1
|
Honda Y, Takagi W, Wong MKS, Ogawa N, Tokunaga K, Kofuji K, Hyodo S. Morphological and functional development of the spiral intestine in cloudy catshark ( Scyliorhinus torazame). J Exp Biol 2020; 223:jeb225557. [PMID: 32527960 DOI: 10.1242/jeb.225557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Cartilaginous fish have a comparatively short intestine known as the spiral intestine that consists of a helical spiral of intestinal mucosa. However, morphological and functional development of the spiral intestine has not been fully described. Unlike teleosts, cartilaginous fish are characterized by an extremely long developmental period in ovo or in utero; for example, in the oviparous cloudy catshark (Scyliorhinus torazame), the developing fish remains inside the egg capsule for up to 6 months, suggesting that the embryonic intestine may become functional prior to hatching. In the present study, we describe the morphological and functional development of the spiral intestine in the developing catshark embryo. Spiral formation of embryonic intestine was completed at the middle of stage 31, prior to 'pre-hatching', which is a developmental event characterized by the opening of the egg case at the end of the first third of development. Within 48 h of the pre-hatching event, egg yolk began to flow from the external yolk sac into the embryonic intestine via the yolk stalk. At the same time, there was a rapid increase in mRNA expression of the peptide transporter pept1 and neutral amino acid transporter slc6a19 Secondary folds in the intestinal mucosa and microvilli on the apical membrane appeared after pre-hatching, further supporting the onset of nutrient absorption in the developing intestine at this time. We demonstrate the acquisition of intestinal nutrient absorption at the pre-hatching stage of an oviparous elasmobranch.
Collapse
Affiliation(s)
- Yuki Honda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Wataru Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Marty K S Wong
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Nobuhiro Ogawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Kotaro Tokunaga
- Ibaraki Prefectural Oarai Aquarium, Oarai, Ibaraki 311-1301, Japan
| | - Kazuya Kofuji
- Ibaraki Prefectural Oarai Aquarium, Oarai, Ibaraki 311-1301, Japan
| | - Susumu Hyodo
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
2
|
Huang PC, Liu TY, Hu MY, Casties I, Tseng YC. Energy and nitrogenous waste from glutamate/glutamine catabolism facilitates acute osmotic adjustment in non-neuroectodermal branchial cells. Sci Rep 2020; 10:9460. [PMID: 32528019 PMCID: PMC7289822 DOI: 10.1038/s41598-020-65913-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Maintenance of homeostasis is one of the most important physiological responses for animals upon osmotic perturbations. Ionocytes of branchial epithelia are the major cell types responsible for active ion transport, which is mediated by energy-consuming ion pumps (e.g., Na+-K+-ATPase, NKA) and secondary active transporters. Consequently, in addition to osmolyte adjustments, sufficient and immediate energy replenishment is essenttableial for acclimation to osmotic changes. In this study, we propose that glutamate/glutamine catabolism and trans-epithelial transport of nitrogenous waste may aid euryhaline teleosts Japanese medaka (Oryzias latipes) during acclimation to osmotic changes. Glutamate family amino acid contents in gills were increased by hyperosmotic challenge along an acclimation period of 72 hours. This change in amino acids was accompanied by a stimulation of putative glutamate/glutamine transporters (Eaats, Sat) and synthesis enzymes (Gls, Glul) that participate in regulating glutamate/glutamine cycling in branchial epithelia during acclimation to hyperosmotic conditions. In situ hybridization of glutaminase and glutamine synthetase in combination with immunocytochemistry demonstrate a partial colocalization of olgls1a and olgls2 but not olglul with Na+/K+-ATPase-rich ionocytes. Also for the glutamate and glutamine transporters colocalization with ionocytes was found for oleaat1, oleaat3, and olslc38a4, but not oleaat2. Morpholino knock-down of Sat decreased Na+ flux from the larval epithelium, demonstrating the importance of glutamate/glutamine transport in osmotic regulation. In addition to its role as an energy substrate, glutamate deamination produces NH4+, which may contribute to osmolyte production; genes encoding components of the urea production cycle, including carbamoyl phosphate synthetase (CPS) and ornithine transcarbamylase (OTC), were upregulated under hyperosmotic challenges. Based on these findings the present work demonstrates that the glutamate/glutamine cycle and subsequent transepithelial transport of nitrogenous waste in branchial epithelia represents an essential component for the maintenance of ionic homeostasis under a hyperosmotic challenge.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC)
| | - Tzu-Yen Liu
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC)
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Isabel Casties
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC).
