1
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
2
|
Doyle D, Carney Almroth B, Sundell K, Simopoulou N, Sundh H. Transport and Barrier Functions in Rainbow Trout Trunk Skin Are Regulated by Environmental Salinity. Front Physiol 2022; 13:882973. [PMID: 35634157 PMCID: PMC9136037 DOI: 10.3389/fphys.2022.882973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underpinning ionic transport and barrier function have been relatively well characterised in amphibians and fish. In teleost fish, these processes have mostly been characterised in the gill and intestine. In contrast, these processes remain much less clear for the trunk skin of fish. In this study, we measured barrier function and active transport in the trunk skin of the rainbow trout, using the Ussing chamber technique. The effects of epithelial damage, skin region, salinity, and pharmacological inhibition were tested. Skin barrier function decreased significantly after the infliction of a superficial wound through the removal of scales. Wound healing was already underway after 3 h and, after 24 h, there was no significant difference in barrier function towards ions between the wounded and control skin. In relation to salinity, skin permeability decreased drastically following exposure to freshwater, and increased following exposure to seawater. Changes in epithelial permeability were accompanied by salinity-dependent changes in transepithelial potential and short-circuit current. The results of this study support the idea that barrier function in rainbow trout trunk skin is regulated by tight junctions that rapidly respond to changes in salinity. The changes in transepithelial permeability and short circuit current also suggest the presence of an active transport component. Immunostaining and selective inhibition suggest that one active transport component is an apical V-ATPase. However, further research is required to determine the exact role of this transporter in the context of the trunk skin.
Collapse
Affiliation(s)
- D Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - B Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - K Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - N Simopoulou
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - H Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Chen CC, Marshall WS, Robertson GN, Cozzi RRF, Kelly SP. Mummichog gill and operculum exhibit functionally consistent claudin-10 paralog profiles and Claudin-10c hypersaline response. Biol Open 2021; 10:271020. [PMID: 34308991 PMCID: PMC8351317 DOI: 10.1242/bio.058868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Claudin (Cldn)-10 tight junction (TJ) proteins are hypothesized to form the paracellular Na+ secretion pathway of hyposmoregulating mummichog (Fundulus heteroclitus) branchial epithelia. Organ-specific expression profiles showed that only branchial organs [the gill and opercular epithelium (OE)] exhibited abundant cldn-10 paralog transcripts, which typically increased following seawater (SW) to hypersaline (2SW) challenge. Post-translational properties, protein abundance, and ionocyte localization of Cldn-10c, were then examined in gill and OE. Western blot analysis revealed two Cldn-10c immunoreactive bands in the mummichog gill and OE at ∼29 kDa and ∼40 kDa. The heavier protein could be eliminated by glycosidase treatment, demonstrating the novel presence of a glycosylated Cldn-10c. Protein abundance of Cldn-10c increased in gill and OE of 2SW-exposed fish. Cldn-10c localized to the sides of gill and OE ionocyte apical crypts and partially colocalized with cystic fibrosis transmembrane conductance regulator and F-actin, consistent with TJ complex localization. Cldn-10c immunofluorescent intensity increased but localization was unaltered by 2SW conditions. In support of our hypothesis, cldn-10/Cldn-10 TJ protein dynamics in gill and OE of mummichogs and TJ localization are functionally consistent with the creation and maintenance of salinity-responsive, cation-selective pores that facilitate Na+ secretion in hyperosmotic environments. Summary: The role of claudin-10 tight junction proteins in paracellular salt secretion across fish branchial epithelia is indicated by organ-specific responses to hyperosmotic conditions and their association with salt secreting transcellular proteins
Collapse
Affiliation(s)
- Chun Chih Chen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - William S Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - George N Robertson
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Regina R F Cozzi
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Dong YW, Blanchard TS, Noll A, Vasquez P, Schmitz J, Kelly SP, Wright PA, Whitehead A. Genomic and physiological mechanisms underlying skin plasticity during water to air transition in an amphibious fish. J Exp Biol 2021; 224:jeb235515. [PMID: 33328287 PMCID: PMC7860121 DOI: 10.1242/jeb.235515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
