1
|
Nanda MA, Seminar KB, Maddu A, Nandika D. Acoustic and temperature signals generated by subterranean termite infestation: its characteristics and implementations. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2167866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Muhammad Achirul Nanda
- Department of Agricultural and Biosystem Engineering, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Kudang Boro Seminar
- Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Akhiruddin Maddu
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Dodi Nandika
- Department of Forest Products, Faculty of Forestry, IPB University, Bogor, Indonesia
| |
Collapse
|
2
|
Berardo A, Fattoruso V, Mazzoni V, Pugno NM. Coupling computational vibrational models and experimental biotremology to develop a green pest control strategy against the greenhouse whitefly Trialeurodes vaporariorum. J R Soc Interface 2022; 19:20220311. [PMID: 36285437 PMCID: PMC9597177 DOI: 10.1098/rsif.2022.0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
In applied biotremology, vibrational signals or cues are exploited to manipulate the target species behaviour. To develop an efficient pest control strategy, other than a detailed investigation into the pest biology and behaviour, the role of the substrate used to transmit the signal is an important feature to be considered, since it may affect vibrations spreading and effective signal transmission and perception. Therefore, we used a multi-disciplinary approach to develop a control technique against the greenhouse whitefly, Trialeurodes vaporariorum. First, an ad hoc vibrational disruptive noise has been developed, based on the acquired knowledge about the mating behaviour and vibrational communication of the mated species. Subsequently, we employed finite-element models to investigate a growing tomato plant response to the aforesaid noise. Modelling how vibrations spread along the plant allowed us to set up a greenhouse experiment to assess the efficacy in terms of insect population of the vibrational treatment, which was administrated through vibrational plates. The green methodology applied in this study represents an innovative, environmentally sound alternative to the usage of synthetic pesticides.
Collapse
Affiliation(s)
- Alice Berardo
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Valeria Fattoruso
- C3A Centro Agricoltura, Alimenti e Ambiente, University of Trento, 38122 Trento, Italy
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nicola M. Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
3
|
Wikantyoso B, Imai T, Himmi SK, Yusuf S, Hata T, Yoshimura T. Ultrastructure and distribution of sensory receptors on the nonolfactory organs of the soldier caste in subterranean termite (Coptotermes spp.). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101201. [PMID: 35994811 DOI: 10.1016/j.asd.2022.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The soldier caste of termites uses sensilla to sense pheromonal, tactile, and vibrational cues to communicate inside and outside their nest. Although sensilla with many modalities on the antennae of subterranean termites have been well explored, there remains a lack of information regarding sensillum characteristics and distribution of the nonolfactory organs of the soldier caste in the Coptotermes genus. In this study, the ultrastructure of sensilla from the soldier caste of three Coptotermes spp. (Coptotermes formosanus, Coptotermes curvignathus, and Coptotermes gestroi) was observed by scanning and transmission electron microscopy, and the putative function of each type was deduced. Six total sensillum types were observed, with two mechanoreceptive sensillum types (hair and plate). The long flexible-peg mechanoreceptive sensilla may work as contact-chemoreceptive sensilla due to their elongated dendritic outer segments and uniporous characteristics. There was a significant depletion of mechano-chemoreceptive sensillum numbers in C. gestroi, which was compensated by a high density of short-peg mechanoreceptive sensilla on the pronotum. Finally, cuticular and innervation characteristics of thermo-/hygrosensitive sensilla were observed for the first time on the labrum of the soldier caste of Coptotermes.
Collapse
Affiliation(s)
- Bramantyo Wikantyoso
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan; Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia.
