1
|
Liu Y, Peng X, Zhu L, Jiang R, Liu J, Chen C. Liquid-Assisted Bionic Conical Needle for In-Air and In-Oil-Water Droplet Ultrafast Unidirectional Transportation and Efficient Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59920-59930. [PMID: 38100412 DOI: 10.1021/acsami.3c14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Learning from nature, many bionic materials and surfaces have been developed for the directional transportation of water and fog collection. However, current research mainly focuses on the self-transportation behavior of droplets in air-phase environments, rarely concerning underoil environments. Herein, in this work, a liquid-assisted bionic copper needle was fabricated for the rapid self-transportation of water droplets in air and oil environments. The water droplet can be spontaneously transported on the as-prepared bionic copper needle from the tip to the base. More importantly, the water-prewetted bionic copper needle can achieve the ultrafast unidirectional transportation of a water droplet in an oil environment, showing a maximum transport velocity of 76.2 mm/s and a transport distance over 33 mm, which were ten times higher than those reported in the previous research. Additionally, the droplet transport mechanism was revealed. The effects of the apex angle and tilt angle of the as-prepared bionic needle and droplet volume on the self-transportation behavior of water droplets were systematically investigated. The results indicated that the transport velocity of the water droplet decreased with the increase of the apex angle of the conical needle, while it increased with the increase of the droplet volume and needle tilt angle. Furthermore, the as-prepared bionic copper needle exhibited excellent fog collection performance with a single copper needle fog collecting efficiency of up to 2220 mg/h, which was 9.7 times that of the original copper needle. In summary, this work provides a simple and novel method to fabricate bionic copper needles for the directional self-transportation of water droplets in air-phase and oil-phase environments as well as efficient fog collection. It shows great application potential in the fields of microfluidics, desalination, and freshwater collection.
Collapse
Affiliation(s)
- Yangkai Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuqiao Peng
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Linfeng Zhu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ruisong Jiang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Chaolang Chen
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Ellsworth E, Li Y, Chari LD, Kron A, Moyo S. Tangled in a Web: Management Type and Vegetation Shape the Occurrence of Web-Building Spiders in Protected Areas. INSECTS 2022; 13:insects13121129. [PMID: 36555039 PMCID: PMC9784479 DOI: 10.3390/insects13121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/12/2023]
Abstract
Land management of parks and vegetation complexity can affect arthropod diversity and subsequently alter trophic interactions between predators and their prey. In this study, we examined spiders in five parks with varying management histories and intensities to determine whether certain spider species were associated with particular plants. We also determined whether web architecture influenced spider occurrence. Our results showed that humpbacked orb-weavers (Eustala anastera) were associated with an invasive plant, Chinese privet (Ligustrum sinense). This study revealed how invasive plants can potentially influence certain spider communities, as evidenced by this native spider species only occurring on invasive plants. Knowing more about spider populations-including species makeup and plants they populate-will give insights into how spider populations are dealing with various ecosystem changes. While we did not assess the effect of invasive plants on the behavior of spiders, it is possible that invasive species may not always be harmful to ecosystems; in the case of spiders, invasive plants may serve as a useful environment to live in. More studies are needed to ascertain whether invasive plants can have adverse effects on spider ecology in the long term.