The terrestrial radiation of vertebrates required changes in skin that resolved the dual demands of maintaining a mechanical and physiological barrier while also facilitating ion and gas transport. Using the amphibious killifish Kryptolebias marmoratus, we found that transcriptional regulation of skin morphogenesis was quickly activated upon air exposure (1 h). Rapid regulation of cell-cell adhesion complexes and pathways that regulate stratum corneum formation was consistent with barrier function and mechanical reinforcement. Unique blood vessel architecture and regulation of angiogenesis likely supported cutaneous respiration. Differences in ionoregulatory transcripts and ionocyte morphology were correlated with differences in salinity acclimation and resilience to air exposure. Evolutionary analyses reinforced the adaptive importance of these mechanisms. We conclude that rapid plasticity of barrier, respiratory and ionoregulatory functions in skin evolved to support the amphibious lifestyle of K. marmoratus; similar processes may have facilitated the terrestrial radiation of other contemporary and ancient fishes.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
| | - Tessa S Blanchard
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Picasso Vasquez
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Juergen Schmitz
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Kolosov D, Bui P, Wilkie MP, Kelly SP. Claudins of sea lamprey (Petromyzon marinus) - organ-specific expression and transcriptional responses to water of varying ion content. JOURNAL OF FISH BIOLOGY 2020; 96:768-781. [PMID: 32017083 DOI: 10.1111/jfb.14274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The role of lamprey epithelium tight junctions (TJs) in the regulation of salt and water balance is poorly understood. This study reported on claudin (Cldn) TJ protein transcripts of pre-metamorphic larval and post-metamorphic juvenile sea lamprey (Petromyzon marinus) and the transcriptional response of genes encoding Cldns to changed environmental ion levels. Transcripts encoding Cldn-3b, -4, -5, -10, -14, -18 and -19 were identified, and mRNA expression profiles revealed the organ-specific presence of cldn-5 and -14, broad expression of cldn-3b, -4, -10, -18 and -19 and spatial differences in the mRNA abundance of cldn-4, -3b and -14 along the ammocoete intestine. Expression profiles were qualitatively similar in ammocoetes and juvenile fishes. Transcript abundance of genes encoding Cldns in osmoregulatory organs (gill, kidney, intestine and skin) was subsequently investigated after exposure of ammocoetes to ion-poor water (IPW) and juveniles to hyperosmotic conditions [60% sea water (SW)]. IPW-acclimated ammocoetes increased mRNA abundance of nearly all cldns in the gill. Simultaneously, cldn-10 abundance increased in the skin, whereas cldn-4, -14 and -18 decreased in the kidney. Ammocoete cldn mRNA abundance in the intestine was altered in a region-specific manner. In contrast, cldn transcript abundance was mostly downregulated in osmoregulatory organs of juvenile fish acclimated to SW - cldn-3b, -10 and -19 in the gill; cldn-3b, -4, -10 and -19 in the skin; cldn-3b in the kidney; and cldn-3b and -14 in the intestine. Data support the idea that Cldn TJ proteins play an important role in the osmoregulatory physiology of pre- and post-metamorphic sea lamprey and that Cldn participation can occur across organs, in an organ-specific manner, as well as differ spatially within organs, which contributes to the regulation of salt and water balance in these fishes.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Phuong Bui
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Mike P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Kolosov D, Kelly SP. C-type natriuretic peptide regulates the molecular components of the rainbow trout gill epithelium tight junction complex. Peptides 2020; 124:170211. [PMID: 31770576 DOI: 10.1016/j.peptides.2019.170211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 01/03/2023]
Abstract
Freshwater (FW) fish experience passive paracellular loss of ions into the surrounding environment across water-exposed epithelia such as the gill. The mitigation of paracellular ion loss is thought to be regulated by proteins of the tight junction (TJ) complex and in particular, the large superfamily of claudin (cldn) TJ proteins plays an important role. Transcript and protein levels of TJ proteins in teleosts are known to be under endocrine control of several important osmoregulatory hormones and the current study was aimed at determining whether the osmoregulatory hormone, C-type natriuretic peptide (CNP), can alter paracellular permeability and TJ protein abundance in a primary cultured gill epithelium derived from rainbow trout. Natriuretic peptide receptors were detected in the cultured trout gill epithelium. It was found that (i) developing cultured gill epithelia "grown" in the presence of 10 nM CNP, and (ii) mature cultured gill epithelia exposed to 10 nM CNP for 48 h, exhibited augmented barrier properties. This occurred in association with reduced flux rates of a paracellular permeability marker (polyethylene glycol, molecular mass 400; PEG-400) and, reduced ion efflux (i.e. ion loss) when preparations were exposed to apical FW. Exposure to CNP altered mRNA abundance of cldn-3a, -5a, -6, - 8c, -20a, -25b, -28a, -32a and cgn, but differences in the transcriptional response were observed between chronic and acute CNP exposure. In contrast, chronic and acute exposure to CNP resulted in reduced cldn-10e/Cldn-10e abundance. Data suggest that CNP may play a role in regulating the molecular physiology of the TJ complex in the fish gill epithelium and contribute to the regulation of salt and water balance by influencing the paracellular permeability properties of this tissue.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, 4700 Keele St, Toronto, M3J1P3, Canada.
