1
|
Nayal K, Krupp JJ, Abdalla OHMH, Levine JD. Cuticular hydrocarbons promote desiccation resistance by preventing transpiration in Drosophila melanogaster. J Exp Biol 2024; 227:jeb247752. [PMID: 39445981 PMCID: PMC11634026 DOI: 10.1242/jeb.247752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Desiccation is a fundamental challenge confronted by all terrestrial organisms, particularly insects. With a relatively small body size and large surface-to-volume ratio, insects are susceptible to rapid evaporative water loss and dehydration. To counter these physical constraints, insects have acquired specialized adaptations, including a hydrophobic cuticle that acts as a physical barrier to transpiration. We previously reported that genetic ablation of the oenocytes - specialized cells required to produce cuticular hydrocarbons (HCs) - significantly reduced survivorship under desiccative conditions in the fruit fly, Drosophila melanogaster. Although increased transpiration - resulting from the loss of the oenocytes and HCs - was hypothesized to be responsible for the decrease in desiccation survival, this possibility was not directly tested. Here, we investigated the underlying physiological mechanisms contributing to the reduced survival of oenocyte-less (oe-) flies. Using flow-through respirometry, we show that oe- flies, regardless of sex, exhibited an increased rate of transpiration relative to wild-type controls, and that coating oe- flies with fly-derived HC extract restored the rate to near-wild-type levels. Importantly, total body water stores, including metabolic water reserves, as well as dehydration tolerance, measured as the percentage of total body water lost at the time of death, were largely unchanged in oe- flies. Together, our results directly demonstrate the critically important role played by the oenocytes and cuticular HCs to promote desiccation resistance.
Collapse
Affiliation(s)
- Kamar Nayal
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Joshua J. Krupp
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Osama H. M. H. Abdalla
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Joel D. Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
2
|
Sinclair BJ, Saruhashi S, Terblanche JS. Integrating water balance mechanisms into predictions of insect responses to climate change. J Exp Biol 2024; 227:jeb247167. [PMID: 38779934 DOI: 10.1242/jeb.247167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Efficient water balance is key to insect success. However, the hygric environment is changing with climate change; although there are compelling models of thermal vulnerability, water balance is often neglected in predictions. Insects survive desiccating conditions by reducing water loss, increasing their total amount of water (and replenishing it) and increasing their tolerance of dehydration. The physiology underlying these traits is reasonably well understood, as are the sources of variation and phenotypic plasticity. However, water balance and thermal tolerance intersect at high temperatures, such that mortality is sometimes determined by dehydration, rather than heat (especially during long exposures in dry conditions). Furthermore, water balance and thermal tolerance sometimes interact to determine survival. In this Commentary, we propose identifying a threshold where the cause of mortality shifts between dehydration and temperature, and that it should be possible to predict this threshold from trait measurements (and perhaps eventually a priori from physiological or -omic markers).
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, Western University, London, ON, CanadaN6A 5B7
| | - Stefane Saruhashi
- Department of Biology, Western University, London, ON, CanadaN6A 5B7
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
3
|
Ottocento C, Rojas B, Burdfield-Steel E, Furlanetto M, Nokelainen O, Winters S, Mappes J. Diet influences resource allocation in chemical defence but not melanin synthesis in an aposematic moth. J Exp Biol 2024; 227:jeb245946. [PMID: 38179687 DOI: 10.1242/jeb.245946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
For animals that synthesise their chemical compounds de novo, resources, particularly proteins, can influence investment in chemical defences and nitrogen-based wing colouration such as melanin. Competing for the same resources often leads to trade-offs in resource allocation. We manipulated protein availability in the larval diet of the wood tiger moth, Arctia plantaginis, to test how early life resource availability influences relevant life history traits, melanin production and chemical defences. We expected higher dietary protein to result in more effective chemical defences in adult moths and a higher amount of melanin in the wings. According to the resource allocation hypothesis, we also expected individuals with less melanin to have more resources to allocate to chemical defences. We found that protein-deprived moths had a slower larval development, and their chemical defences were less unpalatable for bird predators, but the expression of melanin in their wings did not differ from that of moths raised on a high-protein diet. The amount of melanin in the wings, however, unexpectedly correlated positively with chemical defences. Our findings demonstrate that the resources available in early life have an important role in the efficacy of chemical defences, but melanin-based warning colours are less sensitive to resource variability than other fitness-related traits.
Collapse
Affiliation(s)
- Cristina Ottocento
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| | - Bibiana Rojas
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Emily Burdfield-Steel
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miriam Furlanetto
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| | - Ossi Nokelainen
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
- Open Science Centre, PO Box 35, 40014University of Jyväskylä, Finland
| | - Sandra Winters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
4
|
Lo Pinto M, Guarino S, Agrò A. Evidence of Seasonal Variation in Body Color in Adults of the Parasitoid Cirrospilus pictus (Hymenoptera: Eulophidae) in Sicily, Italy. INSECTS 2023; 14:90. [PMID: 36662018 PMCID: PMC9864248 DOI: 10.3390/insects14010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
As part of the studies on the morphological color variation of insects, a case study on the seasonal body color variation of Cirrospilus pictus (Nees) (Hymenoptera: Eulophidae: Eulophinae) parasitoid of leafminers is reported. Observations were made from January 2000 to December 2003 in north-western Sicily (Italy), in relation to sex, body regions of adults and seasonal periods. Wasps parasitizing Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) were collected from organic citrus orchards (Citrus limon L., var. "Femminello zagara bianca" and "Femminello comune"). Adults were grouped in classes: yellow males, black males, yellow females, yellow-black females and black females. The results highlighted a phenotypic pigmentation variation in the head, thorax, gaster and legs of individuals influenced by the season of sampling. Adults were yellow-green in summer months, whereas individuals with dark pigmentation were found in autumn and winter months. A correlation between color patterns and seasonal temperatures was found for both females and males. This work provides a contribution to the description of the intraspecific variability of this species, improving its identification.