Collapse
Affiliation(s)
- El Ellsworth
- Department of Biology and Program in Environmental Studies and Sciences, Rhodes College, Memphis, TN 38112, USA
| | - Yihan Li
- Department of Biology and Program in Environmental Studies and Sciences, Rhodes College, Memphis, TN 38112, USA
| | - Lenin D. Chari
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| | - Aidan Kron
- Department of Biology and Program in Environmental Studies and Sciences, Rhodes College, Memphis, TN 38112, USA
| | - Sydney Moyo
- Department of Biology and Program in Environmental Studies and Sciences, Rhodes College, Memphis, TN 38112, USA
- Correspondence:
| |
Collapse
|
3
|
Dynamic environments do not appear to constrain spider web building behaviour. Naturwissenschaften 2021; 108:20. [PMID: 33914167 PMCID: PMC8084787 DOI: 10.1007/s00114-021-01725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/04/2021] [Accepted: 03/13/2021] [Indexed: 12/01/2022]
Abstract
Many laboratory experiments demonstrate how orb-web spiders change the architecture of their webs in response to prey, surroundings and wind loading. The overall shape of the web and a range of other web parameters are determined by frame and anchor threads. In the wild, unlike the lab, the anchor threads are attached to branches and leaves that are not stationary but move, which affects the thread tension field. Here we experimentally test the effect of a moving support structure on the construction behaviour and web-parameters of the garden cross spider Araneus diadematus. We found no significant differences in building behaviour between rigid and moving anchors in total time spent and total distance covered nor in the percentage of the total time spent and distance covered to build the three major web components: radials, auxiliary and capture spirals. Moreover, measured key parameters of web-geometry were equally unaffected. These results call for re-evaluation of common understanding of spider webs as thread tensions are often considered to be a major factor guiding the spider during construction and web-operation.
Collapse
|
4
|
Unique behavioural modifications in the web structure of the cave orb spider Meta menardi (Araneae, Tetragnathidae). Sci Rep 2021; 11:92. [PMID: 33420121 PMCID: PMC7794372 DOI: 10.1038/s41598-020-79868-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
In the last decade there has been a renewed interest in the study of behavioural adaptations to environmental constraints with a focus on adaptations to challenging habitats due to their reduced ecological complexity. However, behavioural studies on organisms adapted to nutrient poor subterranean habitats are few and far between. Here, we compared both morphological traits, in terms of relative leg lengths, and behavioural traits, captured in the geometry of the spider web, between the cave-dwelling spider, Meta menardi, and two aboveground species from the same family (Tetragnathidae); Metellina mengei and Tetragnatha montana. We found that the webs of the cave spider differed significantly from the two surface-dwelling species. The most dramatic difference was the lack of frame threads with the radii in the webs instead attaching directly to the surrounding rock, but other differences in relative web size, web asymmetry and number of capture spiral threads were also found. We argue that these modifications are likely to be adaptations to allow for a novel foraging behaviour to additionally capture walking prey within the vicinity of the web. We found only limited evidence for morphological adaptations and suggest that the cave orb spider could act as a model organism for studies of behaviour in energy-poor environments.
Collapse
|
5
|
Aguilar-Arguello S, Taylor AH, Nelson XJ. Jumping spiders attend to information from multiple modalities when preparing to jump. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Mulder T, Mortimer B, Vollrath F. Functional flexibility in a spider's orb web. J Exp Biol 2020; 223:jeb234070. [PMID: 33184053 DOI: 10.1242/jeb.234070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 01/12/2023]
Abstract
Web spiders rely on vibrations propagated via their web to identify, locate and capture entangled prey. Here, we experimentally tested the robustness of the orb weaver's predation strategy when webs are severely distorted and silk tensions are drastically altered throughout the web, a common occurrence in the wild. We assessed prey identification efficiency by comparing the spider's initial reaction times towards a fruit fly trapped in the web, we measured location efficiency by comparing times and number of tugging bouts performed, and we determined capture efficiency by comparing capture times. It emerged that spiders are capable of identifying, locating and capturing prey in distorted webs, albeit taking somewhat longer to do so.
Collapse
Affiliation(s)
- Tom Mulder
- University of Oxford, Department of Zoology, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Beth Mortimer
- University of Oxford, Department of Zoology, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Fritz Vollrath
- University of Oxford, Department of Zoology, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
7
|
Fisher DN, Pruitt JN, Yeager J. Orb-weaving spiders show a correlated syndrome of morphology and web structure in the wild. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Extended phenotypes are traits that exist outside the physical body of organisms. Despite their role in the lives of the organisms that express them and other organisms influenced by extended phenotypes, the consistency and covariance with morphological and behavioural traits of extended phenotypes has rarely been evaluated. We repeatedly measured an extended phenotype involved in prey acquisition (web structure) of wild orb-weaving spiders (Micrathena vigorsii), which re-build their webs daily. We related web structure to behaviours and spider body length. Web diameter and web density were repeatable among individuals, reaction to a predation threat was very marginally so, and response to a prey stimulus and web evenness were not repeatable. Larger spiders spun wider webs, had webs with increased thread spacing, and the spider possibly tended to react more slowly to a predation threat. When a spider built a relatively larger web it was also a relatively less dense and less even web. The repeatability of web construction and relationship with spider body size we found may be common features of intra-population variation in web structure in spiders. By estimating the consistency and covariances of extended phenotypes we can begin to evaluate what maintains their variation and how they might evolve.