| | - Scott P Kelly
- Department of Biology, York University, 4700 Keele St, Toronto, M3J1P3, Canada
| |
Collapse
|
7
|
Mohindra V, Dangi T, Tripathi RK, Kumar R, Singh RK, Jena JK, Mohapatra T. Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides resource for osmoregulation studies. Sci Rep 2019; 9:16511. [PMID: 31712633 PMCID: PMC6848103 DOI: 10.1038/s41598-019-52603-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/18/2019] [Indexed: 01/23/2023] Open
Abstract
This study provides the first high-quality draft genome assembly (762.5 Mb) of Tenualosa ilisha that is highly contiguous and nearly complete. We observed a total of 2,864 contigs, with 96.4% completeness with N50 of 2.65 Mbp and the largest contig length of 17.4 Mbp, along with a complete mitochondrial genome of 16,745 bases. A total number of 33,042 protein coding genes were predicted, among these, 512 genes were classified under 61 Gene Ontology (GO) terms, associated with various homeostasis processes. Highest number of genes belongs to cellular calcium ion homeostasis, followed by tissue homeostasis. A total of 97 genes were identified, with 16 GO terms related to water homeostasis. Claudins, Aquaporins, Connexins/Gap junctions, Adenylate cyclase, Solute carriers and Voltage gated potassium channel genes were observed to be higher in number in T. ilisha, as compared to that in other teleost species. Seven novel gene variants, in addition to claudin gene (CLDZ), were found in T. ilisha. The present study also identified two putative novel genes, NKAIN3 and L4AM1, for the first time in fish, for which further studies are required for pinpointing their functions in fish. In addition, 1.6 million simple sequence repeats were mined from draft genome assembly. The study provides a valuable genomic resource for the anadromous Hilsa. It will form a basis for future studies, pertaining to its adaptation mechanisms to different salinity levels during migration, which in turn would facilitate in its domestication.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
| | - Tanushree Dangi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Ratnesh K Tripathi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.,Imperial Life Sciences (P) Limited, Gurgaon, Haryana, 122001, India
| | - Rajesh Kumar
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Rajeev K Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - J K Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| | - T Mohapatra
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| |
Collapse
|
8
|
Kolosov D, Kelly SP. The mineralocorticoid receptor contributes to barrier function of a model fish gill epithelium. ACTA ACUST UNITED AC 2019; 222:jeb.192096. [PMID: 31085602 DOI: 10.1242/jeb.192096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Cortisol-induced epithelial tightening of a primary cultured rainbow trout gill epithelium model occurs in association with reduced paracellular permeability and increased abundance of select barrier-forming tight junction (TJ) proteins. Corticosteroid receptor (CR) pharmacological blocker studies have suggested that to produce this tightening effect, cortisol acts on the mineralocorticoid receptor (MR) as well as glucocorticoid receptors (GRs). This study considered how cortisol influences model gill epithelium permeability and TJ properties by transcriptional knockdown of the gene encoding the MR (mr-KD) using double-stranded RNA. Following mr-KD, a significant reduction in MR protein abundance was observed in the epithelium. The mr-KD epithelium demonstrated reduced transepithelial resistance (TER) and an increase in the paracellular flux of [3H]polyethylene glycol (MW 400 kDa, PEG-400). Concurrently, mRNA abundance of gr2 and 11βhsd increased, indicating a possible compensatory response to mr-KD. Transcript abundance of claudin (cldn)-6, -8d, -23a and -28b decreased while that of cldn-20a increased in mr-KD preparations. Cortisol-induced epithelial tightening was enhanced in mr-KD preparations, suggesting that alterations in CRs and TJ composition augmented model epithelium barrier function in response to lowered MR abundance. Cortisol treatment significantly increased the transcript and protein abundance of TJ proteins such as Cldn-8d and -28b. However, in mr-KD preparations, Cldn-28b protein abundance did not significantly alter in response to cortisol treatment, while Cldn-8d abundance was significantly elevated. Data suggest that mr-KD compromises normal barrier function of a primary cultured rainbow trout gill epithelium in both the presence and absence of cortisol and that Cldn-28b protein abundance may be modulated by cortisol via the MR only.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
9
|
Abstract
The skin, gills, and gut are the most extensively studied mucosal organs in fish. These mucosal structures provide the intimate interface between the internal and external milieus and serve as the indispensable first line of defense. They have highly diverse physiological functions. Their role in defense can be highlighted in three shared similarities: their microanatomical structures that serve as the physical barrier and hold the immune cells and the effector molecules; the mucus layer, also a physical barrier, contains an array of potent bioactive molecules; and the resident microbiota. Mucosal surfaces are responsive and plastic to the different changes in the aquatic environment. The direct interaction of the mucosa with the environment offers some important information on both the physiological status of the host and the conditions of the aquatic environment. Increasing attention has been directed to these features in the last year, particularly on how to improve the overall health of the fish through manipulation of mucosal functions and on how the changes in the mucosa, in response to varying environmental factors, can be harnessed to improve husbandry. In this short review, we highlight the current knowledge on how mucosal surfaces respond to various environmental factors relevant to aquaculture and how they may be exploited in fostering sustainable fish farming practices, especially in controlled aquaculture environments.
