1
|
Scaramella N, Mausbach J, Laurila A, Stednitz S, Räsänen K. Short-term responses of Rana arvalis tadpoles to pH and predator stress: adaptive divergence in behavioural and physiological plasticity? J Comp Physiol B 2022; 192:669-682. [PMID: 35857071 PMCID: PMC9388420 DOI: 10.1007/s00360-022-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Environmental stress is a major driver of ecological and evolutionary processes in nature. To cope with stress, organisms can adjust through phenotypic plasticity and/or adapt through genetic change. Here, we compared short-term behavioural (activity) and physiological (corticosterone levels, CORT) responses of Rana arvalis tadpoles from two divergent populations (acid origin, AOP, versus neutral origin, NOP) to acid and predator stress. Tadpoles were initially reared in benign conditions at pH 7 and then exposed to a combination of two pH (acid versus neutral) and two predator cue (predator cue versus no predator cue) treatments. We assessed behavioural activity within the first 15 min, and tissue CORT within 8 and 24 h of stress exposure. Both AOP and NOP tadpoles reduced their activity in acidic pH, but the response to the predator cue differed between the populations: AOP tadpoles increased whereas NOP tadpoles decreased their activity. The AOP and NOP tadpoles differed also in their CORT responses, with AOP being more responsive (CORT levels of NOP tadpoles did not differ statistically across treatments). After 8 h exposure, AOP tadpoles had elevated CORT levels in the acid-predator cue treatment and after 24 h exposure they had elevated CORT levels in all three stress treatments (relative to the benign neutral-no-cue treatment). These results suggest that adaptation to environmental acidification in R. arvalis is mediated, in part, via behavioural and hormonal plasticity.
Collapse
Affiliation(s)
- Nicholas Scaramella
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
- Department of Ecology, Swedish University of Agricultural Sciences, Almas Alé 8, 75007, Uppsala, Sweden.
| | - Jelena Mausbach
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland.
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Sarah Stednitz
- Department Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Katja Räsänen
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40014, Jyväskylä, Finland
| |
Collapse
|
2
|
Ujszegi J, Ludányi K, Móricz ÁM, Krüzselyi D, Drahos L, Drexler T, Németh MZ, Vörös J, Garner TWJ, Hettyey A. Exposure to Batrachochytrium dendrobatidis affects chemical defences in two anuran amphibians, Rana dalmatina and Bufo bufo. BMC Ecol Evol 2021; 21:135. [PMID: 34217227 PMCID: PMC8254444 DOI: 10.1186/s12862-021-01867-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/23/2021] [Indexed: 11/03/2022] Open
Abstract
Background Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, one of the major causes of worldwide amphibian biodiversity loss. Many amphibians exhibit skin-based chemical defences, which may play an important role against invading pathogens, but whether the synthesis of these chemical compounds is enhanced or suppressed in the presence of pathogens is largely unknown. Here we investigated direct and indirect effects of larval exposure to the globally distributed and highly virulent Bd-GPL strain on skin secreted chemical defences and life history traits during early ontogeny of agile frogs (Rana dalmatina) and common toads (Bufo bufo). Results Exposure to Bd during the larval stage did not result in enhanced synthesis of the antimicrobial peptide Brevinin-1 Da in R. dalmatina tadpoles or in increased production of bufadienolides in B. bufo tadpoles. However, exposure to Bd during the larval stage had a carry-over effect reaching beyond metamorphosis: both R. dalmatina and B. bufo froglets contained smaller quantities of defensive chemicals than their Bd-naïve conspecifics in the control treatment. Prevalence of Bd and infection intensities were very low in both larvae and metamorphs of R. dalmatina, while in B. bufo we observed high Bd prevalence and infection intensities, especially in metamorphs. At the same time, we did not find a significant effect of Bd-exposure on body mass or development rate in larvae or metamorphs in either species. Conclusions The lack of detrimental effect of Bd-exposure on life history traits, even parallel with high infection intensities in the case of B. bufo individuals, is surprising and suggests high tolerance of local populations of these two species against Bd. However, the lowered quantity of defensive chemicals may compromise antimicrobial and antipredatory defences of froglets, which may ultimately contribute to population declines also in the absence of conspicuous mass-mortality events.