Collapse
Affiliation(s)
- Mirella Lo Pinto
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Building 5, 90128 Palermo, Italy
| | - Salvatore Guarino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi 414, 90129 Palermo, Italy
| | - Alfonso Agrò
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Building 5, 90128 Palermo, Italy
| |
Collapse
|
5
|
Hoikkala A, Poikela N. Adaptation and ecological speciation in seasonally varying environments at high latitudes: Drosophila virilis group. Fly (Austin) 2022; 16:85-104. [PMID: 35060806 PMCID: PMC8786326 DOI: 10.1080/19336934.2021.2016327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Living in high latitudes and altitudes sets specific requirements on species’ ability to forecast seasonal changes and to respond to them in an appropriate way. Adaptation into diverse environmental conditions can also lead to ecological speciation through habitat isolation or by inducing changes in traits that influence assortative mating. In this review, we explain how the unique time-measuring systems of Drosophila virilis group species have enabled the species to occupy high latitudes and how the traits involved in species reproduction and survival exhibit strong linkage with latitudinally varying photoperiodic and climatic conditions. We also describe variation in reproductive barriers between the populations of two species with overlapping distributions and show how local adaptation and the reinforcement of prezygotic barriers have created partial reproductive isolation between conspecific populations. Finally, we consider the role of species-specific chromosomal inversions and the X chromosome in the development of reproductive barriers between diverging lineages.
Collapse
Affiliation(s)
- Anneli Hoikkala
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Noora Poikela
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Singh D, Ramniwas S, Kumar G. Response to laboratory selection for darker and lighter body color phenotypes in Drosophila melanogaster: correlated changes for larval behavioral traits. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1845808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Divya Singh
- University Center for Research and Development, Chandigarh University, Mohali 140413, India
| | - Seema Ramniwas
- University Center for Research and Development, Chandigarh University, Mohali 140413, India
| | - Girish Kumar
- Genomics and Bioinformatics Cluster, Department of Biology University of Central Florida, Orlando FL 32816, USA
| |
Collapse
|
7
|
Poikela N, Tyukmaeva V, Hoikkala A, Kankare M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC Ecol Evol 2021; 21:117. [PMID: 34112109 PMCID: PMC8191109 DOI: 10.1186/s12862-021-01849-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly cold tolerance and cold acclimation ability by silencing it with RNA interference in D. montana. Results We performed a principal component analysis (PCA) on variables representing bioclimatic conditions on the study sites and used latitude as a proxy of photoperiod. PC1 separated the mountainous continental sites from the coastal ones based on temperature variability and precipitation, while PC2 arranged the sites based on summer and annual mean temperatures. Cold tolerance tests showed D. montana to be more cold-tolerant than D. flavomontana and chill coma resistance (CTmin) of this species showed an association with PC2. Chill coma recovery time (CCRT) of both species improved towards northern latitudes, and in D. flavomontana this trait was also associated with PC1. D. flavomontana flies were darkest in the coast and in the northern mountainous populations, but coloration showed no linkage with cold tolerance. Body size decreased towards cold environments in both species, but only within D. montana populations largest flies showed fastest recovery from cold. Finally, both the sequence analysis and RNAi study on vrille suggested this gene to play an essential role in D. montana cold resistance and acclimation, but not in recovery time. Conclusions Our study demonstrates the complexity of insect cold tolerance and emphasizes the need to trace its association with multiple environmental variables and morphological traits to identify potential agents of natural selection. It also shows that a circadian clock gene vrille is essential both for short- and long-term cold acclimation, potentially elucidating the connection between circadian clock system and cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01849-y.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.,Centre d'Ecologie Fonctionelle et Evolutive, CNRS, Montpellier, France
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
8
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
9
|
Supeleto FA, Santos BF, Basilio LA, Aguiar AP. Species delimitation, environmental cline and phylogeny for a new Neotropical genus of Cryptinae (Ichneumonidae). PLoS One 2020; 15:e0237233. [PMID: 33035225 PMCID: PMC7546512 DOI: 10.1371/journal.pone.0237233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022] Open
Abstract
A morphologically unusual Cryptini, Cryptoxenodon gen. nov. Supeleto, Santos & Aguiar, is described and illustrated, with a single species, C. metamorphus sp. nov. Supeleto, Santos & Aguiar, apparently occurring in two disjunct populations in northern and southeastern South America. The highly dimorphic female and male are described and illustrated. The phylogenetic relationships of the new genus are investigated using a matrix with 308 other species of Cryptini in 182 genera, based on 109 morphological characters and molecular data from seven loci. The analyses clearly support Cryptoxenodon gen. nov. as a distinct genus, closest to Debilos Townes and Diapetimorpha Viereck. Species limits and definition are investigated, but despite much morphological variation the analyses at the specimen level do not warrant the division of the studied populations into separate species. The considerable morphological variation is explored with principal component analyses of mixed features, and a new procedure is proposed for objective analysis of colors. The relationship of color and structural variation with altitude and latitude is demonstrated and discussed, representing an important case study for Ichneumonidae. Externally, Cryptoxenodon gen. nov. can be recognized mainly by its unusually large mandibles, but other diagnostic features include clypeus wide; sternaulus complete, distinct and crenulate throughout; areolet closed, about as long as pterostigma width; petiole anteriorly with distinct triangular projection on each side, spiracle near posterior 0.25; propodeum without posterior transverse carina; and propodeal apophyses conspicuously projected.