Collapse
|
10
|
Kolosov D, Kelly SP. Tricellular tight junction-associated angulins in the gill epithelium of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2018; 315:R312-R322. [PMID: 29631364 DOI: 10.1152/ajpregu.00431.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular physiology of the tricellular tight junction (tTJ)-associated proteins lipolysis-stimulated lipoprotein receptor ( lsr, = angulin-1) and an immunoglobulin-like domain-containing receptor ( ildr2, ≈angulin-3) was examined in model trout gill epithelia. Transcripts encoding lsr and ildr2 are broadly expressed in trout organs. A reduction in lsr and ildr2 mRNA abundance was observed during and after confluence in flask-cultured gill cells. In contrast, as high-resistance and low-permeability characteristics developed in a model gill epithelium cultured on permeable polyethylene terephthalate membrane inserts, lsr and ildr2 transcript abundance increased. However, as epithelia entered the developmental plateau phase, lsr abundance returned to initial values, while ildr2 transcript abundance remained elevated. When mitochondrion-rich cells were introduced to model preparations, lsr mRNA abundance was unaltered and ildr2 mRNA abundance significantly increased. Transcript abundance of ildr2 was not altered in association with corticosteroid-induced tightening of the gill epithelium, while lsr mRNA abundance decreased. Transcriptional knockdown of the tTJ protein tricelluin (Tric) reduced Tric abundance, increased gill epithelium permeability, and increased lsr without significantly altering ildr2 transcript abundance. Data suggest that angulins contribute to fish gill epithelium barrier properties but that Lsr and Ildr2 seem likely to play different roles. This is because ildr2 typically exhibited increased abundance in association with decreased model permeability, while lsr abundance changed in a manner that suggested a role in Tric recruitment to the tTJ.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University , Toronto, Ontario , Canada
| | - Scott P Kelly
- Department of Biology, York University , Toronto, Ontario , Canada
| |
Collapse
|
11
|
Marshall WS, Breves JP, Doohan EM, Tipsmark CK, Kelly SP, Robertson GN, Schulte PM. claudin-10 isoform expression and cation selectivity change with salinity in salt-secreting epithelia of Fundulusheteroclitus. ACTA ACUST UNITED AC 2018; 221:jeb.168906. [PMID: 29150449 DOI: 10.1242/jeb.168906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
To provide insight into claudin (Cldn) tight junction (TJ) protein contributions to branchial salt secretion in marine teleost fishes, this study examined cldn-10 TJ protein isoforms of a euryhaline teleost (mummichog; Fundulus heteroclitus) in association with salinity change and measurements of transepithelial cation selectivity. Mummichogs were transferred from freshwater (FW) to seawater (SW, 35‰) and from SW to hypersaline SW (2SW, 60‰) in a time course with transfer control groups (FW to FW, and SW to SW). FW to SW transfer increased mRNA abundance of cldn-10d and cldn-10e twofold, whilst cldn-10c and cldn-10f transcripts were unchanged. Transfer from SW to 2SW did not alter cldn-10d, and transiently altered cldn-10e abundance, but increased cldn-10c and cldn-10f fourfold. This was coincident with an increased number of single-stranded junctions (observed by transmission electron microscopy). For both salinity transfers, (1) cldn-10e mRNA was acutely responsive (i.e. after 24 h), (2) other responsive cldn-10 isoforms increased later (3-7 days), and (3) cystic fibrosis transmembrane conductance regulator (cftr) mRNA was elevated in accordance with established changes in transcellular Cl- movement. Changes in mRNA encoding cldn-10c and -10f appeared linked, consistent with the tandem repeat locus in the Fundulus genome, whereas mRNA for tandem cldn-10d and cldn-10e seemed independent of each other. Cation selectivity sequence measured by voltage and conductance responses to artificial SW revealed Eisenman sequence VII: Na+>K+>Rb+∼Cs+>Li+ Collectively, these data support the idea that Cldn-10 TJ proteins create and maintain cation-selective pore junctions in salt-secreting tissues of teleost fishes.
