1
|
Jiang L, Peng Y, Seo J, Jeon D, Jo MG, Lee JH, Jeong JC, Kim CY, Park HC, Lee J. Subtercola endophyticus sp. nov., a cold-adapted bacterium isolated from Abies koreana. Sci Rep 2022; 12:12114. [PMID: 35840645 PMCID: PMC9287328 DOI: 10.1038/s41598-022-16116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
A novel Gram-stain-positive, aerobic bacterial strain, designated AK-R2A1-2 T, was isolated from the surface-sterilized needle leaves of an Abies koreana tree. Strain AK-R2A1-2 T had 97.3% and 96.7% 16S rRNA gene sequence similarities with Subtercola boreus K300T and Subtercola lobariae 9583bT, respectively, but formed a distinct phyletic lineage from these two strains. Growth of strain AK-R2A1-2 T was observed at 4–25 °C at pH 5.0–8.0. Strain AK-R2A1-2 T contained menaquinone 9 (MK-9) and menaquinone 10 (MK-10) as the predominant respiratory quinones. The major cellular fatty acids were anteiso-C15:0 and summed feature 8 (C18:1ω7c or/and C18:1ω6c), and the polar lipids included diphosphatidylglycerol (DPG) and three unknown aminolipids, AKL2, AKL3, and AKL4. The complete genome of strain AK-R2A1-2 T was sequenced to understand the genetic basis of its survival at low temperatures. Multiple copies of cold-associated genes involved in cold-active chaperon, stress response, and DNA repair supported survival of the strain at low temperatures. Strain AK-R2A1-2 T was also able to significantly improve rice seedling growth under low temperatures. Thus, this strain represents a novel species of the genus Subtercola, and the proposed name is Subtercola endophyticus sp. nov. The type strain is AK-R2A1-2 T (= KCTC 49721 T = GDMCC 1.2921 T).
Collapse
Affiliation(s)
- Lingmin Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jiyoon Seo
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Doeun Jeon
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Mi Gyeong Jo
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jae Cheol Jeong
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Hyeong Cheol Park
- Team of Vulnerable Ecological Research, Division of Climate and Ecology, Bureau of Conservation & Assessment Research, National Institute of Ecology (NIE), Seocheon, 33657, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
2
|
The Role of Nutraceuticals and Phytonutrients in Chickens’ Gastrointestinal Diseases. Animals (Basel) 2022; 12:ani12070892. [PMID: 35405880 PMCID: PMC8997120 DOI: 10.3390/ani12070892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The use of nutraceuticals and phytonutrients in poultry nutrition has been extensively explored over the past decade. The interest in these substances is linked to the search for natural compounds that can be effectively used to prevent and treat some of the main diseases of the chicken. The serious problem of antibiotic resistance and the consequent legislative constraints on their use required the search for alternatives. The purpose of this review is to describe the current status of the effects of some substances, such as probiotics and prebiotics, organic acids, vitamins and phytogenic feed additives, focusing specifically on studies concerning the prevention and treatment of four main gastrointestinal diseases in chicken: salmonellosis, necrotic enteritis (caused by Clostridium perfringens), campylobacteriosis, and coccidiosis. A brief description of these diseases and the effects of the main bioactive principles of the nutraceutical or phytonutrient groups will be provided. Although there are conflicting results, some works show very promising effects, with a reduction in the bacterial or protozoan load following treatment. Further studies are needed to verify the real effectiveness of these compounds and make them applicable in the field. Abstract In poultry, severe gastrointestinal diseases are caused by bacteria and coccidia, with important economic losses in the poultry industry and requirement of treatments which, for years, were based on the use of antibiotics and chemotherapies. Furthermore, Salmonella spp., Clostridium perfringens, and Campylobacter jejuni can cause serious foodborne diseases in people, resulting from consumption of poultry meat, eggs, and derived products. With the spread of antibiotic resistance, which affects both animals and humans, the restriction of antibiotic use in livestock production and the identification of a list of “critically important antimicrobials” became necessary. For this reason, researchers focused on natural compounds and effective alternatives to prevent gastrointestinal disease in poultry. This review summarizes the results of several studies published in the last decade, describing the use of different nutraceutical or phytonutrients in poultry industry. The results of the use of these products are not always encouraging. While some of the alternatives have proven to be very promising, further studies will be needed to verify the efficacy and practical applicability of other compounds.