Collapse
Affiliation(s)
- Fernanda A. Supeleto
- Depto de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bernardo F. Santos
- Department of Entomology, National Museum of Natural History, Washington, DC, United States of America
| | - Leandro A. Basilio
- Depto de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Alexandre P. Aguiar
- Depto de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
10
|
Vásquez-Procopio J, Rajpurohit S, Missirlis F. Cuticle darkening correlates with increased body copper content in Drosophila melanogaster. Biometals 2020; 33:293-303. [PMID: 33026606 PMCID: PMC7538679 DOI: 10.1007/s10534-020-00245-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Insect epidermal cells secrete a cuticle that serves as an exoskeleton providing mechanical rigidity to each individual, but also insulation, camouflage or communication within their environment. Cuticle deposition and hardening (sclerotization) and pigment synthesis are parallel processes requiring tyrosinase activity, which depends on an unidentified copper-dependent enzyme component in Drosophila melanogaster. We determined the metallomes of fly strains selected for lighter or darker cuticles in a laboratory evolution experiment, asking whether any specific element changed in abundance in concert with pigment deposition. The results showed a correlation between total iron content and strength of pigmentation, which was further corroborated by ferritin iron quantification. To ask if the observed increase in iron body content along with increased pigment deposition could be generalizable, we crossed yellow and ebony alleles causing light and dark pigmentation, respectively, into similar genetic backgrounds and measured their metallomes. Iron remained unaffected in the various mutants providing no support for a causative link between pigmentation and iron content. In contrast, the combined analysis of both experiments suggested instead a correlation between pigment deposition and total copper body content, possibly due to increased demand for epidermal tyrosinase activity.
Collapse
Affiliation(s)
- Johana Vásquez-Procopio
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico
| | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, India
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico.
| |
Collapse
|
11
|
Stockton DG, Wallingford AK, Brind'amore G, Diepenbrock L, Burrack H, Leach H, Isaacs R, Iglesias LE, Liburd O, Drummond F, Ballman E, Guedot C, Van Zoeren J, Loeb GM. Seasonal polyphenism of spotted-wing Drosophila is affected by variation in local abiotic conditions within its invaded range, likely influencing survival and regional population dynamics. Ecol Evol 2020; 10:7669-7685. [PMID: 32760556 PMCID: PMC7391339 DOI: 10.1002/ece3.6491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Overwintering Drosophila often display adaptive phenotypic differences beneficial for survival at low temperatures. However, it is unclear which morphological traits are the best estimators of abiotic conditions, how those traits are correlated with functional outcomes in cold tolerance, and whether there are regional differences in trait expression.We used a combination of controlled laboratory assays, and collaborative field collections of invasive Drosophila suzukii in different areas of the United States, to study the factors affecting phenotype variability of this temperate fruit pest now found globally.Laboratory studies demonstrated that winter morph (WM) trait expression is continuous within the developmental temperature niche of this species (10-25°C) and that wing length and abdominal melanization are the best predictors of the larval abiotic environment.However, the duration and timing of cold exposure also produced significant variation in development time, morphology, and survival at cold temperatures. During a stress test assay conducted at -5°C, although cold tolerance was greater among WM flies, long-term exposure to cold temperatures as adults significantly improved summer morph (SM) survival, indicating that these traits are not controlled by a single mechanism.Among wild D. suzukii populations, we found that regional variation in abiotic conditions differentially affects the expression of morphological traits, although further research is needed to determine whether these differences are genetic or environmental in origin and whether thermal susceptibility thresholds differ among populations within its invaded range.
Collapse
Affiliation(s)
- Dara G Stockton
- Department of Entomology Cornell AgriTech Cornell University Geneva New York USA
| | - Anna K Wallingford
- University of New Hampshire Cooperative Extension Durham New Hampshire USA
| | | | - Lauren Diepenbrock
- Department of Entomology and Nematology University of Florida Lake Alfred Florida USA
| | - Hannah Burrack
- Department of Entomology and Plant Pathology North Carolina State University Raleigh North Carolina USA
| | - Heather Leach
- Department of Entomology The Pennsylvania State University University Park Pennsylvania USA
| | - Rufus Isaacs
- Department of Entomology Michigan State University East Lansing Michigan USA
| | - Lindsy E Iglesias
- Department of Entomology Cornell AgriTech Cornell University Geneva New York USA
| | - Oscar Liburd
- Department of Entomology and Nematology University of Florida Gainesville Florida USA
| | - Francis Drummond
- School of Biology and Ecology University of Maine Orono Maine USA
- Cooperative Extension University of Maine Orono Maine USA
| | - Elissa Ballman
- School of Biology and Ecology University of Maine Orono Maine USA
| | - Christelle Guedot
- Department of Entomology University of Wisconsin Madison Wisconsin USA
| | - Janet Van Zoeren
- Department of Entomology University of Wisconsin Madison Wisconsin USA
| | - Greg M Loeb
- Department of Entomology Cornell AgriTech Cornell University Geneva New York USA
| |
Collapse
|
12
|
Berson JD, Zuk M, Simmons LW. Natural and sexual selection on cuticular hydrocarbons: a quantitative genetic analysis. Proc Biol Sci 2020; 286:20190677. [PMID: 31064302 DOI: 10.1098/rspb.2019.0677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While the reproductive benefits of sexual displays have been widely studied, we have relatively limited evidence of the fitness costs associated with most display traits. Insect cuticular hydrocarbon (CHC) profiles are sexually selected traits that also protect against desiccation. These two functions are thought to oppose each other, with investment in particular compounds believed to increase attractiveness at the expense of compounds that protect against water loss. We investigated this potential trade-off in a quantitative genetic framework using the Australian field cricket, Teleogryllus oceanicus. Several compounds were significantly genetically correlated with either attractiveness or desiccation resistance. Of these compounds, one was negatively genetically correlated with attractiveness but positively genetically correlated with desiccation resistance. Furthermore, scoring each individual's overall CHC profile for its level of attractiveness and desiccation resistance indicated a negative genetic correlation between these multivariate phenotypes. Together, our results provide evidence for a genetic trade-off between sexually and naturally selected functions of the CHC profile. We suggest that the production of an attractive CHC profile may be costly for males, but highlight the need for further work to support this finding experimentally. Genetic covariation between the CHC profile and attractiveness suggests that females can gain attractive sons through female choice.