Collapse
Affiliation(s)
- William S Marshall
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Ellen M Doohan
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, Fayetteville, AK 72701, USA
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - George N Robertson
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
12
|
Cuoghi I, Lazzaretti C, Mandrioli M, Mola L, Pederzoli A. Immunohistochemical analysis of the distribution of molecules involved in ionic and pH regulation in the lancelet Branchiostoma floridae (Hubbs, 1922). Acta Histochem 2018; 120:33-40. [PMID: 29169695 DOI: 10.1016/j.acthis.2017.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 11/28/2022]
Abstract
The aim of present work is to analyse the distribution of carbonic anhydrase II (CAII), cystic fibrosis transmembrane regulator (CFTR), vacuolar-type H+-ATPase (V-H+-ATPase), Na+/K+ ATPase, Na+/H+ exchanger (NHE) and SLC26A6 (solute carrier family 26, member 6), also known as pendrin protein, in the lancelet Branchiostoma floridae in order to go in depth in the evolution of osmoregulation and pH regulation in Chordates. In view of their phylogenetic position, lancelets may indeed provide a critical point of reference for studies on osmoregulation evolution in Chordates. The results of present work demonstrated that, except to Na+/K+ ATPase that is strongly expressed in nephridia only, all the other studied molecules are abundantly present in skin, coelomic epithelium, renal papillae and nephridia and hepatic coecum. Thus, it is possible to hypothesize that also in lancelet, as in fish, these organs are involved in pH control and ionic regulation. In the digestive tract of B. floridae, the intestine epithelium was weakly immune-reactive to all tested antibodies, while the hepatic coecum showed an intense immunoreactivity to all molecules. Since in amphioxus the hepatic coecum functions simultaneously as stomach, liver and pancreas, these immunohistochemical results proved the secretion of H+ and HCO3- ions, typical of digestive process. Colocalization studies indicated a co-expression of the studied proteins in all considered organs, excluding NHE and pendrin for renal papillae, since some renal papillae are NHE immunopositive only.
Collapse
Affiliation(s)
- Ivan Cuoghi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Clara Lazzaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Lucrezia Mola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy.
| | - Aurora Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| |
Collapse
|
13
|
Kolosov D, Kelly SP. Claudin-8d is a cortisol-responsive barrier protein in the gill epithelium of trout. J Mol Endocrinol 2017; 59:299-310. [PMID: 28739633 DOI: 10.1530/jme-17-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
The influence of claudin (Cldn) 8 tight junction (TJ) proteins on cortisol-mediated alterations in gill epithelium permeability was examined using a primary cultured trout gill epithelium model. Genes encoding three Cldn-8 proteins (cldn-8b, -8c and -8d) have been identified in trout and all are expressed in the model gill epithelium. Cortisol treatment 'tightened' the gill epithelium, as indicated by increased transepithelial resistance (TER) and reduced paracellular [3H]polyethylene glycol (MW 400 Da; PEG-400) flux. This occurred in association with elevated cldn-8d mRNA abundance, but no alterations in cldn-8b and -8c mRNA abundance were observed. Transcriptional knockdown (KD) of cldn-8d inhibited a cortisol-induced increase in Cldn-8d abundance and reduced the 'epithelium tightening' effect of cortisol in association with increased paracellular PEG-400 flux. Under simulated in vivo conditions (i.e. apical freshwater), cldn-8d KD hindered a cortisol-mediated reduction in basolateral to apical Na+ and Cl- flux (i.e. reduced the ability of cortisol to mitigate ion loss). However, cldn-8d KD did not abolish the tightening effect of cortisol on the gill epithelium. This is likely due, in part, to the effect of cortisol on genes encoding other TJ proteins, which in some cases appeared to exhibit a compensatory response. Data support the idea that Cldn-8d is a barrier protein of the gill epithelium TJ that contributes significantly to corticosteroid-mediated alterations in gill epithelium permeability.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of BiologyYork University, Toronto, Ontario, Canada
| | - Scott P Kelly
- Department of BiologyYork University, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kolosov D, Donini A, Kelly SP. Claudin-31 contributes to corticosteroid-induced alterations in the barrier properties of the gill epithelium. Mol Cell Endocrinol 2017; 439:457-466. [PMID: 27815212 DOI: 10.1016/j.mce.2016.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022]
Abstract
The contribution of Claudin-31 (Cldn-31) to corticosteroid-induced tightening of the trout gill epithelium was examined using a primary cultured model preparation. Cldn-31 is a ∼23 kDa protein that localizes to the periphery of gill epithelial cells and diffusely in select gill cells that are Na+-K+-ATPase-immunoreactive. Transcriptional knockdown (KD) of cldn-31 reduced Cldn-31 abundance and increased epithelium permeability. Under simulated in vivo conditions (apical freshwater), cldn-31 KD increased net ion flux rates (≡ efflux). Cortisol treatment increased Cldn-31 abundance and decreased epithelium permeability. This tightening effect was diminished, but not eliminated, by cldn-31 KD, most likely due to other cortisol-sensitive TJ proteins that were transcriptionally unperturbed or enhanced in cortisol-treated cldn-31 KD preparations. However, cldn-31 KD abolished a cortisol-induced increase in Cldn-8d abundance, which may contribute to compromised cldn-31 KD epithelium permeability. Data suggest an important barrier function for Cldn-31 and an integral role for Cldn-31 in corticosteroid-induced gill epithelium tightening.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