Collapse
Affiliation(s)
- János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - Krisztina Ludányi
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre utca 7, Budapest, 1092, Hungary
| | - Ágnes M Móricz
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Dániel Krüzselyi
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Tamás Drexler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Ecology, Institute for Biology, University of Veterinary Medicine, Rottenbiller utca 50, Budapest, 1077, Hungary
| | - Márk Z Németh
- Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Judit Vörös
- Department of Zoology, Hungarian Natural History Museum, Baross street 13, Budapest, 1088, Hungary
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Ecology, Institute for Biology, University of Veterinary Medicine, Rottenbiller utca 50, Budapest, 1077, Hungary
| |
Collapse
|
3
|
Ujszegi J, Vajna B, Móricz ÁM, Krüzselyi D, Korponai K, Krett G, Hettyey A. Relationships Between Chemical Defenses of Common Toad (Bufo bufo) Tadpoles and Bacterial Community Structure of their Natural Aquatic Habitat. J Chem Ecol 2020; 46:534-543. [PMID: 32468489 PMCID: PMC7332479 DOI: 10.1007/s10886-020-01184-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/10/2020] [Accepted: 05/15/2020] [Indexed: 12/02/2022]
Abstract
Many organisms synthesize secondary metabolites against natural enemies. However, to which environmental factors the production of these metabolites is adjusted to is poorly investigated in animals, especially so in vertebrates. Bufadienolides are steroidal compounds that are present in a wide range of plants and animals and, if present in large quantities, can provide protection against natural enemies, such as pathogens. In a correlative study involving 16 natural populations we investigated how variation in bufadienolide content of larval common toads (Bufo bufo) is associated with the bacterial community structure of their aquatic environment. We also evaluated pond size, macrovegetation cover, and the abundance of predators, conspecifics and other larval amphibians. We measured toxin content of tadpoles using HPLC-MS and determined the number of bufadienolide compounds (NBC) and the total quantity of bufadienolides (TBQ). AICc-based model selection revealed strong relationships of NBC and TBQ with bacterial community structure of the aquatic habitat as well as with the presence of conspecific tadpoles. The observed relationships may have arisen due to adaptation to local bacterial communities, phenotypic plasticity, differential biotransformation of toxin compounds by different bacterial communities, or a combination of these processes. Bacterial groups that contribute to among-population variation in toxin content remain to be pinpointed, but our study suggesting that toxin production may be influenced by the bacterial community of the environment represents an important step towards understanding the ecological and evolutionary processes leading to microbiota-mediated variation in skin toxin profiles of aquatic vertebrates.
Collapse
Affiliation(s)
- János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Ágnes M Móricz
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Dániel Krüzselyi
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Kristóf Korponai
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Gergely Krett
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Danube Research Institute, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| |
Collapse
|
4
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
5
|
Cramp RL, Franklin CE. Exploring the link between ultraviolet B radiation and immune function in amphibians: implications for emerging infectious diseases. CONSERVATION PHYSIOLOGY 2018; 6:coy035. [PMID: 29992023 PMCID: PMC6022628 DOI: 10.1093/conphys/coy035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 05/07/2023]
Abstract
Amphibian populations the world over are under threat of extinction, with as many as 40% of assessed species listed as threatened under IUCN Red List criteria (a significantly higher proportion than other vertebrate group). Amongst the key threats to amphibian species is the emergence of novel infectious diseases, which have been implicated in the catastrophic amphibian population declines and extinctions seen in many parts of the world. The recent emergence of these diseases coincides with increased ambient levels of ultraviolet B radiation (UVBR) due to anthropogenic thinning of the Earth's protective ozone layer, raising questions about potential interactions between UVBR exposure and disease in amphibians. While reasonably well documented in other vertebrate groups (particularly mammals), the immunosuppressive capacity of UVBR and the potential for it to influence disease outcomes has been largely overlooked in amphibians. Herein, we review the evidence for UVBR-associated immune system disruption in amphibians and identify a number of direct and indirect pathways through which UVBR may influence immune function and disease susceptibility in amphibians. By exploring the physiological mechanisms through which UVBR may affect host immune function, we demonstrate how ambient UVBR could increase amphibian susceptibility to disease. We conclude by discussing the potential implications of elevated UVBR for inter and intraspecific differences in disease dynamics and discuss how future research in this field may be directed to improve our understanding of the role that UVBR plays in amphibian immune function.
Collapse
Affiliation(s)
- Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland 4072, Australia.