| |
Collapse
|
3
|
Takagi W, Kajimura M, Tanaka H, Hasegawa K, Ogawa S, Hyodo S. Distributional shift of urea production site from the extraembryonic yolk sac membrane to the embryonic liver during the development of cloudy catshark ( Scyliorhinus torazame ). Comp Biochem Physiol A Mol Integr Physiol 2017; 211:7-16. [DOI: 10.1016/j.cbpa.2017.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
4
|
Multi-tissue RNA-seq and transcriptome characterisation of the spiny dogfish shark (Squalus acanthias) provides a molecular tool for biological research and reveals new genes involved in osmoregulation. PLoS One 2017; 12:e0182756. [PMID: 28832628 PMCID: PMC5568229 DOI: 10.1371/journal.pone.0182756] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022] Open
Abstract
The spiny dogfish shark (Squalus acanthias) is one of the most commonly used cartilaginous fishes in biological research, especially in the fields of nitrogen metabolism, ion transporters and osmoregulation. Nonetheless, transcriptomic data for this organism is scarce. In the present study, a multi-tissue RNA-seq experiment and de novo transcriptome assembly was performed in four different spiny dogfish tissues (brain, liver, kidney and ovary), providing an annotated sequence resource. The characterization of the transcriptome greatly increases the scarce sequence information for shark species. Reads were assembled with the Trinity de novo assembler both within each tissue and across all tissues combined resulting in 362,690 transcripts in the combined assembly which represent 289,515 Trinity genes. BUSCO analysis determined a level of 87% completeness for the combined transcriptome. In total, 123,110 proteins were predicted of which 78,679 and 83,164 had significant hits against the SwissProt and Uniref90 protein databases, respectively. Additionally, 61,215 proteins aligned to known protein domains, 7,208 carried a signal peptide and 15,971 possessed at least one transmembrane region. Based on the annotation, 81,582 transcripts were assigned to gene ontology terms and 42,078 belong to known clusters of orthologous groups (eggNOG). To demonstrate the value of our molecular resource, we show that the improved transcriptome data enhances the current possibilities of osmoregulation research in spiny dogfish by utilizing the novel gene and protein annotations to investigate a set of genes involved in urea synthesis and urea, ammonia and water transport, all of them crucial in osmoregulation. We describe the presence of different gene copies and isoforms of key enzymes involved in this process, including arginases and transporters of urea and ammonia, for which sequence information is currently absent in the databases for this model species. The transcriptome assemblies and the derived annotations generated in this study will support the ongoing research for this particular animal model and provides a new molecular tool to assist biological research in cartilaginous fishes.
Collapse
|
5
|
Higashiyama H, Hirasawa T, Oisi Y, Sugahara F, Hyodo S, Kanai Y, Kuratani S. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface. J Morphol 2016; 277:1146-58. [PMID: 27216138 DOI: 10.1002/jmor.20563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroki Higashiyama
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.,Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Laboratory of Veterinary Anatomy, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan
| | - Yasuhiro Oisi
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Fumiaki Sugahara
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan
| | - Yoshiakira Kanai
- Laboratory of Veterinary Anatomy, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan
| |
Collapse
|
6
|
Hasegawa K, Kato A, Watanabe T, Takagi W, Romero MF, Bell JD, Toop T, Donald JA, Hyodo S. Sulfate transporters involved in sulfate secretion in the kidney are localized in the renal proximal tubule II of the elephant fish (Callorhinchus milii). Am J Physiol Regul Integr Comp Physiol 2016; 311:R66-78. [PMID: 27122370 PMCID: PMC4967232 DOI: 10.1152/ajpregu.00477.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/22/2016] [Indexed: 11/22/2022]
Abstract
Most vertebrates, including cartilaginous fishes, maintain their plasma SO4 (2-) concentration ([SO4 (2-)]) within a narrow range of 0.2-1 mM. As seawater has a [SO4 (2-)] about 40 times higher than that of the plasma, SO4 (2-) excretion is the major role of kidneys in marine teleost fishes. It has been suggested that cartilaginous fishes also excrete excess SO4 (2-) via the kidney. However, little is known about the underlying mechanisms for SO4 (2-) transport in cartilaginous fish, largely due to the extraordinarily elaborate four-loop configuration of the nephron, which consists of at least 10 morphologically distinguishable segments. In the present study, we determined cDNA sequences from the kidney of holocephalan elephant fish (Callorhinchus milii) that encoded solute carrier family 26 member 1 (Slc26a1) and member 6 (Slc26a6), which are SO4 (2-) transporters that are expressed in mammalian and teleost kidneys. Elephant fish Slc26a1 (cmSlc26a1) and cmSlc26a6 mRNAs were coexpressed in the proximal II (PII) segment of the nephron, which comprises the second loop in the sinus zone. Functional analyses using Xenopus oocytes and the results of immunohistochemistry revealed that cmSlc26a1 is a basolaterally located electroneutral SO4 (2-) transporter, while cmSlc26a6 is an apically located, electrogenic Cl(-)/SO4 (2-) exchanger. In addition, we found that both cmSlc26a1 and cmSlc26a6 were abundantly expressed in the kidney of embryos; SO4 (2-) was concentrated in a bladder-like structure of elephant fish embryos. Our results demonstrated that the PII segment of the nephron contributes to the secretion of excess SO4 (2-) by the kidney of elephant fish. Possible mechanisms for SO4 (2-) secretion in the PII segment are discussed.