15
|
Kolosov D, Bui P, Donini A, Wilkie MP, Kelly SP. A role for tight junction-associated MARVEL proteins in larval sea lamprey (Petromyzon marinus) osmoregulation. J Exp Biol 2017; 220:3657-3670. [DOI: 10.1242/jeb.161562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023]
Abstract
This study reports on tight junction-associated MARVEL proteins of larval sea lamprey (Petromyzon marinus) and their potential role in ammocoete osmoregulation. Two Occludin isoforms (designated Ocln and Ocln-a) and a tricellulin (Tric) were identified. Transcripts encoding ocln, ocln-a, and tric were broadly expressed in larval lamprey, with greatest abundance of ocln in gut, liver and kidney, ocln-a in the gill and skin, and tric in the kidney. Ocln and Ocln-a resolved as ∼63 kDa and ∼35 kDa MW proteins respectively while Tric resolved as a ∼50 kDa protein. Ocln immunolocalized to the gill vasculature and in gill mucous cells while Ocln-a localized to the gill pouch and gill epithelium. Both Ocln and Ocln-a localized in the nephron, the epidermis and the luminal side of the gut. In branchial tissue, Tric exhibited punctate localization, consistent with its presence at regions of tricellular contact. Following ion-poor water (IPW) acclimation of ammocoetes, serum [Na+] and [Cl−] reduced, but not [Ca++], and carcass moisture content increased. In association, Ocln abundance increased in skin and kidney, but reduced in gill of IPW-acclimated ammocoetes while Ocln-a abundance reduced in the kidney only. Tric abundance increased in the gill. Region-specific alterations in ocln, ocln-a and tric mRNA abundance was also observed in the gut. Data support a role for Ocln, Ocln-a and Tric in the osmoregulatory strategies of a basal vertebrate.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
- Current address: Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Phuong Bui
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Mike P. Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - Scott P. Kelly
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
16
|
Gauberg J, Kolosov D, Kelly SP. Claudin tight junction proteins in rainbow trout (Oncorhynchus mykiss) skin: Spatial response to elevated cortisol levels. Gen Comp Endocrinol 2017; 240:214-226. [PMID: 27771288 DOI: 10.1016/j.ygcen.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
This study examined regional distribution and corticosteroid-induced alterations of claudin (cldn) transcript abundance in teleost fish skin. Regional comparison of mRNA encoding 20 Cldns indicated that 12 exhibit differences in abundance along the dorsoventral axis of skin. However, relative abundance of cldns (i.e. most to least abundant) remained similar in different skin regions. Several cldns appear to be present in the epidermis and dermal vasculature whereas others are present only in the epidermis. Increased circulating cortisol levels significantly altered mRNA abundance of 10 cldns in a region specific manner, as well as corticosteroid receptors and 11β-hydroxysteroid dehydrogenase (type 2). Epidermis and epidermal mucous cell morphometrics also altered in response to cortisol, exhibiting changes that appear to enhance skin barrier properties. Taken together, data provide a first look at spatial variation in the molecular physiology of the teleost fish integument TJ complex and region-specific sensitivity to an endocrine factor.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| | - Dennis Kolosov
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| | - Scott P Kelly
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3 Canada.
| |
Collapse
|
17
|
Bossus MC, Bollinger RJ, Reed PJ, Tipsmark CK. Prolactin and cortisol regulate branchial claudin expression in Japanese medaka. Gen Comp Endocrinol 2017; 240:77-83. [PMID: 27663882 DOI: 10.1016/j.ygcen.2016.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
Abstract
Several gill claudin (Cldn) tight junction proteins in Japanese medaka are regulated by salinity (cldn10 paralogs and cldn28b), while others are constitutively expressed (cldn27a, cldn28a and cldn30c). The role of the endocrine system in this regulation has yet to be understood. The in vitro effects of cortisol and prolactin on cldn expression in gill explant cultures were investigated in medaka. ncc2b and cftr were used as markers of specific ionocytes associated with freshwater- and seawater-acclimation, respectively. Concentration-response experiments were performed by overnight incubation with 0, 0.1, 1 and 10μgmL-1 cortisol or 0, 0.01, 0.1 and 1μgmL-1 ovine prolactin. Cortisol significantly up-regulated cftr, ncc2b, cldn10 paralogs, cldn27a and cldn30c from 1.2- to 5-fold control levels at 10μgmL-1. Cortisol had no effect on cldn28a and cldn28b. Prolactin had a concentration-dependent effect, decreasing expression of cftr (1μgmL-1, 2.2-fold) while increasing ncc2b (from 0.1μgmL-1, 6-7-fold). Prolactin up-regulated expression of 3 cldns: cldn28b (0.1 and 1μgmL-1), cldn10c and cldn10f (1μgmL-1), with up to 2-, 2.5- and 2-fold of control level, respectively. A combination experiment with both hormones showed that they act in synergy on cldn28b and have an additive effect on cftr, ncc2b, cldn10c and cldn10f. Our results showed that cortisol and prolactin are essential to maintain the expression of specific branchial claudins. This work also provides evidence that both hormones act directly on gill of medaka to modulate determinants of paracellular ion movement.