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - S Khoirul Himmi
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Sulaeman Yusuf
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Toshimitsu Hata
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
4
|
Sansom TM, Oberst S, Richter A, Lai JCS, Saadatfar M, Nowotny M, Evans TA. Low radiodensity μCT scans to reveal detailed morphology of the termite leg and its subgenual organ. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101191. [PMID: 35816830 DOI: 10.1016/j.asd.2022.101191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Termites sense tiny substrate-borne vibrations through subgenual organs (SGOs) located within their legs' tibiae. Little is known about the SGOs' structure and physical properties. We applied high-resolution (voxel size 0.45 μm) micro-computed tomography (μCT) to Australian termites, Coptotermes lacteus and Nasutitermes exitiosus (Hill) to test two staining techniques. We compared the effectiveness of a single stain of Lugol's iodine solution (LS) to LS followed by Phosphotungstic acid (PTA) solutions (1% and 2%). We then present results of a soldier of Nasutitermes exitiosus combining μCT with LS + 2%PTS stains and scanning electron microscopy to exemplify the visualisation of their SGOs. The termite's SGO due to its approximately oval shape was shown to have a maximum diameter of 60 μm and a minimum of 48 μm, covering 60 ± 4% of the leg's cross-section and 90.4 ± 5% of the residual haemolymph channel. Additionally, the leg and residual haemolymph channel cross-sectional area decreased around the SGO by 33% and 73%, respectively. We hypothesise that this change in cross-sectional area amplifies the vibrations for the SGO. Since SGOs are directly connected to the cuticle, their mechanical properties and the geometric details identified here may enable new approaches to determine how termites sense micro-vibrations.
Collapse
Affiliation(s)
- Travers M Sansom
- University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Sydney, NSW, 2007, Australia.
| | - Sebastian Oberst
- University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Sydney, NSW, 2007, Australia; School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT, 2612, Australia.
| | - Adrian Richter
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Joseph C S Lai
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT, 2612, Australia
| | - Mohammad Saadatfar
- School of Civil Engineering, The University of Sydney, 2006, Sydney, Australia
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Theodore A Evans
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
5
|
Bota JL, Schöner MG, Schöner CR, Eberhard MJB. Rustling ants: Vibrational communication performed by two Camponotus species in Borneo. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101172. [PMID: 35810530 DOI: 10.1016/j.asd.2022.101172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Interactions between ants and plants are classic examples of cooperation between individuals of different species. Usually, plants provide shelter or food for ants and in turn are defended against herbivores by their insect allies. To coordinate attacks, ants use multi-modal alarm signals consisting of vibrational and chemical components. This can also be observed in Borneo, where two Camponotus species inhabit the ocreas (diverging, tubular leaf sheaths) of the rattan palm Korthalsia robusta. When ants are disturbed, they beat or scratch mandibles and abdomens on the plant surface resulting in loud rustling sounds. To describe the characteristics of these signals, we recorded them with a Laser-Doppler-vibrometer in the field. Analyses of temporal patterns and dominant frequency revealed that the signals of the two species differ fundamentally. To assess transmission characteristics of the rattan palm, we conducted experiments under controlled lab-conditions. We show that the ocrea is an adequate structure for converting airborne sound into substrate vibrations, acting as a mediator between these two modalities. We hypothesize that the ants' vibratory signal has multiple functions, with the substrate-borne component used as an alarm signal for conspecifics, and the airborne component acting as vibro-acoustic aposematism against predators or herbivores to protect the host plant.
Collapse
Affiliation(s)
- Julien L Bota
- Zoological Institute and Museum, University of Greifswald, Loitzer-Str. 26, 17489, Greifswald, Germany
| | - Michael G Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer-Str. 26, 17489, Greifswald, Germany; Sensory and Cognitive Ecology, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Caroline R Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer-Str. 26, 17489, Greifswald, Germany
| | - Monika J B Eberhard
- Zoological Institute and Museum, University of Greifswald, Loitzer-Str. 26, 17489, Greifswald, Germany.