Collapse
Affiliation(s)
- Jacob D Berson
- 1 Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| | - Marlene Zuk
- 2 Department of Ecology, Evolution and Behavior, and Minnesota Center for Philosophy of Science, University of Minnesota , Twin Cities, St Paul, MN 55108 , USA
| | - Leigh W Simmons
- 1 Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| |
Collapse
|
13
|
Zeng B, Wang S, Li Y, Xiao Z, Zhou M, Wang S, Zhang D. Effect of long-term cold storage on trehalose metabolism of pre-wintering Harmonia axyridis adults and changes in morphological diversity before and after wintering. PLoS One 2020; 15:e0230435. [PMID: 32191747 PMCID: PMC7082016 DOI: 10.1371/journal.pone.0230435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/01/2020] [Indexed: 11/20/2022] Open
Abstract
Harmonia axyridis is a major bio-control agent of pests in agriculture and forest ecosystems. It is also a globally important invasive insect species. To test whether dark elytra colour is associated with greater cold hardiness, we compared the survival rate of prolonged cold exposure in both yellow and black colour morphs of female and male H. axyridis. We determined the trehalose and glycogen content, trehalase activity, and the dynamics of genes associated with the trehalose metabolic pathway. Yellow forms predominated before winter began, however black forms increased from 11.15 to 30.46% after overwintering. There was no significant difference in trehalose content between the females and males during overwintering. Glycogen content in over-wintering yellow females and black males increased significantly, while it decreased in black females. Soluble trehalase activity increased significantly in all the insects except black females. Membrane-bound trehalase activity increased in black males, and decreased in black females. Trehalose and glycogen content and trehalase activity were regulated by differential expression of TRE and TPS genes. Female beetles weighed more than males and survived in low temperatures for longer periods of time, regardless of elytra colour, suggesting that mass is a stronger predictor of overwintering survival rather than colour morph. Our results provide a guide for comparing cold resistance in insects and a theoretical basis for cold storage of H. axyridis for use as natural enemies of pests in biological control programs.
Collapse
Affiliation(s)
- Boping Zeng
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhongjiu Xiao
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| | - Min Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Daowei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| |
Collapse
|
14
|
Zaman K, Hubert MK, Schoville SD. Testing the role of ecological selection on colour pattern variation in the butterfly
Parnassius clodius. Mol Ecol 2019; 28:5086-5102. [DOI: 10.1111/mec.15279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Khuram Zaman
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
| | - Mryia K. Hubert
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
| | - Sean D. Schoville
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
| |
Collapse
|
15
|
Ramniwas S, Kumar G. Pupation site preference selection in Drosophila jambulina. ETHOL ECOL EVOL 2019. [DOI: 10.1080/03949370.2019.1592230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Seema Ramniwas
- University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Girish Kumar
- Genomics and Bioinformatics Cluster, Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| |
Collapse
|
16
|
Gu X, Li Z, Su Y, Zhao Y, Liu L. Imaginal disc growth factor 4 regulates development and temperature adaptation in Bactrocera dorsalis. Sci Rep 2019; 9:931. [PMID: 30700762 PMCID: PMC6353879 DOI: 10.1038/s41598-018-37414-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is an important invasive pest with high reproductive capacity and invasiveness; it has shown remarkable range expansion and brings higher risk to the environment and agriculture. The insect cuticle serves as skin and skeleton, protecting insects against numerous harmful stresses. One gene named imaginal disc growth factor 4 (idgf4) which is involved in cuticle formation, plays an important role in organizing proteins in the chitin-matrix, as well as in adult molting. This gene in the poorly-described glycoside hydrolase 18 (GH 18) family was chosen to study the function of chitinases in insect defense barrier against heat and molting using quantitative real-time PCR (qRT-PCR) and RNA interference (RNAi). qRT- PCR showed that idgf4 was expressed in all nine developmental stages and was mainly expressed in the early and late pupal, as well as adult stages. Knocking down the idgf4 gene via RNAi in 3rd instar larvae led to the decreased survival of larvae under high temperatures and malformed individuals as adults. The results indicated the function of the idgf4 gene in the fruit fly’s defense barrier and development. It can provide new insights into understanding the function of one member in the GH 18 family, and may reveal a new potential gene for pest control.