Collapse
Affiliation(s)
- Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; Lyon College, Derby Center for Science and Mathematics, 2300 Highland Road, Batesville, AR 72501, USA
| | - Rebecca J Bollinger
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA
| | - P Justin Reed
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA.
| |
Collapse
|
18
|
Chen CC, Kolosov D, Kelly SP. The liquorice root derivative glycyrrhetinic acid can ameliorate ionoregulatory disturbance in rainbow trout ( Oncorhynchus mykiss ) abruptly exposed to ion-poor water. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:120-129. [DOI: 10.1016/j.cbpa.2016.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 01/11/2023]
|
19
|
Tipsmark CK, Breves JP, Rabeneck DB, Trubitt RT, Lerner DT, Grau EG. Regulation of gill claudin paralogs by salinity, cortisol and prolactin in Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2016; 199:78-86. [DOI: 10.1016/j.cbpa.2016.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022]
|
20
|
Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex. J Comp Physiol B 2016; 186:739-57. [DOI: 10.1007/s00360-016-0987-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/28/2016] [Accepted: 04/02/2016] [Indexed: 01/11/2023]
|
21
|
The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti. J Comp Physiol B 2016; 186:589-602. [DOI: 10.1007/s00360-016-0979-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/06/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
|
22
|
Bossus MC, Madsen SS, Tipsmark CK. Functional dynamics of claudin expression in Japanese medaka (Oryzias latipes): Response to environmental salinity. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:74-85. [DOI: 10.1016/j.cbpa.2015.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022]
|
23
|
Bui P, Kelly SP. Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium model alter in response to acute seawater exposure. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:91-101. [PMID: 26239219 DOI: 10.1016/j.cbpa.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 11/15/2022]
Abstract
Gill epithelium permeability and qualitative/quantitative aspects of gill claudin (cldn) tight junction (TJ) protein transcriptomics were examined with a primary cultured model gill epithelium developed using euryhaline puffer fish (Tetraodon nigroviridis) gills. The model was prepared using seawater-acclimated fish gills and was cultured on permeable cell culture filter supports. The model is composed of 1-2 confluent layers of gill pavement cells (PVCs), with the outer layer exhibiting prominent apical surface microridges and TJs between adjacent cells. During development of electrophysiological characteristics, the model exhibits a sigmoidal increase in transpithelial resistance (TER) and plateaus around 30 kΩcm(2). At this point paracellular movement of [(3)H]polyethylene glycol (PEG) 4000 was low at ~1.75 cm s(-1)×10(-7). When exposed to apical seawater (SW) epithelia exhibit a marked decrease in TER while PEG flux remained unchanged for at least 6 h. In association with this, transcript encoding cldn TJ proteins cldn3c, -23b, -27a, -27c, -32a and -33b increased during the first 6 h while cldn11a decreased. This suggests that these proteins are involved in maintaining barrier properties between gill PVCs of SW fishes. Gill cldn mRNA abundance also altered 6 and 12 h following abrupt SW exposure of puffer fish, but in a manner that differed qualitatively and quantitatively from the cultured model. This most likely reflects the cellular heterogeneity of whole tissue and/or the contribution of the endocrine system in intact fish. The current study provides insight into the physiological and transcriptomic response of euryhaline fish gill cells to a hyperosmotic environment.