Collapse
Affiliation(s)
- David N Fisher
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
- School of Biological Sciences, University of Aberdeen, King’s College, Aberdeen, UK
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
- Department of Ecology, Evolution & Marine Biology, University of California - Santa Barbara, Santa Barbara, CA, USA
| | - Justin Yeager
- Biodiversidad Medio Ambiente y Salud (BIOMAS), Dirección General de Investigación, Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
8
|
Do pit-building predators prefer or avoid barriers? Wormlions' preference for walls depends on light conditions. Sci Rep 2020; 10:10928. [PMID: 32616857 PMCID: PMC7331747 DOI: 10.1038/s41598-020-67979-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/12/2020] [Indexed: 11/11/2022] Open
Abstract
Ambush site selection by sit-and-wait predators is a complex process, involving biotic and abiotic considerations, which greatly affect hunting success and costs. Wormlions are fly larvae that dig pit-traps in loose soil and hunt the arthropod prey falling into their pits. They are abundant in urban environments, found below buildings that provide cover, and many of their pits are dug adjacent to walls. We examined here under what conditions wormlions prefer to dig their pits next to walls. We analysed our dataset in two ways: frequency comparisons among the different treatment combinations and a simulation null model assuming random movement. While the frequency comparisons suggested that wormlions avoided the walls under some cases, the simulation null model suggested that a combination of shallow sand and strong light in the centre led to an attraction towards the walls, independent of the wormlions’ initial location. We suggest that wall attraction results from the certain amount of shade the walls provide. We also demonstrate that shallow sand and strong illumination are unfavourable microhabitats, either leading to more frequent movement or the digging of smaller pits. We locate our results within the broader context of sit-and-wait predators and of animals’ attraction to barriers.
Collapse
|
9
|
Viera C, Garcia LF, Lacava M, Fang J, Wang X, Kasumovic MM, Blamires SJ. Silk physico-chemical variability and mechanical robustness facilitates intercontinental invasibility of a spider. Sci Rep 2019; 9:13273. [PMID: 31519928 PMCID: PMC6744404 DOI: 10.1038/s41598-019-49463-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/24/2019] [Indexed: 01/27/2023] Open
Abstract
There are substantive problems associated with invasive species, including threats to endemic organisms and biodiversity. Understanding the mechanisms driving invasions is thus critical. Variable extended phenotypes may enable animals to invade into novel environments. We explored here the proposition that silk variability is a facilitator of invasive success for the highly invasive Australian house spider, Badumna longinqua. We compared the physico-chemical and mechanical properties and underlying gene expressions of its major ampullate (MA) silk between a native Sydney population and an invasive counterpart from Montevideo, Uruguay. We found that while differential gene expressions might explain the differences in silk amino acid compositions and protein nanostructures, we did not find any significant differences in silk mechanical properties across the populations. Our results accordingly suggest that B. longinqua’s silk remains functionally robust despite underlying physico-chemical and genetic variability as the spider expands its range across continents. They also imply that a combination of silk physico-chemical plasticity combined with mechanical robustness might contribute more broadly to spider invasibilities.