| |
Collapse
|
6
|
Gao Y, Wen P, Cardé RT, Xu H, Huang Q. In addition to cryptochrome 2, magnetic particles with olfactory co-receptor are important for magnetic orientation in termites. Commun Biol 2021; 4:1121. [PMID: 34556782 PMCID: PMC8460727 DOI: 10.1038/s42003-021-02661-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
The volatile trail pheromone is an ephemeral chemical cue, whereas the geomagnetic field (GMF) provides a stable positional reference. However, it is unclear whether and how the cryptic termites perceive the GMF for orientation in light or darkness until now. Here, we found that the two termite species, Reticulitermes chinensis and Odontotermes formosanus, use the GMF for orientation. Our silencing cryptochrome 2 (Cry2) impaired magnetic orientation in white light but had no significant impact in complete darkness, suggesting that Cry2 can mediate magnetic orientation in termites only under light. Coincidentally, the presence of magnetic particles enabled the magnetic orientation of termites in darkness. When knock-downing the olfactory co-receptor (Orco) to exclude the effect of trail pheromone, unexpectedly, we found that the Orco participated in termite magnetic orientation under both light and darkness. Our findings revealed a novel magnetoreception model depending on the joint action of radical pair, magnetic particle, and olfactory co-receptor. Gao et al. analyze the role of magnetoreceptor candidates cryptochrome 2 (Cry2), magnetic particles and olfactory coreceptor (Orco) in magnetic orientation in two termite species. They report that termites use Cry2 for directional preference in white light, magnetic particles in darkness, and Orco participates in termite magnetic orientation under both light and darkness.
Collapse
Affiliation(s)
- Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, 650223, China
| | - Ring T Cardé
- Department of Entomology, University of California Riverside, Riverside, CA, 92521, USA
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
Pailler L, Desvignes S, Ruhland F, Pineirua M, Lucas C. Vibratory behaviour produces different vibrations patterns in presence of reproductives in a subterranean termite species. Sci Rep 2021; 11:9902. [PMID: 33972576 PMCID: PMC8110524 DOI: 10.1038/s41598-021-88292-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022] Open
Abstract
Vibratory behaviours are widespread in social insects, but the produced vibrations remain poorly explored. Communication using vibrations is an efficient way to transmit information in subterranean environments where visual and odorant signals are less efficient. In termites, different vibratory behaviours are performed in different contexts like reproductive regulation and alarm signalling, but only few studies explored the structure of the produced vibrations (i.e., duration, number of pulses, amplitude). Here, we described several types of vibrations produced by a vibratory behaviour widespread in termites (body-shaking), which can be transmitted through the substrate and detected by other colony members. We analysed the structures of the emitted vibrations and the occurrence of the body-shaking events in presence/absence of reproductives and/or in presence/absence of a stress stimuli (flashlight) in the subterranean termite Reticulitermes flavipes. Interestingly, only the presence of the reproductives did influence the number of pulses and the duration of the emitted vibrations. Moreover, the first part of the emitted vibrations seems to be enough to encode reproductive information, but other parts might hold other type of information. Body-shaking occurrence did increase in presence of reproductives but only briefly under a flashlight. These results show that vibratory cues are complex in termites and their diversity might encode a plurality of social cues.
Collapse
Affiliation(s)
- Louis Pailler
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Samuel Desvignes
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Fanny Ruhland
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Miguel Pineirua
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Christophe Lucas
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France.
| |
Collapse
|
8
|
Krausa K, Hager FA, Kirchner WH. Guarding Vibrations- Axestotrigona ferruginea Produces Vibrations When Encountering Non-Nestmates. INSECTS 2021; 12:395. [PMID: 33946689 PMCID: PMC8146115 DOI: 10.3390/insects12050395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022]
Abstract
Flower visiting stingless bees store collected pollen and nectar for times of scarcity. This stored food is of high value for the colony and should be protected against con- and heterospecifics that might rob them. There should be high selective pressure on the evolution of mechanisms to discriminate nestmates from non-nestmates and to defend the nest, i.e., resources against intruders. Multimodal communication systems, i.e., a communication system that includes more than one sensory modality and provide redundant information, should be more reliable than unimodal systems. Besides olfactory signals, vibrational signals could be used to alert nestmates. This study tests the hypothesis that the vibrational communication mode plays a role in nest defense and nestmate recognition of Axestotrigona ferruginea. Substrate vibrations induced by bees were measured at different positions of the nest. The experiments show that guarding vibrations produced in the entrance differ in their temporal structure from foraging vibrations produced inside the nest. We show that guarding vibrations are produced during non-nestmate encounters rather than nestmate encounters. This further supports the idea that guarding vibrations are a component of nest defense and alarm communication. We discuss to whom the vibrations are addressed, and what their message and meaning are.