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland, Australia
| |
Collapse
|
6
|
Bókony V, Üveges B, Móricz ÁM, Hettyey A. Competition induces increased toxin production in toad larvae without allelopathic effects on heterospecific tadpoles. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research GroupPlant Protection InstituteCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research GroupPlant Protection InstituteCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| | - Ágnes M. Móricz
- Department of PathophysiologyPlant Protection InstituteCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research GroupPlant Protection InstituteCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| |
Collapse
|
7
|
Fonner CW, Patel SA, Boord SM, Venesky MD, Woodley SK. Effects of corticosterone on infection and disease in salamanders exposed to the amphibian fungal pathogen Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2017; 123:159-171. [PMID: 28262636 DOI: 10.3354/dao03089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although it is well established that glucocorticoid hormones (GCs) alter immune function and disease resistance in humans and laboratory animal models, fewer studies have linked elevated GCs to altered immune function and disease resistance in wild animals. The chytrid fungal pathogen Batrachochytrium dendrobatidis (Bd) infects amphibians and can cause the disease chytridiomycosis, which is responsible for worldwide amphibian declines. It is hypothesized that long-term exposure to environmental stressors reduces host resistance to Bd by suppressing host immunity via stress-induced release of GCs such as corticosterone (CORT). We tested whether elevation of CORT would reduce resistance to Bd and chytridiomycosis development in the red-legged salamander Plethodon shermani. Plasma CORT was elevated daily in animals for 9 d, after which animals were inoculated with Bd and subsequently tested for infection loads and clinical signs of disease. On average, Bd-inoculated animals treated with CORT had higher infection abundance compared to Bd-inoculated animals not treated with CORT. However, salamanders that received CORT prior to Bd did not experience any increase in clinical signs of chytridiomycosis compared to salamanders not treated with CORT. The lack of congruence between CORT effects on infection abundance versus disease may be due to threshold effects. Nonetheless, our results show that elevation of plasma CORT prior to Bd inoculation decreases resistance to infection by Bd. More studies are needed to better understand the effects of CORT on animals exposed to Bd and whether CORT variation contributes to differential responses to Bd observed across amphibian species and populations.
Collapse
Affiliation(s)
- Chris W Fonner
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | |
Collapse
|
8
|
Bagwill AL, Lovern MB, Worthington TA, Smith LM, McMurry ST. Effects of Water Loss on New Mexico Spadefoot Toad (Spea multiplicata) Development, Spleen Cellularity, and Corticosterone Levels. ACTA ACUST UNITED AC 2016; 325:548-561. [PMID: 27714986 DOI: 10.1002/jez.2049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
Abstract
Amphibian metamorphosis is complex and larval morphology and physiology are completely restructured during this time. Amphibians that live in unpredictable environments are often exposed to stressors that can directly and indirectly alter physiological systems during development, with subsequent consequences (carryover effects) later in life. In this study, we investigated the effects of water level reduction on development rate, spleen size and cellularity, and examined the role of corticosterone levels in premetamorphic, metamorphic, and postmetamorphic New Mexico spadefoot toads (Spea multiplicata). Based on previous studies, we hypothesized that declining water level would increase tadpole developmental rate, but with the trade-off of increasing corticosterone to a level that would subsequently affect spleen size and cellularity, thus prolonging potential immunological suppression. Declining water levels increased developmental rate by 3 days; however, there were no significant body size effects. Corticosterone (CORT) was negatively correlated with total length, snout vent length, body weight, and spleen weight at metamorphosis, suggesting that size at metamorphosis and the immune system may be affected by excessive CORT levels. When compared to other studies, our results support the view that multiple factors may be acting as stressors in the field affecting amphibian responses, and simple pathways as tested in this study may not adequately represent field conditions.
Collapse
Affiliation(s)
- April L Bagwill
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma. .,ECS Federal, LLC, Fairfax, Virginia.