Collapse
|
3
|
McInerney EP, Silla AJ, Byrne PG. Do dietary carotenoids improve the escape-response performance of southern corroboree frog larvae? BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Dietary antioxidants can improve escape-response performance in adult vertebrates, but whether juveniles receive similar benefits remains untested. Here, we investigated the effect of two dietary carotenoids (β-carotene and lutein) on the escape-response of juvenile corroboree frogs (Pseudophryne corroboree) at two developmental points (early and late larval development). We found that burst speed was lower during late larval development compared to early larval development, particularly in the low- and high-dose lutein treatments. These findings suggest that performance decreased over time, and was reduced by lutein consumption. At each developmental point we found no treatment effect on escape-response, providing no evidence for carotenoid benefits. A previous study in corroboree frogs demonstrated that carotenoids improved adult escape-response, so our findings suggest that benefits of carotenoids in this species may be life-stage dependent. Continued investigation into how carotenoids influence escape-response at different life-stages will provide insights into mechanistic links between nutrition and behaviour.
Collapse
Affiliation(s)
- Emma P. McInerney
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aimee J. Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Phillip G. Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Premi S. Role of Melanin Chemiexcitation in Melanoma Progression and Drug Resistance. Front Oncol 2020; 10:1305. [PMID: 32850409 PMCID: PMC7425655 DOI: 10.3389/fonc.2020.01305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023] Open
Abstract
Melanoma is the deadliest type of skin cancer. Human melanomas often show hyperactivity of nitric oxide synthase (NOS) and NADPH oxidase (NOX), which, respectively, generate nitric oxide (NO · ) and superoxide (O2 ·- ). The NO · and O2 - react instantly with each other to generate peroxynitrite (ONOO-) which is the driver of melanin chemiexcitation. Melanoma precursors, the melanocytes, are specialized skin cells that synthesize melanin, a potent shield against sunlight's ultraviolet (UV) radiation. However, melanin chemiexcitation paradoxically demonstrates the melanomagenic properties of melanin. In a loop, the NOS activity regulates melanin synthesis, and melanin is utilized by the chemiexcitation pathway to generate carcinogenic melanin-carbonyls in an excited triplet state. These carbonyl compounds induce UV-specific DNA damage without UV. Additionally, the carbonyl compounds are highly reactive and can make melanomagenic adducts with proteins, DNA and other biomolecules. Here we review the role of the melanin chemiexcitation pathway in melanoma initiation, progression, and drug resistance. We conclude by hypothesizing a non-classical, positive loop in melanoma where melanin chemiexcitation generates carcinogenic reactive carbonyl species (RCS) and DNA damage in normal melanocytes. In parallel, NOS and NOX regulate melanin synthesis generating raw material for chemiexcitation, and the resulting RCS and reactive nitrogen species (RNS) regulate cellular proteome and transcriptome in favor of melanoma progression, metastasis, and resistance against targeted therapies.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
5
|
Stehr M, Grashorn M, Dannenberger D, Tuchscherer A, Gauly M, Metges CC, Daş G. Resistance and tolerance to mixed nematode infections in relation to performance level in laying hens. Vet Parasitol 2019; 275:108925. [PMID: 31605937 DOI: 10.1016/j.vetpar.2019.108925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Modern chickens have been genetically developed to perform high under optimal conditions. We hypothesized that high-performance is associated with a higher sensitivity to environmental challenges in laying hens. By using nematode infections as an environmental stressor, we assessed performance-level associated host responses in a high (i.e. Lohmann Brown Plus, LB) and in a lower performing, a so-called dual-purpose chicken genotype (i.e. Lohmann Dual, LD). The hens were infected with 1000 eggs of Ascaridia galli and Heterakis gallinarum at 24 weeks of age. Hen performance parameters, humoral immune responses in plasma and egg yolks and worm burdens were assessed at several occasions over a period of 18 weeks post infection (wpi). While infections had no significant effect on feed