1
|
Han SM, Land BR, Bass AH, Rice AN. Sound production biomechanics in three-spined toadfish and potential functional consequences of swim bladder morphology in the Batrachoididaea). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3466-3478. [PMID: 38019096 DOI: 10.1121/10.0022386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
The relationship between sound complexity and the underlying morphology and physiology of the vocal organ anatomy is a fundamental component in the evolution of acoustic communication, particularly for fishes. Among vertebrates, the mammalian larynx and avian syrinx are the best-studied vocal organs, and their ability to produce complex vocalizations has been modeled. The range and complexity of the sounds in mammalian lineages have been attributed, in part, to the bilateral nature of the vocal anatomy. Similarly, we hypothesize that the bipartite swim bladder of some species of toadfish (family Batrachoididae) is responsible for complex nonlinear characters of the multiple call types that they can produce, supported by nerve transection experiments. Here, we develop a low-dimensional coupled-oscillator model of the mechanics underlying sound production by the two halves of the swim bladder of the three-spined toadfish, Batrachomoeus trispinosus. Our model was able to replicate the nonlinear structure of both courtship and agonistic sounds. The results provide essential support for the hypothesis that fishes and tetrapods have converged in an evolutionary innovation for complex acoustic signaling, namely, a relatively simple bipartite mechanism dependent on sonic muscles contracting around a gas filled structure.
Collapse
Affiliation(s)
- Sang Min Han
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Bruce R Land
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Aaron N Rice
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
2
|
Banse M, Chagnaud BP, Huby A, Parmentier E, Kéver L. Sound production in piranhas is associated with modifications of the spinal locomotor pattern. J Exp Biol 2021; 224:260574. [PMID: 33942099 PMCID: PMC8126449 DOI: 10.1242/jeb.242336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
In piranhas, sounds are produced through the vibration of the swim bladder wall caused by the contraction of bilateral sonic muscles. Because they are solely innervated by spinal nerves, these muscles likely evolved from the locomotor hypaxial musculature. The transition from a neuromuscular system initially shaped for slow movements (locomotion) to a system that requires a high contraction rate (sound production) was accompanied with major peripheral structural modifications, yet the associated neural adjustments remain to this date unclear. To close this gap, we investigated the activity of both the locomotor and the sonic musculature using electromyography. The comparison between the activation patterns of both systems highlighted modifications of the neural motor pathway: (1) a transition from a bilateral alternating pattern to a synchronous activation pattern, (2) a switch from a slow- to a high-frequency regime, and (3) an increase in the synchrony of motor neuron activation. Furthermore, our results demonstrate that sound features correspond to the activity of the sonic muscles, as both the variation patterns of periods and amplitudes of sounds highly correspond to those seen in the sonic muscle electromyograms (EMGsonic). Assuming that the premotor network for sound production in piranhas is of spinal origin, our results show that the neural circuit associated with spinal motor neurons transitioned from the slow alternating pattern originally used for locomotion to a much faster simultaneous activation pattern to generate vocal signals.
Collapse
Affiliation(s)
- Marine Banse
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium
| | - Boris P Chagnaud
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute for Biology, Karl-Franzens-University Graz, 8010 Graz, Austria
| | - Alessia Huby
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium
| | - Loïc Kéver
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium.,Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
3
|
Chagnaud BP, Perelmuter JT, Forlano PM, Bass AH. Gap junction-mediated glycinergic inhibition ensures precise temporal patterning in vocal behavior. eLife 2021; 10:e59390. [PMID: 33721553 PMCID: PMC7963477 DOI: 10.7554/elife.59390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/28/2021] [Indexed: 01/30/2023] Open
Abstract
Precise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls. Here, we investigated how these motoneurons maintain synchronous activation. We show that pronounced temporal precision in population-level motoneuronal firing depends on gap junction-mediated, glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites formed by a subset of adjacent premotoneurons contacting motoneuron somata and dendrites. In aggregate, the evidence supports the hypothesis that gap junction-mediated, glycinergic inhibition provides a timing mechanism for achieving synchrony and temporal precision in the millisecond range for rapid modulation of acoustic waveforms.