Collapse
Affiliation(s)
- Xinyue Gu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhihong Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yun Su
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yan Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lijun Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
San-Jose LM, Roulin A. Toward Understanding the Repeated Occurrence of Associations between Melanin-Based Coloration and Multiple Phenotypes. Am Nat 2018; 192:111-130. [PMID: 30016163 DOI: 10.1086/698010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melanin is the most widespread pigment in organisms. Melanin-based coloration has been repeatedly observed to be associated with the same traits and in the same direction in different vertebrate and insect species. However, whether any factors that are common to different taxa account for the repeated evolution of melanin-phenotype associations remains unclear. We propose to approach this question from the perspective of convergent and parallel evolution to clarify to what extent different species have evolved the same associations owing to a shared genetic basis and being subjected to similar selective pressures. Our current understanding of the genetic basis of melanin-phenotype associations allows for both convergent and parallel evolution, but this understanding is still limited. Further research is needed to clarify the generality and interdependencies of the different proposed mechanisms (supergenes, pleiotropy based on hormones, or neural crest cells). The general ecological scenarios whereby melanin-based coloration is under selection-protection from ultraviolet radiation, thermoregulation in cold environments, or as a signal of social status-offer a good opportunity to study how melanin-phenotype associations evolve. Reviewing these scenarios shows that some traits associated with melanin-based coloration might be selected together with coloration by also favoring adaptation but that other associated traits might impede adaptation, which may be indicative of genetic constraints. We therefore encourage further research on the relative roles that selection and genetic constraints play in shaping multiple melanin-phenotype associations. Placed into a phylogenetic context, this will help clarify to what extent these associations result from convergent or parallel evolutionary processes and why melanin-phenotype associations are so common across the tree of life.
Collapse
|
18
|
Yang J, Wu Q, Xiao R, Zhao J, Chen J, Jiao X. Seasonal variations in body melanism and size of the wolf spider Pardosa astrigera (Araneae: Lycosidae). Ecol Evol 2018; 8:4352-4359. [PMID: 29721303 PMCID: PMC5916282 DOI: 10.1002/ece3.3988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 11/19/2022] Open
Abstract
Variations in species morphology and life‐history traits strongly correlate with geographic and climatic characteristics. Most studies on morphological variations in animals focus on ectotherms distributed on a large geographic scale across latitudinal and/or altitudinal gradient. However, the morphological variations of spiders living in the same habitats across different seasons have not been reported. In this study, we used the wolf spider, Pardosa astrigera, as a model to determine seasonal differences in adult body size, melanism, fecundity, and egg diameter both in the overwintering and the first generation for 2010 and 2016. The results showed that in 2010, both females and males of the overwintering generation were significantly darker than the first generation. Moreover, the overwintering females were markedly larger and produced more and bigger eggs than the first generation in both 2010 and 2016. Considering the overwintering P. astrigera experiencing low temperature and/or desiccation stress, these results suggest that substantially darker and larger body of the overwintering generation is adaptive to adverse conditions.
Collapse
Affiliation(s)
- Jinjian Yang
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| | - Qijia Wu
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| | - Rong Xiao
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| | - Jupeng Zhao
- Guangdong Entry-Exit Inspection and Quarantine Technology Center Guangzhou China
| | - Jian Chen
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| | - Xiaoguo Jiao
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| |
Collapse
|
19
|
Polidori C, Jorge A, Ornosa C. Eumelanin and pheomelanin are predominant pigments in bumblebee (Apidae: Bombus) pubescence. PeerJ 2017; 5:e3300. [PMID: 28560094 PMCID: PMC5445944 DOI: 10.7717/peerj.3300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/11/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bumblebees (Hymenoptera: Apidae: Bombus) are well known for their important inter- and intra-specific variation in hair (or pubescence) color patterns, but the chemical nature of the pigments associated with these patterns is not fully understood. For example, though melanization is believed to provide darker colors, it still unknown which types of melanin are responsible for each color, and no conclusive data are available for the lighter colors, including white. METHODS By using dispersive Raman spectroscopy analysis on 12 species/subspecies of bumblebees from seven subgenera, we tested the hypothesis that eumelanin and pheomelanin, the two main melanin types occurring in animals, are largely responsible for bumblebee pubescence coloration. RESULTS Eumelanin and pheomelanin occur in bumblebee pubescence. Black pigmentation is due to prevalent eumelanin, with visible signals of additional pheomelanin, while the yellow, orange, red and brown hairs clearly include pheomelanin. On the other hand, white hairs reward very weak Raman signals, suggesting that they are depigmented. Additional non-melanic pigments in yellow hair cannot be excluded but need other techniques to be detected. Raman spectra were more similar across similarly colored hairs, with no apparent effect of phylogeny and both melanin types appeared to be already used at the beginning of bumblebee radiation. DISCUSSION We suggest that the two main melanin forms, at variable amounts and/or vibrational states, are sufficient in giving almost the whole color range of bumblebee pubescence, allowing these insects to use a single precursor instead of synthesizing a variety of chemically different pigments. This would agree with commonly seen color interchanges between body segments across Bombus species.