Collapse
Affiliation(s)
- Kumi Hasegawa
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan;
| | - Akira Kato
- Center for Biological Resources and Informatics and Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan; Departments of Physiology and Biomedical Engineering, Nephrology, and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Taro Watanabe
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan; Evolutionary Morphology Laboratory, RIKEN Center for Life Science and Technologies, Kobe, Japan
| | - Michael F Romero
- Departments of Physiology and Biomedical Engineering, Nephrology, and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Justin D Bell
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia; and Institute for Marine and Antarctic Studies, The University of Tasmania, Taroona, Australia
| | - Tes Toop
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia; and
| | - John A Donald
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia; and
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
7
|
Yamaguchi Y, Takagi W, Kuraku S, Moriyama S, Bell JD, Seale AP, Lerner DT, Grau EG, Hyodo S. Discovery of conventional prolactin from the holocephalan elephant fish, Callorhinchus milii. Gen Comp Endocrinol 2015; 224:216-27. [PMID: 26320855 DOI: 10.1016/j.ygcen.2015.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/22/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022]
Abstract
The conventional prolactin (PRL), also known as PRL1, is an adenohypophysial hormone that critically regulates various physiological events in reproduction, metabolism, growth, osmoregulation, among others. PRL1 shares its evolutionary origin with PRL2, growth hormone (GH), somatolactin and placental lactogen, which together form the GH/PRL hormone family. Previously, several bioassays implied the existence of PRL1 in elasmobranch pituitaries. However, to date, all attempts to isolate PRL1 from chondrichthyans have been unsuccessful. Here, we cloned PRL1 from the pituitary of the holocephalan elephant fish, Callorhinchus milii, as the first report of chondrichthyan PRL1. The putative mature protein of elephant fish PRL1 (cmPRL1) consists of 198 amino acids, containing two conserved disulfide bonds. The orthologous relationship of cmPRL1 to known vertebrate PRL1s was confirmed by the analyses of molecular phylogeny and gene synteny. The cmPRL1 gene was similar to teleost PRL1 genes in gene synteny, but was distinct from amniote PRL1 genes, which most likely arose in an early amphibian by duplication of the ancestral PRL1 gene. The mRNA of cmPRL1 was predominantly expressed in the pituitary, but was considerably less abundant than has been previously reported for bony fish and tetrapod PRL1s; the copy number of cmPRL1 mRNA in the pituitary was less than 1% and 0.1% of that of GH and pro-opiomelanocortin mRNAs, respectively. The cells expressing cmPRL1 mRNA were sparsely distributed in the rostral pars distalis. Our findings provide a new insight into the studies on molecular and functional evolution of PRL1 in vertebrates.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744, USA.
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
| | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | - Justin D Bell
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia.
| | - Andre P Seale
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744, USA.
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744, USA; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744, USA; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
8
|
Hyodo S, Kakumura K, Takagi W, Hasegawa K, Yamaguchi Y. Morphological and functional characteristics of the kidney of cartilaginous fishes: with special reference to urea reabsorption. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1381-95. [PMID: 25339681 DOI: 10.1152/ajpregu.00033.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For adaptation to high-salinity marine environments, cartilaginous fishes (sharks, skates, rays, and chimaeras) adopt a unique urea-based osmoregulation strategy. Their kidneys reabsorb nearly all filtered urea from the primary urine, and this is an essential component of urea retention in their body fluid. Anatomical investigations have revealed the extraordinarily elaborate nephron system in the kidney of cartilaginous fishes, e.g., the four-loop configuration of each nephron, the occurrence of distinct sinus and bundle zones, and the sac-like peritubular sheath in the bundle zone, in which the nephron segments are arranged in a countercurrent fashion. These anatomical and morphological characteristics have been considered to be important for urea reabsorption; however, a mechanism for urea reabsorption is still largely unknown. This review focuses on recent progress in the identification and mapping of various pumps, channels, and transporters on the nephron segments in the kidney of cartilaginous fishes. The molecules include urea transporters, Na(+)/K(+)-ATPase, Na(+)-K(+)-Cl(-) cotransporters, and aquaporins, which most probably all contribute to the urea reabsorption process. Although research is still in progress, a possible model for urea reabsorption in the kidney of cartilaginous fishes is discussed based on the anatomical features of nephron segments and vascular systems and on the results of molecular mapping. The molecular anatomical approach thus provides a powerful tool for understanding the physiological processes that take place in the highly elaborate kidney of cartilaginous fishes.
Collapse
Affiliation(s)
- Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| | - Keigo Kakumura
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| | - Kumi Hasegawa
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| | - Yoko Yamaguchi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| |
Collapse
|