Collapse
Affiliation(s)
- Kathrin Krausa
- Behavioural Biology and Biology Education, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany; (F.A.H.); (W.H.K.)
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
| | - Felix A. Hager
- Behavioural Biology and Biology Education, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany; (F.A.H.); (W.H.K.)
| | - Wolfgang H. Kirchner
- Behavioural Biology and Biology Education, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany; (F.A.H.); (W.H.K.)
| |
Collapse
|
9
|
Low ML, Naranjo M, Yack JE. Survival Sounds in Insects: Diversity, Function, and Evolution. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect defense sounds have been reported for centuries. Yet, aside from the well-studied anti-bat sounds of tiger moths, little is understood about the occurrence, function, and evolution of these sounds. We define a defense sound as an acoustic signal (air- or solid-borne vibration) produced in response to attack or threat of attack by a predator or parasitoid and that promotes survival. Defense sounds have been described in 12 insect orders, across different developmental stages, and between sexes. The mechanisms of defensive sound production include stridulation, percussion, tymbalation, tremulation, and forced air. Signal characteristics vary between species, and we discuss how morphology, the intended receiver, and specific functions of the sounds could explain this variation. Sounds can be directed at predators or non-predators, and proposed functions include startle, aposematism, jamming, and alarm, although experimental evidence for these hypotheses remains scant for many insects. The evolutionary origins of defense sounds in insects have not been rigorously investigated using phylogenetic methodology, but in most cases it is hypothesized that they evolved from incidental sounds associated with non-signaling behaviors such as flight or ventilatory movements. Compared to our understanding of visual defenses in insects, sonic defenses are poorly understood. We recommend that future investigations focus on testing hypotheses explaining the functions and evolution of these survival sounds using predator-prey experiments and comparative phylogenetics.
Collapse
|
10
|
Oberst S, Lai JC, Martin R, Halkon BJ, Saadatfar M, Evans TA. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput Struct Biotechnol J 2020; 18:2522-2534. [PMID: 33005314 PMCID: PMC7516209 DOI: 10.1016/j.csbj.2020.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022] Open
Abstract
Termite mounds are fascinating because of their intriguing composition of numerous geometric shapes and materials. However, little is known about these structures, or of their functionalities. Most research has been on the basic composition of mounds compared with surrounding soils. There has been some targeted research on the thermoregulation and ventilation of the mounds of a few species of fungi-growing termites, which has generated considerable interest from human architecture. Otherwise, research on termite mounds has been scattered, with little work on their explicit properties. This review is focused on how termites design and build functional structures as nest, nursery and food storage; for thermoregulation and climatisation; as defence, shelter and refuge; as a foraging tool or building material; and for colony communication, either as in indirect communication (stigmergy) or as an information channel essential for direct communication through vibrations (biotremology). Our analysis shows that systematic research is required to study the properties of these structures such as porosity and material composition. High resolution computer tomography in combination with nonlinear dynamics and methods from computational intelligence may provide breakthroughs in unveiling the secrets of termite behaviour and their mounds. In particular, the examination of dynamic and wave propagation properties of termite-built structures in combination with a detailed signal analysis of termite activities is required to better understand the interplay between termites and their nest as superorganism. How termite structures serve as defence in the form of disguising acoustic and vibration signals from detection by predators, and what role local and global vibration synchronisation plays for building are open questions that need to be addressed to provide insights into how termites utilise materials to thrive in a world of predators and competitors.