Collapse
Affiliation(s)
| | | | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New YorkBrooklyn, NYUnited States
- Subprograms in Behavioral and Cognitive Neuroscience, Neuroscience, and Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New YorkNew York, NYUnited States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell UniversityIthaca, NYUnited States
| |
Collapse
|
4
|
Cardinal EA, Radford CA, Mensinger AF. The potential for the anterior lateral line to function for sound localization in toadfish (Opsanus tau). J Exp Biol 2018; 221:jeb.180679. [DOI: 10.1242/jeb.180679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/21/2018] [Indexed: 01/04/2023]
Abstract
Male oyster toadfish (Opsanus tau) acoustically attract females to nesting sites using a boatwhistle call. The rapid speed of sound underwater combined with the close proximity of the otolithic organs makes inner ear interaural time differences an unlikely mechanism to localize sound. To determine the role that the mechanosensory lateral line may play in sound localization, microwire electrodes were bilaterally implanted into the anterior lateral line nerve to record neural responses to vibrational stimuli. Highest spike rates and strongest phase-locking occurred at distances close to the fish and decreased as the stimulus was moved further from the fish. Bilateral anterior lateral line neuromasts displayed differential directional sensitivity to incoming vibrational stimuli, which suggests the potential for the lateral line to be used for sound localization in the near field. The present study also demonstrates that the spatially separated neuromasts of the toadfish may provide sufficient time delays between sensory organs for determining sound localization cues. Multimodal sensory input processing through both the inner ear (far field) and lateral line (near field) may allow for effective sound localization in fish.
Collapse
Affiliation(s)
- Emily A. Cardinal
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Biology Department, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Craig A. Radford
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth 0941, New Zealand
| | - Allen F. Mensinger
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Biology Department, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
5
|
Nelson FE, Hollingworth S, Marx JO, Baylor SM, Rome LC. Small Ca 2+ releases enable hour-long high-frequency contractions in midshipman swimbladder muscle. J Gen Physiol 2017; 150:127-143. [PMID: 29259040 PMCID: PMC5749108 DOI: 10.1085/jgp.201711760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 07/24/2017] [Accepted: 11/22/2017] [Indexed: 01/18/2023] Open
Abstract
The swimbladder muscle of the Pacific midshipman fish contracts up to 360,000 times in an hour while generating mating calls. Using experimental measurements and computational modeling, Nelson et al. reveal the Ca2+ handling that permits these superfast muscle fibers to sustain high-frequency calling. Type I males of the Pacific midshipman fish (Porichthys notatus) vibrate their swimbladder to generate mating calls, or “hums,” that attract females to their nests. In contrast to the intermittent calls produced by male Atlantic toadfish (Opsanus tau), which occur with a duty cycle (calling time divided by total time) of only 3–8%, midshipman can call continuously for up to an hour. With 100% duty cycles and frequencies of 50–100 Hz (15°C), the superfast muscle fibers that surround the midshipman swimbladder may contract and relax as many as 360,000 times in 1 h. The energy for this activity is supported by a large volume of densely packed mitochondria that are found in the peripheral and central regions of the fiber. The remaining fiber cross section contains contractile filaments and a well-developed network of sarcoplasmic reticulum (SR) and triadic junctions. Here, to understand quantitatively how Ca2+ is managed by midshipman fibers during calling, we measure (a) the Ca2+ pumping-versus-pCa and force-versus-pCa relations in skinned fiber bundles and (b) changes in myoplasmic free [Ca2+] (Δ[Ca2+]) during stimulated activity of individual fibers microinjected with the Ca2+ indicators Mag-fluo-4 and Fluo-4. As in toadfish, the force–pCa relation in midshipman is strongly right-shifted relative to the Ca2+ pumping–pCa relation, and contractile activity is controlled in a synchronous, not asynchronous, fashion during electrical stimulation. SR Ca2+ release per action potential is, however, approximately eightfold smaller in midshipman than in toadfish. Midshipman fibers have a larger time-averaged free [Ca2+] during activity than toadfish fibers, which permits faster Ca2+ pumping because the Ca2+ pumps work closer to their maximum rate. Even with midshipman’s sustained release and pumping of Ca2+, however, the Ca2+ energy cost of calling (per kilogram wet weight) is less than twofold more in midshipman than in toadfish.