Collapse
Affiliation(s)
- Carlo Polidori
- Instituto de Ciencias Ambientales, Universidad de Castilla La Mancha, Toledo, Spain
| | - Alberto Jorge
- Laboratorio de Microscopía, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Concepción Ornosa
- Departamento de Zoología y Antropología Física, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Rajpurohit S, Peterson LM, Orr AJ, Marlon AJ, Gibbs AG. An Experimental Evolution Test of the Relationship between Melanism and Desiccation Survival in Insects. PLoS One 2016; 11:e0163414. [PMID: 27658246 PMCID: PMC5033579 DOI: 10.1371/journal.pone.0163414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
We used experimental evolution to test the ‘melanism-desiccation’ hypothesis, which proposes that dark cuticle in several Drosophila species is an adaptation for increased desiccation tolerance. We selected for dark and light body pigmentation in replicated populations of D. melanogaster and assayed several traits related to water balance. We also scored pigmentation and desiccation tolerance in populations selected for desiccation survival. Populations in both selection regimes showed large differences in the traits directly under selection. However, after over 40 generations of pigmentation selection, dark-selected populations were not more desiccation-tolerant than light-selected and control populations, nor did we find significant changes in mass or carbohydrate amounts that could affect desiccation resistance. Body pigmentation of desiccation-selected populations did not differ from control populations after over 140 generations of selection, although selected populations lost water less rapidly. Our results do not support an important role for melanization in Drosophila water balance.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, United States of America
| | - Lisa Marie Peterson
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, United States of America
| | - Andrew J Orr
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, United States of America
| | - Anthony J Marlon
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, United States of America
| | - Allen G Gibbs
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, United States of America
| |
Collapse
|
21
|
Jorge García A, Polidori C, Nieves-Aldrey JL. Pheomelanin in the secondary sexual characters of male parasitoid wasps (Hymenoptera: Pteromalidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:311-319. [PMID: 27224206 DOI: 10.1016/j.asd.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
The occurrence and distribution of eumelanin and pheomelanin, the most prevalent biological pigments, has been rarely investigated in insects. Particularly yellowish to brownish body parts, which in many vertebrates are associated with pheomelanin, are visible in many insects but their chemical nature was rarely examined to a similar detail. Here, by using Dispersive Raman spectroscopy analysis, we found both eumelanin and pheomelanin in different body parts of male parasitoid wasps of three species of the genus Mesopolobus (Hymenoptera: Pteromalidae), which are known to have species-specific spots and coloured stripes on the legs and/or antennae which are displayed to females during courtship. We found a strong eumelanin signal in the antennal clava of all studied Mesopolobus species and in the circular black spot or callosity and the triangular black projection on the outer apical angle of the typically expanded middle tibia of Mesopolobus tibialis and Mesopolobus xanthocerus. Eumelanin was also the predominant pigment in the black thorax of Mesopolobus and other members of the family. Pheomelanin, on the other hand, was detected as predominant only in certain body parts of M. tibialis and M. xanthocerus, precisely in a very narrow, longitudinal brownish stripe on the middle femur and, only in M. tibialis, in a brownish oval-longitudinal stripe on the middle tibia. The two melanin types co-occurred in most pigmented areas, but more often one is clearly predominant relative to the other, according to the variation of Raman signal intensity of their signature peaks. A further tibial yellowish-orange stripe present in both these species did not include melanins of any type. Pheomelanin, could be more widespread than previously known in insects. A convergent evolution of melanin-based male sexual ornaments between vertebrates (e.g. bird feathers) and wasps can be suggested, opening to a new line of comparative evolutionary studies.
Collapse
Affiliation(s)
- Alberto Jorge García
- Laboratorio de Microscopía, Museo Nacional de Ciencias Naturales (CSIC), C/ José Gutiérrez Abascal 2, E-28006, Madrid, Spain.
| | - Carlo Polidori
- Instituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Avenida Carlos III, s/n, E-45071 Toledo, Spain.
| | - José Luis Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), C/ José Gutiérrez Abascal 2, E-28006 Madrid, Spain.
| |
Collapse
|
22
|
King KJ, Sinclair BJ. Water loss in tree weta (Hemideina): adaptation to the montane environment and a test of the melanisation-desiccation resistance hypothesis. ACTA ACUST UNITED AC 2016; 218:1995-2004. [PMID: 26157158 DOI: 10.1242/jeb.118711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Montane insects are at a higher risk of desiccation than their lowland counterparts and are expected to have evolved reduced water loss. Hemideina spp. (tree weta; Orthoptera: Anostostomatidae) have both lowland (Hemideina femorata, Hemideina crassidens and Hemideina thoracica) and montane (Hemideina maori and Hemideina ricta) species. H. maori has both melanic and yellow morphs. We use these weta to test two hypotheses: that montane insects lose water more slowly than lowland species, and that cuticular water loss rates are lower in darker insects than lighter morphs, because of incorporation of melanin in the cuticle. We used flow-through respirometry to compare water loss rates among Hemideina species and found that montane weta have reduced cuticular water loss by 45%, reduced respiratory water loss by 55% and reduced the molar ratio of V̇H2 O:V̇CO2 by 64% compared with lowland species. Within H. maori, cuticular water loss was reduced by 46% when compared with yellow morphs. Removal of cuticular hydrocarbons significantly increased total water loss in both melanic and yellow morphs, highlighting the role that cuticular hydrocarbons play in limiting water loss; however, the dark morph still lost water more slowly after removal of cuticular hydrocarbons (57% less), supporting the melanisation-desiccation resistance hypothesis.
Collapse
Affiliation(s)
- Keith J King
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
23
|
Toxopeus J, Jakobs R, Ferguson LV, Gariepy TD, Sinclair BJ. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:37-51. [PMID: 27039032 DOI: 10.1016/j.jinsphys.2016.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species.