Collapse
Affiliation(s)
- Carmen Viera
- Entomología, Universidad de la República de Uruguay, Montevideo, Uruguay.,Laboratorio Ecología del Comportamiento (IIBCE), Montevideo, Uruguay
| | - Luis F Garcia
- Centro Universitario Regional del Este, Sede Treinta y Tres, Universidad de la República, Treinta y Tres, Uruguay
| | - Mariángeles Lacava
- Laboratorio Ecología del Comportamiento (IIBCE), Montevideo, Uruguay.,Centro Universitario de Rivera, Universidad de la República, Rivera, Uruguay
| | - Jian Fang
- Deakin University, Institute for Frontier Materials (IFM), Waurn Ponds Campus, Geelong, 3220, Australia
| | - Xungai Wang
- Deakin University, Institute for Frontier Materials (IFM), Waurn Ponds Campus, Geelong, 3220, Australia
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
10
|
Hesselberg T, Simonsen D. A comparison of morphology and web geometry between hypogean and epigean species of Metellina orb spiders (family Tetragnathidae). SUBTERRANEAN BIOLOGY 2019. [DOI: 10.3897/subtbiol.32.36222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies on the behaviour of subterranean animals are rare, mainly due to the problems with collecting data in these inaccessible habitats. Web-building cave spiders, however, leave a semi-permanent record of their foraging behaviour, which can relatively easily be recorded. In this study, we compare size, leg lengths and web characteristics between hypogean populations of Metellina merianae with its close wood-inhabiting relative M. mengei. We confirm previous observations that M. merianae does not show any obvious morphological and behavioural adaptions to a subterranean life-style, although individuals of the cave species were significantly larger and had webs with relatively fewer radii and capture spiral turns than M. mengei. We were, however, not able to determine if these findings indicate a transition towards behavioural adaptation to caves or if they are a result of behavioural flexibility in response to the different humidity and temperature between caves and woodland. Finally, we did not find any effect of cave characteristics on either the number of radii or the area of the M. merianae web.
Collapse
|
11
|
Hesselberg T, Simonsen D. A comparison of morphology and web geometry between hypogean and epigean species of Metellina orb spiders (family Tetragnathidae). SUBTERRANEAN BIOLOGY 2019. [DOI: 10.3897/subtbiol.31.36222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies on the behaviour of subterranean animals are rare, mainly due to the problems with collecting data in these inaccessible habitats. Web-building cave spiders, however, leave a semi-permanent record of their foraging behaviour, which can relatively easily be recorded. In this study, we compare size, leg lengths and web characteristics between hypogean populations of Metellina merianae with its close wood-inhabiting relative M. mengei. We confirm previous observations that M. merianae does not show any obvious morphological and behavioural adaptions to a subterranean life-style, although individuals of the cave species were significantly larger and had webs with relatively fewer radii and capture spiral turns than M. mengei. We were, however, not able to determine if these findings indicate a transition towards behavioural adaptation to caves or if they are a result of behavioural flexibility in response to the different humidity and temperature between caves and woodland. Finally, we did not find any effect of cave characteristics on either the number of radii or the area of the M. merianae web.
Collapse
|
12
|
Jyoti J, Kumar A, Lakhani P, Kumar N, Bhushan B. Structural properties and their influence on the prey retention in the spider web. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180271. [PMID: 30967065 DOI: 10.1098/rsta.2018.0271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Orb webs absorb the impact energy of prey and transmit vibratory information to the spider with minimal structural damage. The structural properties of the web and the arrangement of threads within the web affect transmission time during the prey impact. The objective of the present study is to determine damping, stiffness, and transmissibility of healthy and damaged spider webs. Experimental results show that stiffness and transmissibility diminish from the inner to outer spiral threads and gradient variation in the structural properties of spiral threads enhances signal transmission capability toward the centre regardless of the position of prey impact within the healthy web. Spiral threads exhibit excellent prey retention properties due to their stretching capability. Kinetic energy produced by prey is absorbed in the threads, which help the spider to analyse the prey retention properties and also determine the response time. The minor damage (up to 25%) does not alter the basic characteristics of the web due to self-adjustment of tension within the web. Damping, natural frequency, stiffness and transmissibility decrease with the increase in the percentage of damaged web. The present study addresses the structural sustainability of the spider web irrespective of minor damages and also provides guidance in designing the structures under impact. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.