| | - Matthew B Lovern
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| | - Thomas A Worthington
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Loren M Smith
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| | - Scott T McMurry
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
9
|
Rumrill CT, Scott DE, Lance SL. Effects of metal and predator stressors in larval southern toads (Anaxyrus terrestris). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1278-1286. [PMID: 27272662 DOI: 10.1007/s10646-016-1681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Natural and anthropogenic stressors typically do not occur in isolation; therefore, understanding ecological risk of contaminant exposure should account for potential interactions of multiple stressors. Realistically, common contaminants can also occur chronically in the environment. Because parental exposure to stressors may cause transgenerational effects on offspring, affecting their ability to cope with the same or novel environmental stressors, the exposure histories of generations preceding that being tested should be considered. To examine multiple stressor and parental exposure effects we employed a 2 × 2 × 2 factorial design in outdoor 1000-L mesocosms (n = 24). Larval southern toads (Anaxyrus terrestris), bred from parents collected from reference and metal-contaminated sites, were exposed to two levels of both an anthropogenic (copper-0, 30 µg/L Cu) and natural (predator cue - present/absent) stressor and reared to metamorphosis. Toads from the metal-contaminated parental source population were smaller at metamorphosis and had delayed development; i.e., a prolonged larval period. Similarly, larval Cu exposure also reduced size at metamorphosis and prolonged the larval period. We, additionally, observed a significant interaction between larval Cu and predator-cue exposure on larval period, wherein delayed emergence was only present in the 30-µg/L Cu treatments in the absence of predator cues. The presence of parental effects as well as an interaction between aquatic stressors on commonly measured endpoints highlight the importance of conducting multistressor studies across generations to obtain data that are more relevant to field conditions in order to determine population-level effects of contaminant exposure.
Collapse
Affiliation(s)
- Caitlin T Rumrill
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - David E Scott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA.
| |
Collapse
|
10
|
Bókony V, Móricz ÁM, Tóth Z, Gál Z, Kurali A, Mikó Z, Pásztor K, Szederkényi M, Tóth Z, Ujszegi J, Üveges B, Krüzselyi D, Capon RJ, Hoi H, Hettyey A. Variation in Chemical Defense Among Natural Populations of Common Toad, Bufo bufo, Tadpoles: the Role of Environmental Factors. J Chem Ecol 2016; 42:329-38. [PMID: 27059330 DOI: 10.1007/s10886-016-0690-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/20/2016] [Accepted: 03/29/2016] [Indexed: 01/19/2023]
Abstract
Defensive toxins are widespread in nature, yet we know little about how various environmental factors shape the evolution of chemical defense, especially in vertebrates. In this study we investigated the natural variation in the amount and composition of bufadienolide toxins, and the relative importance of ecological factors in predicting that variation, in larvae of the common toad, Bufo bufo, an amphibian that produces toxins de novo. We found that tadpoles' toxin content varied markedly among populations, and the number of compounds per tadpole also differed between two geographical regions. The most consistent predictor of toxicity was the strength of competition, indicating that tadpoles produced more compounds and larger amounts of toxins when coexisting with more competitors. Additionally, tadpoles tended to contain larger concentrations of bufadienolides in ponds that were less prone to desiccation, suggesting that the costs of toxin production can only be afforded by tadpoles that do not need to drastically speed up their development. Interestingly, this trade-off was not alleviated by higher food abundance, as periphyton biomass had negligible effect on chemical defense. Even more surprisingly, we found no evidence that higher predation risk enhances chemical defenses, suggesting that low predictability of predation risk and high mortality cost of low toxicity might select for constitutive expression of chemical defense irrespective of the actual level of predation risk. Our findings highlight that the variation in chemical defense may be influenced by environmental heterogeneity in both the need for, and constraints on, toxicity as predicted by optimal defense theory.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Ágnes M Móricz
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Zoltán Gál
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary.,Agricultural Biotechnology Institute, NARIC, Szentgyörgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Anikó Kurali
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Katalin Pásztor
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Márk Szederkényi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary.,Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary.,Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Dániel Krüzselyi
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Herbert Hoi
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó u. 15, H-1022, Budapest, Hungary
| |
Collapse
|
11
|
Eisenlord ME, Groner ML, Yoshioka RM, Elliott J, Maynard J, Fradkin S, Turner M, Pyne K, Rivlin N, van Hooidonk R, Harvell CD. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150212. [PMID: 26880844 PMCID: PMC4760142 DOI: 10.1098/rstb.2015.0212] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19 °C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2-3 °C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.