Collapse
Affiliation(s)
- Frank E Nelson
- Department of Biology, University of Pennsylvania, Philadelphia, PA.,The Whitman Center, Marine Biological Laboratory, Woods Hole, MA.,Department of Biology, Temple University, Philadelphia, PA
| | - Stephen Hollingworth
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen M Baylor
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lawrence C Rome
- Department of Biology, University of Pennsylvania, Philadelphia, PA .,The Whitman Center, Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
6
|
Mead AF, Osinalde N, Ørtenblad N, Nielsen J, Brewer J, Vellema M, Adam I, Scharff C, Song Y, Frandsen U, Blagoev B, Kratchmarova I, Elemans CP. Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. eLife 2017; 6. [PMID: 29165242 PMCID: PMC5699865 DOI: 10.7554/elife.29425] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Superfast muscles (SFMs) are extremely fast synchronous muscles capable of contraction rates up to 250 Hz, enabling precise motor execution at the millisecond time scale. SFM phenotypes have been discovered in most major vertebrate lineages, but it remains unknown whether all SFMs share excitation-contraction coupling pathway adaptations for speed, and if SFMs arose once, or from independent evolutionary events. Here, we demonstrate that to achieve rapid actomyosin crossbridge kinetics bat and songbird SFM express myosin heavy chain genes that are evolutionarily and ontologically distinct. Furthermore, we show that all known SFMs share multiple functional adaptations that minimize excitation-contraction coupling transduction times. Our results suggest that SFM evolved independently in sound-producing organs in ray-finned fish, birds, and mammals, and that SFM phenotypes operate at a maximum operational speed set by fundamental constraints in synchronous muscle. Consequentially, these constraints set a fundamental limit to the maximum speed of fine motor control. Across animals, different muscle types have evolved to perform vastly different tasks at different speeds. For example, tortoise leg muscles move slowly over several seconds, while the flight muscles of a hummingbird move quickly dozens of times per second. The speed record holders among vertebrates are the so-called superfast muscles, which can move up to 250 times per second. Superfast muscles power the alarming rattle of rattlesnakes, courtship calls in fish, rapid echolocation calls in bats and the elaborate vocal gymnastics of songbirds. Thus these extreme muscles are all around us and are always involved in sound production. Did superfast muscles evolve from a common ancestor? And how do different superfast muscles achieve their extreme behavior? To answer these questions, Mead et al. studied the systems known to limit contraction speed in all currently known superfast muscles found in rattlesnakes, toadfish, bats and songbirds. This revealed that all the muscles share certain specific adaptations that allow superfast contractions. Furthermore, the three fastest examples – toadfish, songbird and bat – have nearly identical maximum speeds. Although this appears to support the idea that the adaptations all evolved from a shared ancestor, Mead et al. found evidence that suggests otherwise. Each of the three superfast muscles are powered by a different motor protein, which argues strongly in favor of the muscles evolving independently. The existence of such similar mechanisms and performance in independently evolved muscles raises the possibility that the fastest contraction rates measured by Mead et al. represent a maximum speed limit for all vertebrate muscles. Any technical failure in a racecar most likely will slow it down, while the same failure in a robustly engineered family car may not be so noticeable. Similarly in superfast muscle many cellular and molecular systems need to perform maximally. Therefore by understanding how these extreme muscles work, we also gain a better understanding of how normal muscles contract.
Collapse
Affiliation(s)
- Andrew F Mead
- Department of Biology, University of Vermont, Burlington, United States
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Michiel Vellema
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Iris Adam
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | | - Yafeng Song
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Coen Ph Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Fine ML, King TL, Ali H, Sidker N, Cameron TM. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau. Proc Biol Sci 2016; 283:20161094. [PMID: 27798293 PMCID: PMC5095372 DOI: 10.1098/rspb.2016.1094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/12/2022] Open
Abstract
Despite rapid damping, fish swimbladders have been modelled as underwater resonant bubbles. Recent data suggest that swimbladders of sound-producing fishes use a forced rather than a resonant response to produce sound. The reason for this discrepancy has not been formally addressed, and we demonstrate, for the first time, that the structure of the swimbladder wall will affect vibratory behaviour. Using the oyster toadfish Opsanus tau, we find regional differences in bladder thickness, directionality of collagen layers (anisotropic bladder wall structure), material properties that differ between circular and longitudinal directions (stress, strain and Young's modulus), high water content (80%) of the bladder wall and a 300-fold increase in the modulus of dried tissue. Therefore, the swimbladder wall is a viscoelastic structure that serves to damp vibrations and impart directionality, preventing the expression of resonance.