Collapse
Affiliation(s)
- Sebastian Oberst
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT 2612, Australia
| | - Joseph C.S. Lai
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT 2612, Australia
| | - Richard Martin
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Benjamin J. Halkon
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mohammad Saadatfar
- Department of Applied Mathematics, Australian National University, 58-60 Mills Road, Canberra, ACT 2601, Australia
| | - Theodore A. Evans
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
11
|
Oberst S, Lai JCS, Evans TA. Key physical wood properties in termite foraging decisions. J R Soc Interface 2019; 15:20180505. [PMID: 30958236 DOI: 10.1098/rsif.2018.0505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As eusocial and wood-dwelling insects, termites have been shown to use vibrations to assess their food, to eavesdrop on competitors and predators and to warn nest-mates. Bioassay choice experiments used to determine food preferences in animals often consider single factors only but foraging decisions can be influenced by multiple factors such as the quantity and quality of the food and the wood as a medium for communication. A statistical analysis framework is developed here to design a single bioassay experiment to study multifactorial foraging choice ( Pinus radiata) in the basal Australian termite species Coptotermes ( C.) acinaciformis (Isoptera: Rhinotermitidae). By employing a correlation analysis, 17 measured physical properties of 1417 Pinus radiata veneer discs were reduced to five key material properties: density, moisture absorption, early wood content, first resonance frequency and damping. By applying a fuzzy c-means clustering technique, these veneer discs were optimally paired for treatment and control trials to study food preference by termites based on these five key material properties. A multifactorial analysis of variance was compared to a permutation analysis of the results indicating for the first time that C. acinaciformis takes into account multiple factors when making foraging decisions. C. acinaciformis prefer denser wood with large early wood content, preferably humid and highly damped. Results presented here have practical implications for food choice experiments and for studies concerned with communication in termites as well as their ecology and coevolution with trees as their major food source.
Collapse
Affiliation(s)
- Sebastian Oberst
- 1 Centre for Audio, Acoustics and Vibrations, School of Software, Faculty of Engineering and IT, University of Technology Sydney , Sydney, New South Wales 2007 , Australia
| | - Joseph C S Lai
- 2 Acoustics and Vibration Unit, School of Engineering and Information Technology, University of New South Wales , Canberra, Australian Capital Territory 2600 , Australia
| | - Theodore A Evans
- 3 School of Animal Biology, The University of Western Australia , Perth, Western Australia 6009 , Australia
| |
Collapse
|
12
|
Oberst S, Lenz M, Lai JCS, Evans TA. Termites manipulate moisture content of wood to maximize foraging resources. Biol Lett 2019; 15:20190365. [PMID: 31288680 DOI: 10.1098/rsbl.2019.0365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals use cues to find their food, in microhabitats within their physiological tolerances. Termites build and modify their microhabitat, to transform hostile environments into benign ones, which raises questions about the relative importance of cues. Termites are desiccation intolerant and foraging termites are attracted to water, so most research has considered moisture to be a cue. However, termites can also transport water to food, and so moisture may play other roles than previously considered. To examine the role of moisture, we compared Coptotermes acinaciformis termite foraging decisions in laboratory experiments when they were offered dry and moist wood, with and without load. Without load, termites preferred moist wood and ate it without any building, whereas they moistened dry wood after wrapping it in a layer of clay. For the 'With load' units, termites substituted some of the wood for load-bearing clay walls, and kept the wood drier than on the unloaded units. As drier wood has higher compressive strength and higher rigidity, it allows more of the wood to be consumed. These results suggest that moisture plays a more important role in termite ecology than previously thought. Termites manipulate the moisture content according to the situational context and use it for multiple purposes: increased moisture levels soften the fibre, which facilitates foraging, yet keeping the wood dry provides higher structural stability against buckling which is especially important when foraging on wood under load.