intake (P = 0.130) and body weight in both genotypes (P = 0.392), feed conversion efficiency was negatively affected by infections (P = 0.017). Infections reduced both laying rate and egg weight and thereby per capita egg mass in both genotypes (P < 0.05). While laying rate in infected LB hens decreased significantly (P < 0.05) in the early infection period (i.e. by 3 wpi), the decrease in LD hens appeared much later (i.e. by 14 wpi). Worm burdens resulting from the experimental infection were not different between the genotypes for both worm species (P > 0.05), whereas LB hens were more susceptible (P < 0.05) to re-infections than LD hens. Changes in humoral immune responses (i.e. ascarid-specific IgY antibodies in plasma and egg yolks) of the two genotypes over time reflected closely the corresponding changes in larval counts of the hens, descending from both experimental and subsequent natural infections in both genotypes. Infections caused a shift in egg size classes, leading to smaller frequency of larger eggs in both genotypes. Infections reduced egg weight (P = 0.018) and led to a reduced fat content in the egg yolks (P = 0.045). The proportion of poly-unsaturated fatty acids (PUFA), especially n-6-PUFA, was also lower in egg yolks of the infected hens (P = 0.032). We conclude that tolerance to nematode infections in laying hens is dependent on host-performance level. The impairment in host tolerance was both genotype and time dependent, likely due to differences in genetic programming for production peak and persistency of the two genotypes. The two genotypes exhibited similar levels of resistance after a fully controlled experimental infection, but the high performing hens were more susceptible to subsequent natural infections. Infections negatively affected economically important egg-quality traits, including egg weight, fat content and fatty acid profiles in egg yolks.
Collapse
Affiliation(s)
- Manuel Stehr
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Grashorn
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70593, Stuttgart, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Matthias Gauly
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5, 39100 Bolzano, Italy
| | - Cornelia C Metges
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Gürbüz Daş
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
6
|
Surai PF, Kochish II, Romanov MN, Griffin DK. Nutritional modulation of the antioxidant capacities in poultry: the case of vitamin E. Poult Sci 2019; 98:4030-4041. [DOI: 10.3382/ps/pez072] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
|
7
|
A carotenoid oxygenase is responsible for muscle coloration in scallop. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:966-975. [PMID: 30858126 DOI: 10.1016/j.bbalip.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/23/2022]
Abstract
As lipid microconstituents mainly of plant origin, carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Currently, the mechanism of carotenoid bioavailability in animals is largely unknown mainly due to the limited approaches applied, the shortage of suitable model systems and the restricted taxonomic focus. The mollusk Yesso scallop (Patinopecten yessoensis) possessing orange adductor muscle with carotenoid deposition, provides a unique opportunity to research the mechanism underlying carotenoid utilization in animals. Herein, through family construction and analysis, we found that carotenoid coloration in scallop muscle is inherited as a recessive Mendelian trait. Using a combination of genomic approaches, we mapped this trait onto chromosome 8, where PyBCO-like 1 encoding carotenoid oxygenase was the only differentially expressed gene between the white and orange muscles (FDR = 2.75E-21), with 11.28-fold downregulation in the orange muscle. Further functional assays showed that PyBCO-like 1 is capable of degrading β-carotene, and inhibiting PyBCO-like 1 expression in the white muscle resulted in muscle coloration and carotenoid deposition. In the hepatopancreas, which is the organ for digestion and absorption, neither the scallop carotenoid concentration nor PyBCO-like 1 expression were significantly different between the two scallops. These results indicate that carotenoids could be taken up in both white- and orange-muscle scallops and then degraded by PyBCO-like 1 in the white muscle. Our data suggest that PyBCO-like 1 is the essential gene for carotenoid metabolism in scallop muscle, and its downregulation leads to carotenoid deposition and muscle coloration.