Collapse
Affiliation(s)
- Phuong Bui
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
24
|
Sun L, Liu S, Bao L, Li Y, Feng J, Liu Z. Claudin multigene family in channel catfish and their expression profiles in response to bacterial infection and hypoxia as revealed by meta-analysis of RNA-Seq datasets. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:60-9. [PMID: 25681604 DOI: 10.1016/j.cbd.2015.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
Abstract
Claudins are one of the major groups of transmembrane proteins that play crucial roles in tight junctions. In addition to their function in the regulation of paracellular permeability, claudins are also involved in a number of biological processes related to pathogen infection, embryonic development, organ development and hypoxia response. Despite its importance, analyses of claudin genes in channel catfish have not been systematically performed. In this study, a total of 52 claudin genes were identified and characterized in channel catfish. Phylogenetic analyses were conducted to determine their identities and identify a number of lineage-specific claudin gene duplications in channel catfish. Expression profiles of catfish claudin genes in response to enteric septicemia of catfish (ESC) disease and hypoxia stress were determined by analyzing existing RNA-Seq datasets. Claudin genes were significantly down-regulated in the intestine at 3h post-infection, indicating that pathogens may disrupt the mucosal barrier by suppressing the expression of claudin genes. A total of six claudin genes were significantly regulated in the gill after hypoxia stress. Among them, the expressions of cldn-11b and cldn-10d were dramatically altered when comparing hypoxia tolerant fish with intolerant fish, though their specific roles involved in response to hypoxia stress remained unknown.
Collapse
Affiliation(s)
- Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
25
|
Chen CC, Kolosov D, Kelly SP. Effect of the liquorice root derivatives on salt and water balance in a teleost fish, rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2014; 180:86-97. [PMID: 25460830 DOI: 10.1016/j.cbpa.2014.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 01/10/2023]
Abstract
The effect of liquorice root derivatives (LRDs) glycyrrhizic acid (GL) and glycyrrhetinic acid (18βGA) on salt and water balance and end points of gill ion transport in a freshwater teleost, (rainbow trout) was examined after feeding fish diets containing GL or 18βGA (0, 5, 50 or 500 µg/g diet) for a two week period. Serum cortisol levels and gill 11β-hydroxysteroid dehydrogenase type 2 mRNA abundance decreased in fish fed GL but increased (at select doses) in fish fed 18βGA. At higher doses of GL, gill Na(+)-K(+)-ATPase and H(+)-ATPase activity increased, while cystic fibrosis transmembrane conductance regulator type II mRNA abundance significantly decreased at the lowest dose of GL. End points of gill transcellular ion transport were not significantly altered in fish fed 18βGA, except for a reduction in Na(+)-K(+)-ATPase activity at a 50 µg/g dose. In contrast, high doses of GL and 18βGA increased gill transcript abundance of the tight junction protein claudin-31 (cldn-31). Other end points of gill paracellular transport differed in fishes fed LRDs. Tricellulin mRNA abundance was increased by high dose GL and decreased by high dose 18βGA, and cldn-23a and cldn-27b mRNA abundance significantly decreased in response to GL irrespective of dose. Despite the above observations, systemic end points of salt and water balance (i.e. serum [Na(+)] and [Cl(-)] as well as muscle moisture) were unaffected by LRDs. Therefore data suggest that LRDs can alter end points of ion transport in fishes but that overall salt and water balance need not be perturbed.
Collapse
Affiliation(s)
- Chun Chih Chen
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.
| | - Dennis Kolosov
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Scott P Kelly
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
26
|
Kolosov D, Chasiotis H, Kelly SP. Tight junction protein gene expression patterns and changes in transcript abundance during development of model fish gill epithelia. ACTA ACUST UNITED AC 2014; 217:1667-81. [PMID: 24501135 DOI: 10.1242/jeb.098731] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In vertebrates, tight junction (TJ) proteins play an important role in epithelium formation and development, the maintenance of tissue integrity and regulation of TJ permeability. In this study, primary cultured model gill epithelia composed of pavement cells (PVCs) were used to examine TJ protein transcript abundance during the development of epithelium confluence and epithelium resistive properties. Differences in TJ protein expression patterns and transcript abundance between gill models composed of PVCs and models composed of PVCs and mitochondrion-rich cells (MRCs) were also examined. Marked alterations in TJ protein transcript abundance were observed as cells developed to confluence in flask-cultured model gill epithelia. In contrast, during the formation of tissue resistance in insert-cultured epithelia (i.e. epithelia cultured on a permeable substrate), changes in TJ protein mRNA abundance were conservative, despite paracellular marker flux decreasing by orders of magnitude. In both cases significant changes in claudin-8b, -8d, -27b, -28b and -32a transcript abundance were observed, suggesting that temporal alterations in the abundance of these genes are important end points of model gill epithelium integrity. When MRCs were present in cultured gill models, the mRNA abundance of several TJ proteins significantly altered and claudin-10c, -10d and -33b were only detected in preparations that included MRCs. These data provide insight into the role of select TJ proteins in the formation and development of gill epithelia and the maintenance of gill barrier properties. In addition, observations reveal a heterogeneous distribution of claudin TJ proteins in the gill epithelial cells of rainbow trout.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Helen Chasiotis
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|