Collapse
Affiliation(s)
- Jeevan Jyoti
- 1 Mechanical Engineering Department, Indian Institute of Technology Ropar , Nangal Road, Rupnagar 140001, Punjab , India
| | - Amit Kumar
- 1 Mechanical Engineering Department, Indian Institute of Technology Ropar , Nangal Road, Rupnagar 140001, Punjab , India
| | - Piyush Lakhani
- 1 Mechanical Engineering Department, Indian Institute of Technology Ropar , Nangal Road, Rupnagar 140001, Punjab , India
| | - Navin Kumar
- 1 Mechanical Engineering Department, Indian Institute of Technology Ropar , Nangal Road, Rupnagar 140001, Punjab , India
| | - Bharat Bhushan
- 2 Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), The Ohio State University , 201 W. 19th Avenue, Columbus, OH 43210-1142 , USA
| |
Collapse
|
13
|
Perry CJ, Chittka L. How foresight might support the behavioral flexibility of arthropods. Curr Opin Neurobiol 2018; 54:171-177. [PMID: 30445344 DOI: 10.1016/j.conb.2018.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 11/27/2022]
Abstract
The small brains of insects and other invertebrates are often thought to constrain these animals to live entirely 'in the moment'. In this view, each one of their many seemingly hard-wired behavioral routines is triggered by a precisely defined environmental stimulus configuration, but there is no mental appreciation of the possible outcomes of one's actions, and therefore little flexibility. However, many studies show problem-solving behavior in various arthropod species that falls outside the range of fixed behavior routines. We propose that a basic form of foresight, the ability to predict the outcomes of one's own actions, is at the heart of such behavioral flexibility, and that the evolutionary roots of such outcome expectation are found in the need to disentangle sensory input that is predictable from self-generated motion versus input generated by changes in the outside world. Based on this, locusts, grasshoppers, dragonflies and flies seem to use internal models of the surrounding world to tailor their actions adaptively to predict the imminent future. Honeybees and orb-weaving spiders appear to act towards a desired outcome of their respective constructions, and the genetically pre-programmed routines that govern these constructions are subordinate to achieving the desired goal. Jumping spiders seem to preplan their route to prey suggesting they recognize the spatial challenge and actions necessary to obtain prey. Bumblebees and ants utilize objects not encountered in the wild as types of tools to solve problems in a manner that suggests an awareness of the desired outcome. Here we speculate that it may be simpler, in terms of the required evolutionary changes, computation and neural architecture, for arthropods to recognize their goal and predict the outcomes of their actions towards that goal, rather than having a large number of pre-programmed behaviors necessary to account for their observed behavioral flexibility.
Collapse
Affiliation(s)
- Clint J Perry
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Lars Chittka
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; Wissenschaftskolleg/Institute for Advanced Study, Wallotstrasse 19, 14193 Berlin, Germany
| |
Collapse
|
14
|
Opell BD, Jain D, Dhinojwala A, Blackledge TA. Tuning orb spider glycoprotein glue performance to habitat humidity. J Exp Biol 2018; 221:221/6/jeb161539. [DOI: 10.1242/jeb.161539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT
Orb-weaving spiders use adhesive threads to delay the escape of insects from their webs until the spiders can locate and subdue the insects. These viscous threads are spun as paired flagelliform axial fibers coated by a cylinder of solution derived from the aggregate glands. As low molecular mass compounds (LMMCs) in the aggregate solution attract atmospheric moisture, the enlarging cylinder becomes unstable and divides into droplets. Within each droplet an adhesive glycoprotein core condenses. The plasticity and axial line extensibility of the glycoproteins are maintained by hygroscopic LMMCs. These compounds cause droplet volume to track changes in humidity and glycoprotein viscosity to vary approximately 1000-fold over the course of a day. Natural selection has tuned the performance of glycoprotein cores to the humidity of a species' foraging environment by altering the composition of its LMMCs. Thus, species from low-humidity habits have more hygroscopic threads than those from humid forests. However, at their respective foraging humidities, these species' glycoproteins have remarkably similar viscosities, ensuring optimal droplet adhesion by balancing glycoprotein adhesion and cohesion. Optimal viscosity is also essential for integrating the adhesion force of multiple droplets. As force is transferred to a thread's support line, extending droplets draw it into a parabolic configuration, implementing a suspension bridge mechanism that sums the adhesive force generated over the thread span. Thus, viscous capture threads extend an orb spider's phenotype as a highly integrated complex of large proteins and small molecules that function as a self-assembling, highly tuned, environmentally responsive, adhesive biomaterial. Understanding the synergistic role of chemistry and design in spider adhesives, particularly the ability to stick in wet conditions, provides insight in designing synthetic adhesives for biomedical applications.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dharamdeep Jain
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
15
|