Collapse
Affiliation(s)
- Michael L Fine
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Terrence L King
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Heba Ali
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Nehan Sidker
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Timothy M Cameron
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
8
|
Felix PM, Gonçalves A, Vicente JR, Fonseca PJ, Amorim MCP, Costa JL, Martins GG. Optical micro-tomography “OPenT” allows the study of large toadfish Halobatrachus didactylus embryos and larvae. Mech Dev 2016; 140:19-24. [DOI: 10.1016/j.mod.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 02/21/2016] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
|
9
|
Mensinger AF. Multimodal Sensory Input in the Utricle and Lateral Line of the Toadfish, Opsanus tau. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:271-89. [PMID: 26515319 DOI: 10.1007/978-3-319-21059-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The utricular otolith and the mechanosensory lateral line of the toadfish, Opsanus tau, were investigated for sensitivity to multimodal sensory input by recording neural activity from free swimming fish. The utricle was sensitive to horizontal body movement, and displayed broad sensitivity to low frequency (80-200 Hz) sound. The lateral line was sensitive to water currents, swimming, prey movements, and sound with maximal sensitivity at 100 Hz. Both systems showed directional sensitivity to pure tones and toadfish vocalizations, indicating potential for sound localization. Thus, toadfish possess two hair cell based sensory systems that integrate information from disparate sources. However, swimming movements or predation strikes can saturate each system and it is unclear the effect that self-generated movement has on sensitivity. It is hypothesized that the toadfish's strategy of short distance swim movements allows it to sample the acoustical environment while static. Further study is needed to determine the integration of the two systems and if they are able to segregate and/or integrate multimodal sensory input.
Collapse
Affiliation(s)
- Allen F Mensinger
- Biology Department, University of Minnesota Duluth, Duluth, MN, 55812, USA. .,Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
10
|
Embodied Motor Control of Avian Vocal Production. VERTEBRATE SOUND PRODUCTION AND ACOUSTIC COMMUNICATION 2016. [DOI: 10.1007/978-3-319-27721-9_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Fine ML, Waybright TD. Grunt variation in the oyster toadfish Opsanus tau: effect of size and sex. PeerJ 2015; 3:e1330. [PMID: 26623178 PMCID: PMC4662586 DOI: 10.7717/peerj.1330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 02/02/2023] Open
Abstract
As in insects, frogs and birds, vocal activity in fishes tends to be more developed in males than in females, and sonic swimbladder muscles may be sexually dimorphic, i.e., either larger in males or present only in males. Male oyster toadfish Opsanus tau L produce a long duration, tonal boatwhistle advertisement call, and both sexes grunt, a short duration more pulsatile agonistic call. Sonic muscles are present in both sexes but larger in males. We tested the hypothesis that males would call more than females by inducing grunts in toadfish of various sizes held in a net and determined incidence of calling and developmental changes in grunt parameters. A small number of fish were recorded twice to examine call repeatability. Both sexes were equally likely to grunt, and grunt parameters (sound pressure level (SPL), individual range in SPL, number of grunts, and fundamental frequency) were similar in both sexes. SPL increased with fish size before leveling off in fish >200 g, and fundamental frequency and other parameters did not change with fish size. Number of grunts in a train, grunt duration and inter-grunt interval were highly variable in fish recorded twice suggesting that grunt parameters reflect internal motivation rather than different messages. Grunt production may explain the presence of well-developed sonic muscles in females and suggests that females have an active but unexplored vocal life.