Collapse
|
8
|
Majdi N, Hette-Tronquart N, Auclair E, Bec A, Chouvelon T, Cognie B, Danger M, Decottignies P, Dessier A, Desvilettes C, Dubois S, Dupuy C, Fritsch C, Gaucherel C, Hedde M, Jabot F, Lefebvre S, Marzloff MP, Pey B, Peyrard N, Powolny T, Sabbadin R, Thébault E, Perga ME. There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology. FOOD WEBS 2018. [DOI: 10.1016/j.fooweb.2018.e00100] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Bohn T, Planchon S, Leclercq CC, Renaut J, Mihaly J, Beke G, Rühl R. Proteomic responses of carotenoid and retinol administration to Mongolian gerbils. Food Funct 2018; 9:3835-3844. [PMID: 29951678 DOI: 10.1039/c8fo00278a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various health benefits of carotenoids have been described. However, while human observational studies generally suggest positive health effects, supplementation with relatively high doses of individual carotenoids (supplements) have partly produced adverse effects. In the present study, we investigated the effect of several carotenoids on the proteomic response of male Mongolian gerbils (aged 6 weeks). Five groups of gerbils (n = 6 per group) received either retinol (vitamin A/53 mg per kg bw), all-trans β-carotene (pro-vitamin A/100 mg kg-1), the non-pro vitamin A carotenoid lutein (100 mg kg-1), the acyclic carotenoid lycopene (100 mg kg-1) or vehicle (Cremophor EL), via oral single gavage. Gerbils were 12 h post-prandially sacrificed and blood plasma, liver, and white adipose tissue were collected. For liver and adipose tissue, a 2D-DIGE (difference gel electrophoresis) approach was conducted; for plasma, proteomic analyses were achieved by liquid chromatography-mass spectrometry. Compared to controls (vehicle), various proteins were showing significant abundance variations in plasma (66), liver (29) and adipose tissue (19), especially regarding structure (22), protein metabolism (15) and immune system/inflammation (19) functions, while proteins related to antioxidant effects were generally less abundant, suggesting no in vivo relevance. Surprisingly, a large overlap in protein regulation was found between lycopene and retinol exposure, while other carotenoids, including all-trans β-carotene, did not show this overlap. Mainly retinoid acid receptor co-regulated proteins may mechanistically explain this overlapping regulation. This overlapping regulation may be related to common nuclear hormone receptor mediated signalling, though further studies using synthetic ligands of retinoid receptors targeting protein regulation are needed for confirmation.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, Population Health Department, 1 A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | | | | | | | | | | | | |
Collapse
|
10
|
Immune challenges decrease biliverdin concentration in the spleen of northern Bobwhite quail, Colinus virginianus. J Comp Physiol B 2018; 188:505-515. [DOI: 10.1007/s00360-018-1146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
11
|
Cooper-Mullin C, McWilliams SR. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds. ACTA ACUST UNITED AC 2017; 219:3684-3695. [PMID: 27903627 DOI: 10.1242/jeb.123992] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - Scott R McWilliams
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
12
|
Moreno JA, Díaz-Gómez J, Nogareda C, Angulo E, Sandmann G, Portero-Otin M, Serrano JCE, Twyman RM, Capell T, Zhu C, Christou P. The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Sci Rep 2016; 6:35346. [PMID: 27739479 PMCID: PMC5064355 DOI: 10.1038/srep35346] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022] Open
Abstract
Carotenoids are important dietary nutrients with health-promoting effects. The biofortification of staple foods with carotenoids provides an efficient delivery strategy but little is known about the fate and distribution of carotenoids supplied in this manner. The chicken provides a good model of human carotenoid metabolism so we supplemented the diets of laying hens using two biofortified maize varieties with distinct carotenoid profiles and compared the fate of the different carotenoids in terms of distribution in the feed, the hen's livers and the eggs. We found that after a period of depletion, pro-vitamin A (PVA) carotenoids were preferentially diverted to the liver and relatively depleted in the eggs, whereas other carotenoids were transported to the eggs even when the liver remained depleted. When retinol was included in the diet, it accumulated more in the eggs than the livers, whereas PVA carotenoids showed the opposite profile. Our data suggest that a transport nexus from the intestinal lumen to the eggs introduces bottlenecks that cause chemically-distinct classes of carotenoids to be partitioned in different ways. This nexus model will allow us to optimize animal feed and human diets to ensure that the health benefits of carotenoids are delivered in the most effective manner.