Collapse
Affiliation(s)
- Morgan E Eisenlord
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Maya L Groner
- Department of Health Management, University of Prince Edward Island, Atlantic Veterinary College, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - Reyn M Yoshioka
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Joel Elliott
- Department of Biology, University of Puget Sound, Tacoma, WA 98416, USA
| | - Jeffrey Maynard
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA Laboratoire d'Excellence «CORAIL» USR 3278 CNRS-EPHE, CRIOBE, Papetoai, Moorea, Polynésie Française
| | - Steven Fradkin
- Lake Crescent Laboratory, Olympic National Park, Port Angeles, WA 98362, USA
| | - Margaret Turner
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Katie Pyne
- Department of Biology, University of Puget Sound, Tacoma, WA 98416, USA
| | - Natalie Rivlin
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Ruben van Hooidonk
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - C Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
12
|
Op De Beeck L, Janssens L, Stoks R. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:355-366. [PMID: 27209779 DOI: 10.1890/15-0326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The control of vector mosquitoes is one of the biggest challenges facing humankind with the use of chemical pesticides often leading to environmental impact and the evolution of resistance. Although to a lesser extent, this also holds for Bacillus thuringiensis israelensis (Bti), the most widely used biological pesticide to control mosquito populations. This raises the need for the development of integrated pest management strategies that allow the reduction of Bti concentrations without loss of the mosquito control efficiency. To this end, we tested in a laboratory experiment the combined effects of larval exposure to a sublethal Bti concentration and predation risk cues on life history and physiology of larval and adult Culex pipiens mosquitoes. Besides natural predator kairomones and prey alarm cues, we also tested synthetic kairomones of Notonecta predators. Neither Bti nor predation risk cues affected mortality, yet when both stressors were combined mortality increased on average by 133% compared to the treatment with only predation risk cues. This synergistic interaction was also present when Bti was combined with synthetic kairomones. This was further reflected in changes of the composite index of population performance, which suggested lowered per capita growth rates in mosquitoes exposed to Bti but only when Bti was combined with synthetic kairomones. Furthermore, predation risk cues shortened larval development time, reduced mass at metamorphosis in males, and had an immunosuppressive effect in larval and adult mosquitoes which may affect the mosquito vector competence. We provide the first demonstration that synthetic kairomones may generate similar effects on prey as natural kairomones. The identified immunosuppressive effect of synthetic kairomones and the novel lethal synergism type between a biological pesticide and synthetic predator kairomones provide an important proof of principle illustrating the potential of this combination for integrated mosquito control and should in a next step be evaluated under more natural conditions. It may guide novel integrated pest management programs with Bti that incorporate synthetic kairomones and thereby can reduce environmental impact and evolution of resistance creating more efficient and sustainable mosquito control.
Collapse
|
13
|
Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, Reinert LK, Stalder U, Vazquez VM, Schliep K, Hertz A, Rollins-Smith LA. Life history linked to immune investment in developing amphibians. CONSERVATION PHYSIOLOGY 2016; 4:cow025. [PMID: 27928507 PMCID: PMC5001151 DOI: 10.1093/conphys/cow025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 05/03/2023]
Abstract
The broad diversity of amphibian developmental strategies has been shaped, in part, by pathogen pressure, yet trade-offs between the rate of larval development and immune investment remain poorly understood. The expression of antimicrobial peptides (AMPs) in skin secretions is a crucial defense against emerging amphibian pathogens and can also indirectly affect host defense by influencing the composition of skin microbiota. We examined the constitutive or induced expression of AMPs in 17 species at multiple life-history stages. We found that AMP defenses in tadpoles of species with short larval periods (fast pace of life) were reduced in comparison with species that overwinter as tadpoles and grow to a large size. A complete set of defensive peptides emerged soon after metamorphosis. These findings support the hypothesis that species with a slow pace of life invest energy in AMP production to resist potential pathogens encountered during the long larval period, whereas species with a fast pace of life trade this investment in defense for more rapid growth and development.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
- Corresponding author: Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA. Tel: +1 617 287 6679.
| | - Sara C Bell
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Laurent Bigler
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Richard M Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-8575, USA
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Brianna A Lam
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, USA
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | - Urs Stalder
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | - Klaus Schliep
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Andreas Hertz
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Department of Biological Science, Vanderbilt University, Nashville, TN 37235-1634, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| |
Collapse
|
14
|
Krynak KL, Burke DJ, Benard MF. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations. PLoS One 2015; 10:e0130383. [PMID: 26107644 PMCID: PMC4479591 DOI: 10.1371/journal.pone.0130383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/20/2015] [Indexed: 02/02/2023] Open
Abstract
Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to variability in the larval environment and calls for research into the relative influence of potentially less benign anthropogenic environmental changes on innate immune defense traits.
Collapse
Affiliation(s)
- Katherine L. Krynak
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David J. Burke
- Research Department, The Holden Arboretum, Kirtland, Ohio, United States of America
| | - Michael F. Benard
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
15
|
The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing? PLoS One 2015; 10:e0128663. [PMID: 26068861 PMCID: PMC4466536 DOI: 10.1371/journal.pone.0128663] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025–4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.
Collapse
|