Blamires SJ, Martens PJ, Kasumovic MM. Fitness consequences of plasticity in an extended phenotype. ACTA ACUST UNITED AC 2018; 221:jeb.167288. [PMID: 29361580 DOI: 10.1242/jeb.167288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/13/2017] [Indexed: 01/15/2023]
Abstract
Like regular phenotypes, extended phenotypes have demonstrable fitness advantages and their properties may vary plastically across environments. However, the fitness advantages of plasticity are only known for a select few extended phenotypes. It is known that the form and functions of spider orb webs can be manipulated by laboratory experiments. For instance, the physical and chemical properties of the spiral and gluey silks vary in property as protein intake varies. Orb web spiders thus represent good models for extended phenotypic plasticity studies. We performed experiments manipulating the protein intake of two vertically aligned orb web building spiders to determine whether variations in the chemical and physical properties of their spiral and gluey silk affect prey retention in their webs. We found in both spider species that individuals deprived of protein had a greater gluey silk glycoprotein core volume, and this correlated strongly with spiral thread stickiness and increased prey retention by the webs. Moreover, we found strong positive correlations between glue droplet volume and glycoprotein core volume for spiders in the protein-deprived treatment, but weaker correlations for protein-fed spiders. We interpreted these findings as the spiders investing more in glycoprotein when nutrient deprived. We attribute the associated increase in prey retention capacity as a fitness consequence of plasticity in the spiral properties.
Collapse
Affiliation(s)
- Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, University of New South Wales, Sydney 2052, Australia
| | - Penny J Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, University of New South Wales, Sydney 2052, Australia
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
16
|
|
17
|
Opell BD, Buccella KE, Godwin MK, Rivas MX, Hendricks ML. Humidity-mediated changes in an orb spider's glycoprotein adhesive impact prey retention time. ACTA ACUST UNITED AC 2017; 220:1313-1321. [PMID: 28356367 DOI: 10.1242/jeb.148080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/16/2017] [Indexed: 11/20/2022]
Abstract
Properties of the viscous prey capture threads of araneoid orb spiders change in response to their environment. Relative humidity (RH) affects the performance of the thread's hygroscopic droplets by altering the viscoelasticity of each droplet's adhesive glycoprotein core. Studies that have characterized this performance used smooth glass and steel surfaces and uniform forces. In this study, we tested the hypothesis that these changes in performance translate into differences in prey retention times. We first characterized the glycoprotein contact surface areas and maximum extension lengths of Araneus marmoreus droplets at 20%, 37%, 55%, 72% and 90% RH and then modeled the relative work required to initiate pull-off of a 4 mm thread span, concluding that this species' droplets and threads performed optimally at 72% RH. Next, we evaluated the ability of three equally spaced capture thread strands to retain a house fly at 37%, 55% and 72% RH. Each fly's struggle was captured in a video and bouts of active escape behavior were summed. House flies were retained 11 s longer at 72% RH than at 37% and 55% RH. This difference is ecologically significant because the short time after an insect strikes a web and before a spider begins wrapping it is an insect's only opportunity to escape from the web. Moreover, these results validate the mechanism by which natural selection can tune the performance of an orb spider's capture threads to the humidity of its habitat.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katrina E Buccella
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Meaghan K Godwin
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Malik X Rivas
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mary L Hendricks
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Henneken J, Goodger JQ, Jones TM, Elgar MA. The potential role of web-based putrescine as a prey-attracting allomone. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Tew N, Hesselberg T. The Effect of Wind Exposure on the Web Characteristics of a Tetragnathid Orb Spider. JOURNAL OF INSECT BEHAVIOR 2017; 30:273-286. [PMID: 28680193 PMCID: PMC5488162 DOI: 10.1007/s10905-017-9618-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Studies on spiders in their natural habitats are necessary for determining the full range of plasticity in their web-building behaviour. Plasticity in web design is hypothesised to be important for spiders building in habitats where environmental conditions cause considerable web damage. Here we compared web characteristics of the orb spider Metellina mengei (Araneae, Tetragnathidae) in two different forest habitats differing in their wind exposure. We found a notable lack of differences in web geometry, orientation and inclination between webs built along an exposed forest edge and those built inside the forest, despite marked differences in wind speed. This suggests that M. mengei did not exhibit web-building plasticity in response to wind in the field, contrasting with the findings of laboratory studies on other species of orb spiders. Instead, differences in prey capture and wind damage trade-offs between habitats may provide an explanation for our results, indicating that different species employ different strategies to cope with environmental constraints.