Collapse
Affiliation(s)
- Jantina Toxopeus
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Ruth Jakobs
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Laura V Ferguson
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tara D Gariepy
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
24
|
Sunaga S, Akiyama N, Miyagi R, Takahashi A. Factors underlying natural variation in body pigmentation of Drosophila melanogaster. Genes Genet Syst 2016; 91:127-137. [PMID: 27021917 DOI: 10.1266/ggs.15-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Molecular mechanisms underlying standing genetic variation of an ecologically relevant trait such as pigmentation trait variation in a model insect, Drosophila melanogaster, are relevant to our understanding of different kinds of intergenomic interactions. In this study, we focused on the association between body pigmentation and stress resistance, and on genotype-by-environment interaction, both of which are likely to contribute to the persistence of phenotypic variation in a natural population. First, we detected a significant association between pigmentation traits in females and starvation resistance (darker strains were weaker) and a weak association between pigmentation and chill coma recovery time (darker strains showed shorter recovery time) among 20 inbred strains from the Drosophila melanogaster Genetic Reference Panel (DGRP), which originated from a natural population in North America. These associations revealed a complex relationship between body pigmentation and physiological traits that may give rise to balanced selective forces acting on the traits under fluctuating environmental conditions. Second, using four of the DGRP strains, a substantial degree of genotype (strain) × environment (rearing temperature) interaction was detected among expression levels of the genes encoding effector enzymes in the melanin biosynthesis pathway. These interactions can potentially reduce the efficiency of purifying selection on the pigmentation traits over a wide range of temperature conditions. Finally, we discuss possible mechanisms that contribute to the maintenance of the standing pigmentation variation in this species.
Collapse
Affiliation(s)
- Saki Sunaga
- Department of Biological Sciences, Tokyo Metropolitan University
| | | | | | | |
Collapse
|
25
|
Johnson WC, Ordway AJ, Watada M, Pruitt JN, Williams TM, Rebeiz M. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species. PLoS Genet 2015; 11:e1005279. [PMID: 26115430 PMCID: PMC4483262 DOI: 10.1371/journal.pgen.1005279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/13/2015] [Indexed: 11/23/2022] Open
Abstract
The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting “enhancer” elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, we found that phenotypes uniquely correlated with differences in the expression of ebony, a gene required for yellow-colored cuticle. Assays of ebony’s transcriptional control region indicated that a lightly pigmented strain harbored cis-regulatory mutations that caused correlated changes in its expression. Through a series of chimeric reporter constructs between light and dark strain alleles, we localized function-altering mutations to a conserved silencer that mediates a male-specific pattern of ebony repression. This suggests that the light allele was derived through the loss of this silencer’s activity. Furthermore, examination of the ebony gene of D. serrata, a close relative of D. auraria which secondarily lost male-specific pigmentation revealed the parallel loss of this silencer element. These results demonstrate how loss-of-function mutations in a silencer element resulted in increased gene expression. We propose that the mutational inactivation of silencer elements may represent a favored path to evolve gene expression, impacting morphological traits. One of the greatest challenges in understanding the relationship between genotype and phenotype is to discern how changes in DNA affect the normal functioning of genes. Mutations may generate a new function for a gene, yet it is frequently observed that they inactivate some aspect of a gene’s normal capacity. Investigations focused on understanding the developmental basis for the evolution of anatomical structures has found a prevalent role for mutations that alter developmental gene regulation. In animals, genes are transcriptionally activated in specific tissues during development by regulatory sequences distributed across their expansive non-protein coding regions. Regulatory elements known as silencers act to prevent genes from being expressed in certain tissues, providing a mechanism for precise control. Here, we show how a silencer that prevents expression of a pigment-producing enzyme in certain Drosophila species has repeatedly been subject to inactivating mutations that increased this gene’s expression. This example illustrates how such negative-acting regulatory sequences can represent a convenient target for increasing gene expression through the loss of a genetic element.
Collapse
Affiliation(s)
- Winslow C. Johnson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alison J. Ordway
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Masayoshi Watada
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Jonathan N. Pruitt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas M. Williams
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Liu S, Wang M, Li X. Pupal melanization is associated with higher fitness in Spodoptera exigua. Sci Rep 2015; 5:10875. [PMID: 26039886 PMCID: PMC4454190 DOI: 10.1038/srep10875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/05/2015] [Indexed: 11/09/2022] Open
Abstract
Melanism has long been thought to be a habitat adaptation with a fitness cost. Here we reported a homozygous melanic strain (SEM) of Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae) established with black pupae spontaneously occurring within a typical laboratory population (SEW). The melanization is expressed globally, and only in the pupal stage. After pupation, the melanic SEM pupae gradually accumulate melanin to become completely black within 6 hours, whereas the wild-type SEW pupae gradually turn yellow-brown. The melanic SEM strain exhibits faster development in all life stages, heavier pupa weight, more mating time, higher fecundity, and accordingly, higher net reproductive rate and population trend index. While no reproductive isolation was observed between the SEM and SEW strains, the mating times per female of the reciprocal crosses and the SEM intracrosses were significantly higher than those of the SEW intracrosses. This represents a rare case of melanization that has fitness gains, rather than costs. Analysis of the life-history traits of this case and 14 previously reported cases of insect melanism indicate that none of melanization origin, stage, space and variation type determining whether melanism will cause fitness gain or cost.