Collapse
Affiliation(s)
- Jose Antonio Moreno
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Joana Díaz-Gómez
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
- Department of Food Technology, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Carmina Nogareda
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Eduardo Angulo
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Gerhard Sandmann
- Biosynthesis Group, Department of Molecular Biosciences, J. W. Goethe University, Max-v-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida–Institut de Recerca Biomèdica de Lleida (IRBLleida), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - José C. E. Serrano
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida–Institut de Recerca Biomèdica de Lleida (IRBLleida), Av. Rovira Roure 80, 25198 Lleida, Spain
| | | | - Teresa Capell
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences Auburn University 101 Life Sciences Hall Auburn AL 36830 USA
| | - Geoffrey E. Hill
- Department of Biological Sciences Auburn University 101 Life Sciences Hall Auburn AL 36830 USA
| |
Collapse
|
14
|
Nogareda C, Moreno JA, Angulo E, Sandmann G, Portero M, Capell T, Zhu C, Christou P. Carotenoid-enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:160-8. [PMID: 25846059 PMCID: PMC11389004 DOI: 10.1111/pbi.12369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/01/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
Carotenoids are health-promoting organic molecules that act as antioxidants and essential nutrients. We show that chickens raised on a diet enriched with an engineered corn variety containing very high levels of four key carotenoids (β-carotene, lycopene, zeaxanthin and lutein) are healthy and accumulate more bioavailable carotenoids in peripheral tissues, muscle, skin and fat, and more retinol in the liver, than birds fed on standard corn diets (including commercial corn supplemented with colour additives). Birds were challenged with the protozoan parasite Eimeria tenella and those on the high-carotenoid diet grew normally, suffered only mild disease symptoms (diarrhoea, footpad dermatitis and digital ulcers) and had lower faecal oocyst counts than birds on the control diet. Our results demonstrate that carotenoid-rich corn maintains poultry health and increases the nutritional value of poultry products without the use of feed additives.
Collapse
Affiliation(s)
- Carmina Nogareda
- Department of Animal Production, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Jose A Moreno
- Department of Animal Production, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Eduardo Angulo
- Department of Animal Production, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Gerhard Sandmann
- Biosynthesis Group, Department of Molecular Biosciences, J. W. Goethe Universität, Frankfurt, Germany
| | - Manuel Portero
- Department of Experimental Medicine, University of Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
15
|
Parolini M, Colombo G, Valsecchi S, Mazzoni M, Possenti CD, Caprioli M, Dalle-Donne I, Milzani A, Saino N, Rubolini D. Potential toxicity of environmentally relevant perfluorooctane sulfonate (PFOS) concentrations to yellow-legged gull Larus michahellis embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:426-437. [PMID: 26310703 DOI: 10.1007/s11356-015-5248-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
Perfluooctane sulfonate (PFOS) is considered an emerging pollutant because of its wide distribution in both aquatic and terrestrial ecosystems, as well as its potential toxicity to living organisms. Although PFOS environmental levels and the adverse effects on classical model organisms in toxicological studies are well known, including developmental alterations and alteration of oxidative status, its toxicity to free-living species has been seldom investigated. The aim of this study was to assess the potential toxicity of environmental levels of PFOS to yellow-legged gull (Larus michahellis) embryos under field experimental conditions. In a within-clutch experimental design, we injected two PFOS concentrations (100 ng PFOS/g egg weight and 200 ng PFOS/g egg weight) in ovo soon after laying. Eggs were collected when they reached the cracking stage. We investigated the effects of PFOS treatment, laying order and sex on both morphological and biochemical endpoints of embryos. Specifically, we assessed changes in embryo body mass and tarsus length, as well as in liver and brain mass. Moreover, the imbalance of oxidative status was evaluated in both liver and brain from embryos by measuring total antioxidant capacity (TAC) and total oxidant status (TOS), while the levels of protein carbonyl content (PCO) and DNA fragmentation were measured as oxidative and genetic damage endpoints, respectively. The concentrations of PFOS we tested did not significantly alter the morphological endpoints, independently of laying order and sex. Similarly, embryo oxidative status and oxidative and genetic damage were not significantly affected by PFOS in ovo exposure. These findings suggest that current environmental PFOS levels do not affect early development of yellow-legged gull embryos.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Biosciences, University of Milan, via Celoria 26, I-20133, Milan, Italy.
| | - Graziano Colombo
- Department of Biosciences, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Sara Valsecchi
- IRSA-CNR-Water Research Institute, National Research Council, Via Mulino 19, I-20861, Brugherio, MB, Italy
| | - Michela Mazzoni
- IRSA-CNR-Water Research Institute, National Research Council, Via Mulino 19, I-20861, Brugherio, MB, Italy
| | | | - Manuela Caprioli
- Department of Biosciences, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Aldo Milzani
- Department of Biosciences, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Nicola Saino
- Department of Biosciences, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Diego Rubolini
- Department of Biosciences, University of Milan, via Celoria 26, I-20133, Milan, Italy
| |
Collapse
|
16
|
López-Rull I, Hornero-Méndez D, Frías Ó, Blanco G. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger. PLoS One 2015; 10:e0141759. [PMID: 26544885 PMCID: PMC4636298 DOI: 10.1371/journal.pone.0141759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds.