Collapse
Affiliation(s)
- Nicholas Tew
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
- Department of Life Sciences, Imperial College London, Buckhurst Road, Ascot, SL5 7PY UK
| | - Thomas Hesselberg
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|
20
|
Abstract
There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.
Collapse
Affiliation(s)
- Hilton F Japyassú
- Biology Institute, Federal University of Bahia, Rua Barão de Jeremoabo s/n, Campus de Ondina, Salvador, Bahia, 40170-115, Brazil.
- Centre for Biodiversity, School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife, UK, KY16 9TH.
| | - Kevin N Laland
- Centre for Biodiversity, School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife, UK, KY16 9TH
| |
Collapse
|
21
|
Blamires SJ, Hasemore M, Martens PJ, Kasumovic MM. Diet-induced covariation between architectural and physicochemical plasticity in an extended phenotype. J Exp Biol 2016; 220:876-884. [DOI: 10.1242/jeb.150029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023]
Abstract
The adaptive benefits of extended phenotypic plasticity are imprecisely defined due to a paucity of experiments examining traits that are manipulable and measurable across environments. Spider webs are often used as models to explore the adaptive benefits of variations in extended phenotypes across environments. Nonetheless, our understanding of the adaptive nature of the plastic responses of spider webs is impeded when web architectures and silk physicochemical properties appear to co-vary. An opportunity to examine this co-variation is presented by modifying prey items while measuring web architectures and silk physiochemical properties. Here we performed two experiments to assess the nature of the association between web architectures and gluey silk properties when the orb web spider Argiope keyserlingi was fed a diet that varied in either mass and energy or prey size and feeding frequency. We found web architectures and gluey silk physicochemical properties to co-vary across treatments in both experiments. Specifically, web capture area co-varied with gluey droplet morphometrics, thread stickiness and salt concentrations when prey mass and energy were manipulated, and spiral spacing co-varied with gluey silk salt concentrations when prey size and feeding frequency were manipulated. We explained our results as A. keyserlingi plastically shifting its foraging strategy as multiple prey parameters simultaneously varied. We confirmed and extended previous work by showing that spiders use a variety of prey cues to concurrently adjust web and silk traits across different feeding regimes.