Collapse
Affiliation(s)
- Sebastian Oberst
- 1 Centre for Audio, Acoustics and Vibration, University of Technology Sydney , Sydney, New South Wales , Australia.,2 (formerly) Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Canberra, Australian Capital Territory , Australia.,3 School of Engineering and Information Technology, The University of New South Wales Canberra , Canberra, Australian Capital Territory , Australia
| | - Michael Lenz
- 2 (formerly) Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Canberra, Australian Capital Territory , Australia
| | - Joseph C S Lai
- 3 School of Engineering and Information Technology, The University of New South Wales Canberra , Canberra, Australian Capital Territory , Australia
| | - Theodore A Evans
- 4 School of Animal Biology, The University of Western Australia , Perth, Western Australia , Australia
| |
Collapse
|
13
|
Virant-Doberlet M, Kuhelj A, Polajnar J, Šturm R. Predator-Prey Interactions and Eavesdropping in Vibrational Communication Networks. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00203] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Funaro CF, Schal C, Vargo EL. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS One 2019; 14:e0209810. [PMID: 31145770 PMCID: PMC6542537 DOI: 10.1371/journal.pone.0209810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/17/2019] [Indexed: 01/03/2023] Open
Abstract
Royal recognition is a central feature of insect societies, allowing them to maintain the reproductive division of labor and regulate colony demography. Queen recognition has been broadly demonstrated and queen recognition pheromones have been identified in social hymenopterans, and in one termite species. Here we describe behaviors that are elicited in workers and soldiers by neotenic queens and kings of the subterranean termite, Reticulitermes flavipes, and demonstrate the chemical basis for the behavior. Workers and soldiers readily perform a lateral or longitudinal shaking behavior upon antennal contact with queens and kings. When royal cuticular chemicals are transferred to live workers or inert glass dummies, they elicit antennation and shaking in a dose-dependent manner. The striking response to reproductives and their cuticular extracts suggests that royal-specific cuticular compounds act as recognition pheromones and that shaking behavior is a clear and measurable queen and king recognition response in this termite species.
Collapse
Affiliation(s)
- Colin F. Funaro
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Edward L. Vargo
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
15
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
16
|
|
17
|
A Comparison Study of Kernel Functions in the Support Vector Machine and Its Application for Termite Detection. INFORMATION 2018. [DOI: 10.3390/info9010005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Oberst S, Bann G, Lai JCS, Evans TA. Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecol Lett 2017; 20:212-221. [PMID: 28111901 DOI: 10.1111/ele.12727] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022]
Abstract
Eavesdropping has evolved in many predator-prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate-borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants-walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator-prey relationships.
Collapse
Affiliation(s)
- Sebastian Oberst
- Acoustics & Vibration Unit, School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, 2600, Australia.,CSIRO Ecosystem Sciences, Clunies Ross Street, Canberra, ACT, 2600, Australia
| | - Glen Bann
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, 2600, Australia
| | - Joseph C S Lai
- Acoustics & Vibration Unit, School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, 2600, Australia
| | - Theodore A Evans
- School of Animal Biology, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
19
|
|
20
|
Eskov EK. The diversity of ethological and physiological mechanisms of acoustic communication in insects. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Why do caterpillars whistle at birds? Insect defence sounds startle avian predators. Behav Processes 2017; 138:58-66. [PMID: 28232054 DOI: 10.1016/j.beproc.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022]
Abstract
Many insects produce sounds when attacked by a predator, yet the functions of these signals are poorly understood. It is debated whether such sounds function as startle, warning or alarm signals, or merely serve to augment other defences. Direct evidence is limited owing to difficulties in disentangling the effects of sounds from other defences that often occur simultaneously in live insects. We conducted an experiment to test whether an insect sound can function as a deimatic (i.e. startle) display. Variations of a whistle of the walnut sphinx caterpillar (Amorpha juglandis) were presented to a predator, red-winged blackbirds (Agelaius phoeniceus), when birds activated a sensor while feeding on mealworms (Tenebrio molitor). Birds exposed to whistles played back at natural sound levels exhibited significantly higher startle scores (by flying away, flinching, and hopping) and took longer to return to the feeding dish than during control conditions where no sounds were played. Birds habituated to sounds during a one-hour session, but after two days the startling effects were restored. Our results provide empirical evidence that an insect sound alone can function as a deimatic display against an avian predator. We discuss how whistles might be particularly effective 'acoustic eye spots' on avian predators.
