, we extend these findings to show that retinoid receptor agonists and environmental darkness can both also extend the duration of long-term memory. Interestingly, exposure to constant environmental darkness significantly increased the expression of retinoid receptors in the adult central nervous system, as well as induced specific changes in a key neuron mediating the conditioned behaviour. These studies not only shed more light on how retinoids influence memory formation, but also further link environmental light conditions to the retinoid signaling pathway.
Collapse
Affiliation(s)
- Sevanne Carpenter
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Cailin M Rothwell
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Michelle L Wright
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Eric de Hoog
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Sarah Walker
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Emma Hudson
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Gaynor E Spencer
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
30
|
Fernell M, Swinton C, Lukowiak K. Epicatechin, a component of dark chocolate, enhances memory formation if applied during the memory consolidation period. Commun Integr Biol 2016; 9:e1205772. [PMID: 27574544 PMCID: PMC4988431 DOI: 10.1080/19420889.2016.1205772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 01/15/2023] Open
Abstract
Epicatechin (Epi), a flavanol found in foods such as dark chocolate has previously been shown to enhance memory formation in our model system, operant conditioning of aerial respiration in Lymnaea. In those experiments snails were trained in Epi. Here we ask whether snails exposed to Epi before training, during the consolidation period immediately following training, or 1 h after training would enhance memory formation. We report here that Epi is only able to enhance memory if snails are placed in Epi-containing pond water immediately after training. That is, Epi enhances memory formation if it is applied during the memory consolidation period as well as if snails are trained in Epi-containing pond water.
Collapse
Affiliation(s)
- Maria Fernell
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| | - Cayley Swinton
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| |
Collapse
|
31
|
Foster NL, Lukowiak K, Henry TB. Time-related expression profiles for heat shock protein gene transcripts (HSP40, HSP70) in the central nervous system of Lymnaea stagnalis exposed to thermal stress. Commun Integr Biol 2015; 8:e1040954. [PMID: 26478775 PMCID: PMC4594255 DOI: 10.1080/19420889.2015.1040954] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023] Open
Abstract
Organisms exposed to environmental stressors respond by rapidly synthesising a suite of highly conserved proteins called heat shock proteins (HSPs). Environmental stress can also enhance and/or block memory formation, with long-term memory formation requiring gene activation and protein synthesis. Thermal stress in the pond snail Lymnaea stagnalis can enhance memory formation, and, in this study, the effect of thermal stress on HSP gene expression in the nervous system was investigated. Time-related expression profiles for HSP40 and HSP70 indicated rapid (<30 min) induction for both transcripts. For HSP40, induction was <20 fold relative to control and expression returned to control levels within 8 h, whereas HSP70 induction was >100 fold and expression did not return to control levels within 8 h.
Collapse
Affiliation(s)
- Nicola L Foster
- School of Marine Science and Engineering; Plymouth University ; Drake Circus ; Plymouth, UK
| | - Ken Lukowiak
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary ; Calgary, Canada
| | - Theodore B Henry
- School of Biomedical and Biological Sciences; Plymouth University ; Drake Circus ; Plymouth, UK ; Department of Forestry Wildlife and Fisheries, and Center for Environmental Biotechnology; The University of Tennessee ; Knoxville, TN USA ; Present address: School of Life Sciences; Heriot-Watt University ; Edinburgh, Scotland, UK
| |
Collapse
|
32
|
Abram PK, Cusumano A, Peri E, Brodeur J, Boivin G, Colazza S. Thermal stress affects patch time allocation by preventing forgetting in a parasitoid wasp. Behav Ecol 2015. [DOI: 10.1093/beheco/arv084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Dodd SX, Lukowiak K. Sequential exposure to a combination of stressors blocks memory reconsolidation in Lymnaea. J Exp Biol 2015; 218:923-30. [PMID: 25617463 DOI: 10.1242/jeb.114876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Stress alters the formation of long-term memory (LTM) in Lymnaea. When snails are exposed to more than one stressor, however, how the memory is altered becomes complicated. Here, we investigated how multiple stressors applied in a specific pattern affect an aspect of memory not often studied in regards to stress - reconsolidation. We hypothesized that the application of a sequence of stressors would block the reconsolidation process. Reconsolidation occurs following activation of a previously formed memory. Sequential crowding and handling were used as the stressors to block reconsolidation. When the two stressors were sequentially presented immediately following memory activation, reconsolidation was blocked. However, if the sequential presentation of the stressors was delayed for 1 h after memory activation, reconsolidation was not blocked. That is, LTM was observed. Finally, presentation of either stressor alone did not block reconsolidation. Thus, stressors can block reconsolidation, which may be preferable to pharmacological manipulations.
Collapse
Affiliation(s)
- Shawn Xavier Dodd
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
34
|
Spencer G, Rothwell C. Behavioural and network plasticity following conditioning of the aerial respiratory response of a pulmonate mollusc. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most molluscs perform respiration using gills, but the pulmonate molluscs have developed a primitive lung with which they perform pulmonary respiration. The flow of air into this lung occurs through an opening called the pneumostome, and pulmonate molluscs travel to the surface of the water to obtain oxygen from the surrounding atmosphere. The aerial respiratory behaviour of the pulmonate mollusc, the great pond snail (Lymnaea stagnalis (L., 1758)), has been well studied, and a three-neuron central pattern generator (CPG) controlling this rhythmic behaviour has been identified. The aerial respiratory behaviour of L. stagnalis can be operantly conditioned and plasticity within the CPG has been associated with the conditioned response. In this review, we describe both the aerial respiratory behaviour and the underlying neuronal network of this pulmonate mollusc, and then discuss both the behavioural and network plasticity that results from the conditioning of this behaviour.
Collapse
Affiliation(s)
- G.E. Spencer
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| | - C.M. Rothwell
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
35
|
Ito E, Kojima S, Lukowiak K, Sakakibara M. From likes to dislikes: conditioned taste aversion in the great pond snail (Lymnaea stagnalis). CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0292] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neural circuitry comprising the central pattern generator (CPG) that drives feeding behavior in the great pond snail (Lymnaea stagnalis (L., 1758)) has been worked out. Because the feeding behavior undergoes associative learning and long-term memory (LTM) formation, it provides an excellent opportunity to study the causal neuronal mechanisms of these two processes. In this review, we explore some of the possible causal neuronal mechanisms of associative learning of conditioned taste aversion (CTA) and its subsequent consolidation processes into LTM in L. stagnalis. In the CTA training procedure, a sucrose solution, which evokes a feeding response, is used as the conditioned stimulus (CS) and a potassium chloride solution, which causes a withdrawal response, is used as the unconditioned stimulus (US). The pairing of the CS–US alters both the feeding response of the snail and the function of a pair of higher order interneurons in the cerebral ganglia. Following the acquisition of CTA, the polysynaptic inhibitory synaptic input from the higher order interneurons onto the feeding CPG neurons is enhanced, resulting in suppression of the feeding response. These changes in synaptic efficacy are thought to constitute a “memory trace” for CTA in L. stagnalis.
Collapse
Affiliation(s)
- E. Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan
| | - S. Kojima
- Sandler Neurosciences Center, University of California, San Francisco, 675 Nelson Rising Lane 518, San Francisco, CA 94143-0444, USA
| | - K. Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - M. Sakakibara
- School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu 410-0321, Japan
| |
Collapse
|