Collapse
Affiliation(s)
- Michael L Fine
- Department of Biology, Virginia Commonwealth University , Richmond, VA , United States
| | - Tyler D Waybright
- Department of Biology, Virginia Commonwealth University , Richmond, VA , United States ; Office of Student Assessment, Virginia Department of Education , Richmond, VA , United States
| |
Collapse
|
12
|
Amorim MCP, Conti C, Modesto T, Gonçalves A, Fonseca PJ. Agonistic sounds signal male quality in the Lusitanian toadfish. Physiol Behav 2015; 149:192-8. [PMID: 26048302 DOI: 10.1016/j.physbeh.2015.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 11/17/2022]
Abstract
Acoustic communication during agonistic behaviour is widespread in fishes. Yet, compared to other taxa, little is known on the information content of fish agonistic calls and their effect on territorial defence. Lusitanian toadfish males (Halobatrachus didactylus) are highly territorial during the breeding season and use sounds (boatwhistles, BW) to defend nests from intruders. BW present most energy in either the fundamental frequency, set by the contraction rate of the sonic muscles attached to the swimbladder, or in the harmonics, which are multiples of the fundamental frequency. Here we investigated if temporal and spectral features of BW produced during territorial defence reflect aspects of male quality that may be important in resolving disputes. We found that higher mean pulse period (i.e. lower fundamental frequency) reflected higher levels of 11-ketotestosterone (11KT), the main teleost androgen which, in turn, was significantly related with male condition (relative body mass and glycogen content). BW dominant harmonic mean and variability decreased with sonic muscle lipid content. We found no association between BW duration and male quality. Taken together, these results suggest that the spectral content of fish agonistic sounds may signal male features that are key in fight outcome.
Collapse
Affiliation(s)
- M Clara P Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisbon, Portugal.
| | - Carlotta Conti
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisbon, Portugal.
| | - Teresa Modesto
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8000-810 Faro, Portugal.
| | - Amparo Gonçalves
- Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), Lisbon, Portugal.
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
13
|
Nelson FE, Hollingworth S, Rome LC, Baylor SM. Intracellular calcium movements during relaxation and recovery of superfast muscle fibers of the toadfish swimbladder. ACTA ACUST UNITED AC 2014; 143:605-20. [PMID: 24733838 PMCID: PMC4003191 DOI: 10.1085/jgp.201411160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ca2+ movements during intercall intervals in superfast toadfish swimbladder muscle fibers depend on the accumulation of Ca2+ on parvalbumin and a consequent slow rate of Ca2+ pumping. The mating call of the Atlantic toadfish is generated by bursts of high-frequency twitches of the superfast twitch fibers that surround the swimbladder. At 16°C, a calling period can last several hours, with individual 80–100-Hz calls lasting ∼500 ms interleaved with silent periods (intercall intervals) lasting ∼10 s. To understand the intracellular movements of Ca2+ during the intercall intervals, superfast fibers were microinjected with fluo-4, a high-affinity fluorescent Ca2+ indicator, and stimulated by trains of 40 action potentials at 83 Hz, which mimics fiber activity during calling. The fluo-4 fluorescence signal was measured during and after the stimulus trains; the signal was also simulated with a kinetic model of the underlying myoplasmic Ca2+ movements, including the binding and transport of Ca2+ by the sarcoplasmic reticulum (SR) Ca2+ pumps. The estimated total amount of Ca2+ released from the SR during a first stimulus train is ∼6.5 mM (concentration referred to the myoplasmic water volume). At 40 ms after cessation of stimulation, the myoplasmic free Ca2+ concentration ([Ca2+]) is below the threshold for force generation (∼3 µM), yet the estimated concentration of released Ca2+ remaining in the myoplasm (Δ[CaM]) is large, ∼5 mM, with ∼80% bound to parvalbumin. At 10 s after stimulation, [Ca2+] is ∼90 nM (three times the assumed resting level) and Δ[CaM] is ∼1.3 mM, with 97% bound to parvalbumin. Ca2+ movements during the intercall interval thus appear to be strongly influenced by (a) the accumulation of Ca2+ on parvalbumin and (b) the slow rate of Ca2+ pumping that ensues when parvalbumin lowers [Ca2+] near the resting level. With repetitive stimulus trains initiated at 10-s intervals, Ca2+ release and pumping come quickly into balance as a result of the stability (negative feedback) supplied by the increased rate of Ca2+ pumping at higher [Ca2+].
Collapse
Affiliation(s)
- Frank E Nelson
- Department of Biology and 2 Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | |
Collapse
|