Collapse
|
22
|
Aguilera-Olivares D, Burgos-Lefimil C, Melendez W, Flores-Prado L, Niemeyer HM. Chemical basis of nestmate recognition in a defense context in a one-piece nesting termite. CHEMOECOLOGY 2016. [DOI: 10.1007/s00049-016-0217-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Tan K, Dong S, Li X, Liu X, Wang C, Li J, Nieh JC. Honey Bee Inhibitory Signaling Is Tuned to Threat Severity and Can Act as a Colony Alarm Signal. PLoS Biol 2016; 14:e1002423. [PMID: 27014876 PMCID: PMC4807812 DOI: 10.1371/journal.pbio.1002423] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/02/2016] [Indexed: 12/05/2022] Open
Abstract
Alarm communication is a key adaptation that helps social groups resist predation and rally defenses. In Asia, the world's largest hornet, Vespa mandarinia, and the smaller hornet, Vespa velutina, prey upon foragers and nests of the Asian honey bee, Apis cerana. We attacked foragers and colony nest entrances with these predators and provide the first evidence, in social insects, of an alarm signal that encodes graded danger and attack context. We show that, like Apis mellifera, A. cerana possesses a vibrational "stop signal," which can be triggered by predator attacks upon foragers and inhibits waggle dancing. Large hornet attacks were more dangerous and resulted in higher bee mortality. Per attack at the colony level, large hornets elicited more stop signals than small hornets. Unexpectedly, stop signals elicited by large hornets (SS large hornet) had a significantly higher vibrational fundamental frequency than those elicited by small hornets (SS small hornet) and were more effective at inhibiting waggle dancing. Stop signals resulting from attacks upon the nest entrance (SS nest) were produced by foragers and guards and were significantly longer in pulse duration than stop signals elicited by attacks upon foragers (SS forager). Unlike SS forager, SS nest were targeted at dancing and non-dancing foragers and had the common effect, tuned to hornet threat level, of inhibiting bee departures from the safe interior of the nest. Meanwhile, nest defenders were triggered by the bee alarm pheromone and live hornet presence to heat-ball the hornet. In A. cerana, sophisticated recruitment communication that encodes food location, the waggle dance, is therefore matched with an inhibitory/alarm signal that encodes information about the context of danger and its threat level.
Collapse
Affiliation(s)
- Ken Tan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, China
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - Shihao Dong
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - Xinyu Li
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - Xiwen Liu
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - Chao Wang
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province, China
| | - Jianjun Li
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, China
| | - James C. Nieh
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
24
|
Cristaldo PF, Jandák V, Kutalová K, Rodrigues VB, Brothánek M, Jiříček O, DeSouza O, Šobotník J. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals. Biol Open 2015; 4:1649-59. [PMID: 26538635 PMCID: PMC4736033 DOI: 10.1242/bio.014084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone. Summary: We inspected the functional significance of both vibroacoustic and chemical communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive but rather complementary processes.