Collapse
Affiliation(s)
- Sean J. Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| | - Matthew Hasemore
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| | - Penny J. Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, The University of New South Wales, Sydney 2052, Australia
| | - Michael M. Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
22
|
|
23
|
Blamires SJ, Piorkowski D, Chuang A, Tseng YH, Toft S, Tso IM. Can differential nutrient extraction explain property variations in a predatory trap? ROYAL SOCIETY OPEN SCIENCE 2015; 2:140479. [PMID: 26064618 PMCID: PMC4448829 DOI: 10.1098/rsos.140479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
Predators exhibit flexible foraging to facilitate taking prey that offer important nutrients. Because trap-building predators have limited control over the prey they encounter, differential nutrient extraction and trap architectural flexibility may be used as a means of prey selection. Here, we tested whether differential nutrient extraction induces flexibility in architecture and stickiness of a spider's web by feeding Nephila pilipes live crickets (CC), live flies (FF), dead crickets with the web stimulated by flies (CD) or dead flies with the web stimulated by crickets (FD). Spiders in the CD group consumed less protein per mass of lipid or carbohydrate, and spiders in the FF group consumed less carbohydrates per mass of protein. Spiders from the CD group built stickier webs that used less silk, whereas spiders in the FF group built webs with more radii, greater catching areas and more silk, compared with other treatments. Our results suggest that differential nutrient extraction is a likely explanation for prey-induced spider web architecture and stickiness variations.
Collapse
Affiliation(s)
- Sean J. Blamires
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan, Republic of China
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dakota Piorkowski
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan, Republic of China
| | - Angela Chuang
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan, Republic of China
| | - Yi-Hsuan Tseng
- Department of Life Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Søren Toft
- Department of BioScience, Aarhus University, Building 1540, Ny Munkegade 116, Aarhus 8000 C, Denmark
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan, Republic of China
- Department of Life Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
24
|
Affiliation(s)
- Samuel Zschokke
- Department of Environmental Sciences, Section of Conservation Biology; University of Basel; St. Johanns-Vorstadt 10 CH-4056 Basel Switzerland
| | - Kensuke Nakata
- Kyoto Women's University; Kitahiyoshi-cho 35 Higashiyama-ku Kyoto 605-8501 Japan
- Faculty of Human Environment; Nagasaki Institute of Applied Science; 536 Aba-machi Nagasaki 851-0193 Japan
- Tokyo Keizai University; Minami-machi 1-7-34 Kokubunji Tokyo 185-8502 Japan
| |
Collapse
|
25
|
Zaera R, Soler A, Teus J. Uncovering changes in spider orb-web topology owing to aerodynamic effects. J R Soc Interface 2014; 11:20140484. [PMID: 24966235 DOI: 10.1098/rsif.2014.0484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An orb-weaving spider's likelihood of survival is influenced by its ability to retain prey with minimum damage to its web and at the lowest manufacturing cost. This set of requirements has forced the spider silk to evolve towards extreme strength and ductility to a degree that is rare among materials. Previous studies reveal that the performance of the web upon impact may not be based on the mechanical properties of silk alone, aerodynamic drag could play a role in the dissipation of the prey's energy. Here, we present a thorough analysis of the effect of the aerodynamic drag on wind load and prey impact. The hypothesis considered by previous authors for the evaluation of the drag force per unit length of thread has been revisited according to well-established principles of fluid mechanics, highlighting the functional dependence on thread diameter that was formerly ignored. Theoretical analysis and finite-element simulations permitted us to identify air drag as a relevant factor in reducing deterioration of the orb web, and to reveal how the spider can take greater-and not negligible-advantage of drag dissipation. The study shows the beneficial air drag effects of building smaller and less dense webs under wind load, and larger and denser webs under prey impact loads. In essence, it points out why the aerodynamics need to be considered as an additional driving force in the evolution of silk threads and orb webs.
Collapse
Affiliation(s)
- Ramón Zaera
- Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, 28911 Leganés, Madrid, Spain
| | - Alejandro Soler
- Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, 28911 Leganés, Madrid, Spain
| | - Jaime Teus
- Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, 28911 Leganés, Madrid, Spain
| |
Collapse
|
26
|
Blamires SJ, Sahni V, Dhinojwala A, Blackledge TA, Tso IM. Nutrient deprivation induces property variations in spider gluey silk. PLoS One 2014; 9:e88487. [PMID: 24523902 PMCID: PMC3921163 DOI: 10.1371/journal.pone.0088487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition.
Collapse
Affiliation(s)
- Sean J. Blamires
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Vasav Sahni
- Department of Polymer Science, The University of Akron, Akron, Ohio, United States of America
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio, United States of America
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio, United States of America
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|