Collapse
Affiliation(s)
- Isabel López-Rull
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, Madrid, España
- * E-mail:
| | - Dámaso Hornero-Méndez
- Departamento de Biotecnología de Alimentos, Instituto de la Grasa-CSIC, Sevilla, España
| | - Óscar Frías
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, Madrid, España
| | - Guillermo Blanco
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, Madrid, España
| |
Collapse
|
17
|
Carotenoids increase immunity and sex specifically affect color and redox homeostasis in a monochromatic seabird. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1922-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Noguera JC, Monaghan P, Metcalfe NB. Interactive effects of early and later nutritional conditions on the adult antioxidant defence system in zebra finches. J Exp Biol 2015; 218:2211-7. [DOI: 10.1242/jeb.120956] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
Abstract
In vertebrates, antioxidant defences comprise a mixture of endogenously produced components and exogenously obtained antioxidants that are derived mostly from the diet. It has been suggested that early life micronutritional conditions might influence the way in which the antioxidant defence system operates, which could enable individuals to adjust the activity of the endogenous and exogenous components in line with their expected intake of dietary antioxidants if the future environment resembles the past. We investigated this possibility by experimentally manipulating the micronutrient content of the diet during different periods of postnatal development in the zebra finch (Taeniopygia guttata). Birds that had a low micronutrient diet during the growth phase initially had a lower total antioxidant capacity (TAC) than those reared under a high micronutrient diet, but then showed a compensatory response, so that by the end of the growth phase the TAC of the two groups was the same. Interestingly, we found an interactive effect of micronutrient intake early and late in development: only those birds that continued with the same dietary treatment (low or high) throughout development showed a significant increase in their TAC during the period of sexual maturation. A similar effect was also found in the level of enzymatic antioxidant defences (glutathione peroxidase; GPx). No significant effects were found in the level of oxidative damage in lipids (MDA). These findings demonstrate the importance of early and late developmental conditions in shaping multiple aspects of the antioxidant system. Furthermore, they suggest that young birds may adjust their antioxidant defences to enable them to ‘thrive’ on diets rich or poor in micronutrients later in life.
Collapse
Affiliation(s)
- José C. Noguera
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
19
|
Bovier ER, Hammond BR. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. Arch Biochem Biophys 2014; 572:54-57. [PMID: 25483230 DOI: 10.1016/j.abb.2014.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/14/2014] [Accepted: 11/22/2014] [Indexed: 11/18/2022]
Abstract
Speed of processing is a particularly important characteristic of the visual system. Often a behavioral reaction to a visual stimulus must be faster than the conscious perception of that stimulus, as is the case with many sports (e.g., baseball). Visual psychophysics provides a relatively simple and precise means of measuring visual processing speed called the temporal contrast sensitivity function (tCSF). Past study has shown that macular pigment (a collection of xanthophylls, lutein (L), meso-zeaxanthin (MZ) and zeaxanthin (Z), found in the retina) optical density (MPOD) is positively correlated with the tCSF. In this study, we found similar correlations when testing 102 young healthy subjects. As a follow-up, we randomized 69 subjects to receive a placebo (n=15) or one of two L and Z supplements (n=54). MPOD and tCSF were measured psychophysically at baseline and 4months. Neither MPOD nor tCSF changed for the placebo condition, but both improved significantly as a result of supplementation. These results show that an intervention with L and Z can increase processing speed even in young healthy subjects.
Collapse
Affiliation(s)
- Emily R Bovier
- Department of Psychology, SUNY Oswego, Oswego, NY 13126, USA; Brain and Behavioral Sciences, The University of Georgia, Athens, GA 30602-3013, USA
| | - Billy R Hammond
- Brain and Behavioral Sciences, The University of Georgia, Athens, GA 30602-3013, USA.
| |
Collapse
|