Collapse
Affiliation(s)
- Paulo F Cristaldo
- Laboratório de Interações Ecológicas, Departamento de Ecologia, Universidade Federal de Sergipe, São Cristovão, SE 49000-000, Brazil
| | - Vojtĕch Jandák
- Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague 6, Czech Republic
| | - Kateřina Kutalová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Prague 6-Suchdol, Czech Republic Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic Institute of Organic Chemistry and Biochemistry, Academic of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| | - Vinícius B Rodrigues
- Laboratório de Termitologia, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Marek Brothánek
- Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague 6, Czech Republic
| | - Ondřej Jiříček
- Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague 6, Czech Republic
| | - Og DeSouza
- Laboratório de Termitologia, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
25
|
Delattre O, Sillam-Dussès D, Jandák V, Brothánek M, Rücker K, Bourguignon T, Vytisková B, Cvačka J, Jiříček O, Šobotník J. Complex alarm strategy in the most basal termite species. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-2007-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Zhao J, Wu J, Yan S. Movement Analysis of Flexion and Extension of Honeybee Abdomen Based on an Adaptive Segmented Structure. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:109. [PMID: 26223946 PMCID: PMC4675722 DOI: 10.1093/jisesa/iev089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/05/2015] [Indexed: 05/31/2023]
Abstract
Honeybees (Apis mellifera) curl their abdomens for daily rhythmic activities. Prior to determining this fact, people have concluded that honeybees could curl their abdomen casually. However, an intriguing but less studied feature is the possible unidirectional abdominal deformation in free-flying honeybees. A high-speed video camera was used to capture the curling and to analyze the changes in the arc length of the honeybee abdomen not only in free-flying mode but also in the fixed sample. Frozen sections and environment scanning electron microscope were used to investigate the microstructure and motion principle of honeybee abdomen and to explore the physical structure restricting its curling. An adaptive segmented structure, especially the folded intersegmental membrane (FIM), plays a dominant role in the flexion and extension of the abdomen. The structural features of FIM were utilized to mimic and exhibit movement restriction on honeybee abdomen. Combining experimental analysis and theoretical demonstration, a unidirectional bending mechanism of honeybee abdomen was revealed. Through this finding, a new perspective for aerospace vehicle design can be imitated.
Collapse
Affiliation(s)
- Jieliang Zhao
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianing Wu
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaoze Yan
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Hager FA, Kirchner WH. Directional vibration sensing in the termite Macrotermes natalensis. J Exp Biol 2014; 217:2526-30. [DOI: 10.1242/jeb.103184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although several behavioural studies demonstrate the ability of insects to localise the source of vibrations, it is still unclear how insects are able to perceive directional information from vibratory signals on solid substrates, because time-of-arrival and amplitude difference between receptory structures are thought to be too small to be processed by insect nervous systems. The termite Macrotermes natalensis communicates using vibrational drumming signals transmitted along subterranean galleries. When soldiers are attacked by predators, they tend to drum with their heads against the substrate and create a pulsed vibration. Workers respond by a fast retreat into the nest. Soldiers in the vicinity start to drum themselves, leading to an amplification and propagation of the signal. Here we show that M. natalensis makes use of a directional vibration sensing in the context of colony defence. In the field, soldiers are recruited towards the source of the signal. In arena experiments on natural nest material, soldiers are able to localise the source of vibration. Using two movable platforms allowing us to vibrate the legs of the left and right sides of the body with a time delay, we show that the difference in time-of-arrival is the directional cue used for orientation. Delays as short as 0.2 ms are sufficient to be detected. Soldiers show a significant positive tropotaxis to the platform stimulated earlier, demonstrating for the first time perception of time-of-arrival delays and vibrotropotaxis on solid substrates in insects.
Collapse
Affiliation(s)
- Felix A. Hager
- Ruhr University Bochum, Faculty of Biology and Biotechnology, D-44780 Bochum, Germany
| | - Wolfgang H. Kirchner
- Ruhr University Bochum, Faculty of Biology and Biotechnology, D-44780 Bochum, Germany
| |
Collapse
|
28
|
Stead N. HEADBANGING TERMITES SEND OUT SMOKE SIGNALS. J Exp Biol 2013. [DOI: 10.1242/jeb.091512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
How termites drum up help. Nature 2013. [DOI: 10.1038/500380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|