Collapse
Affiliation(s)
- Sisi Liu
- 1] Department of Pesticide Science, College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China [2] Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona [3] Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Institute of Insect Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Mo Wang
- 1] Department of Pesticide Science, College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China [2] Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Institute of Insect Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianchun Li
- 1] Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona [2] State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Roulin A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol Rev Camb Philos Soc 2015; 91:328-48. [PMID: 25631160 DOI: 10.1111/brv.12171] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/30/2014] [Accepted: 12/11/2014] [Indexed: 02/03/2023]
Abstract
The signalling function of melanin-based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin-based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin-based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin-based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency-dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin-based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context-dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin-based colouration, its actual role in sexual selection is still poorly understood.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Aboud M, Makhawi A, Verardi A, El Raba’a F, Elnaiem DE, Townson H. A genotypically distinct, melanic variant of Anopheles arabiensis in Sudan is associated with arid environments. Malar J 2014; 13:492. [PMID: 25496059 PMCID: PMC4301653 DOI: 10.1186/1475-2875-13-492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 12/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles arabiensis, an important malaria vector in Sudan and other countries in sub-Saharan Africa, exhibits considerable ecological and behavioural plasticity allowing it to survive in the harsh conditions of arid regions. It has been shown that adult populations of An. arabiensis in the semi-desert habitat of western Khartoum State survive through the long dry season in a state of partial aestivation, characterized by limited feeding activity and a degree of arrested ovarian development. Anopheles arabiensis in these sites occurs in two phenotypic forms. One is large and heavily melanized, the other has the typical characteristics of An. arabiensis as found elsewhere in Africa. The extent of genetic variation in these forms was examined in widely separated locations in Sudan, including Kassala, Gedaref and the Northern States between 1998 and 1999 and 2004 and 2006. METHODS Each mosquito specimen was identified using standard morphological keys and a species-specific PCR test. Sequence variation in a 660 bp fragment of the mtDNA ND5 coding region was examined and the extent of genetic divergence between the forms was estimated from FST values using DNASP version 4.9. TCS 1.13 software was used to determine the genealogical relationships and to reflect clustering among mtDNA haplotypes. RESULTS The melanic and normal forms were found in sympatry in Kassala, Gedaref and Khartoum states, with the melanic form commonest in the hottest and most arid areas. Both forms were encountered in the periods of study: 1998-1999, and 2004-2006. Only ten specimens of An. arabiensis were collected from the Northern State in February 2006, all of which were of the normal form.Based on the ND5 analysis, there was a marked subdivision between the normal and melanic forms (FST = 0.59). Furthermore, the melanic form showed more genetic variability, as measured by haplotype diversity (0.95) compared with the normal form (0.57), suggesting larger effective population. CONCLUSIONS This is the first demonstration of correspondent phenotypic and genetic structuring in An. arabiensis. The high level of genetic differentiation shown by the mtDNA ND5 locus suggests that the two forms may represent separate species. It is hypothesized that the melanic form is better adapted to hot and arid environments.
Collapse
Affiliation(s)
- Mariam Aboud
- />Department of Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Abdelrafie Makhawi
- />Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan
| | - Andrea Verardi
- />Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Fathi El Raba’a
- />Department of Zoology, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - Dia-Eldin Elnaiem
- />Department of Natural Sciences, University of Maryland Eastern Shore, 1 Backbone Rd, Princess Anne, MD 20851 USA
| | - Harold Townson
- />Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
29
|
Stinziano JR, Sové RJ, Rundle HD, Sinclair BJ. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2014; 180:38-42. [PMID: 25460832 DOI: 10.1016/j.cbpa.2014.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster.
Collapse
Affiliation(s)
- Joseph R Stinziano
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - Richard J Sové
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
30
|
Parkash R, Lambhod C, Singh D. Thermal developmental plasticity affects body size and water conservation of Drosophila nepalensis from the Western Himalayas. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:504-516. [PMID: 24923309 DOI: 10.1017/s0007485314000340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the Western Himalayas, Drosophila nepalensis is more abundant during the colder and drier winter than the warmer rainy season but the mechanistic bases of such adaptations are largely unknown. We tested effects of developmental plasticity on desiccation-related traits (body size, body melanization and water balance traits) that may be consistent with changes in seasonal abundance of this species. D. nepalensis grown at 15°C has shown twofold higher body size, greater melanization (∼15-fold), higher desiccation resistance (∼55 h), hemolymph as well as carbohydrate content (twofold higher) as compared with corresponding values at 25°C. Water loss before succumbing to death was much higher (∼16%) at 15°C than 25°C. Developmental plastic effects on body size are associated with changes in water balance-related traits (bulk water, hemolymph and dehydration tolerance). The role of body melanization was evident from the analysis of assorted darker and lighter flies (from a mass culture of D. nepalensis reared at 21°C) which lacked differences in dry mass but showed differences in desiccation survival hours and rate of water loss. For adult acclimation, we found a slight increase in desiccation resistance of flies reared at lower growth temperature, whereas in flies reared at 25°C such a response was lacking. In D. nepalensis, greater developmental plasticity is consistent with its contrasting levels of seasonal abundance. Finally, in the context of global climate change in the Western Himalayas, D. nepalensis seems vulnerable in the warmer season due to lower adult as well as developmental acclimation potential at higher growth temperature (25°C).
Collapse
Affiliation(s)
- R Parkash
- Department of Genetics,Maharshi Dayanand University,Rohtak 124001,India
| | - C Lambhod
- Department of Genetics,Maharshi Dayanand University,Rohtak 124001,India
| | - D Singh
- Department of Genetics,Maharshi Dayanand University,Rohtak 124001,India
| |
Collapse
|
31
|
Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL. Responses of invertebrates to temperature and water stress: A polar perspective. J Therm Biol 2014; 54:118-32. [PMID: 26615734 DOI: 10.1016/j.jtherbio.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.
Collapse
Affiliation(s)
- Matthew J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pete Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia; Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jeffrey S Bale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - M Roger Worland
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|