1
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
2
|
Giglio M, Garro C, Caviedes-Vidal E, Heras H. Egg perivitelline fluid of the invasive snail Pomacea canaliculata affects mice gastrointestinal function and morphology. PeerJ 2018; 6:e5314. [PMID: 30397537 PMCID: PMC6211264 DOI: 10.7717/peerj.5314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 11/30/2022] Open
Abstract
Background Species beloging to the genus Pomacea (Ampullariidae), often referred as apple snails, are freshwater, amphibious snails native to South, Central and North America. Some species such as P. canaliculata have become a driver of ecosystem changes in wetlands and an important rice and taro pest after its introduction to Asia and other parts of the world. Females deposit colored egg clutches above the waterline, a reproductive strategy that exposes the eggs to harsh conditions and terrestrial predation. However, eggs have no reported predators in their native range, probably because of the acquisition of unparalleled biochemical defenses provided by a set of proteins (perivitellins) that nourish embryos and protect them from predators and abiotic factors. Notably, ingestion of egg perivitelline fluid (PVF) decreases rat growth rate and alters their gastrointestinal morphology. The aim of the study is to determine the effect of apple snail egg PVF on mice gut digestive activity, morphology and nutrient absorption. Methods Carbohydrate digestion by intestinal disaccharidases (sucrase-isomaltase and maltase-glucoamylase) was evaluated ex vivo in mice gavaged with 1 or 4 doses of PVF. Changes in gut morphological and absorptive surface were measured. In addition, alteration on nutrient absorption rates, transport pathways and intestinal permeability was evaluated by luminal perfusions of small intestine with radiolabeled L-proline (absorbed by paracellular and transcellular pathways) and L-arabinose (absorbed exclusively by paracellular pathway). Results Perivitelline fluid affected mice displayed significant morphological changes in the small intestine epithelium inducing the appearance of shorter and wider villi as well as fused villi. This resulted in a diminished absorptive surface, notably in the proximal portion. Likewise, the activity of disaccharidases diminished in the proximal portion of the intestine. Total absorption of L-proline increased in treated mice in a dose-dependent manner. There were no differences neither in the ratio of paracellular-to-transcellular absorption of L-proline nor in gut permeability as revealed by the clearance of L-arabinose. Discussion Oral administration of apple snail PVF to mice adversely alters gut morphophysiology by reducing the intestinal absorptive surface, affecting enzymes of sugar metabolism and increasing the absorption rate of nutrients without affecting the relative contribution of the absorption pathways or gut permeability. These results further support the role of PVF in passive anti-predator defenses in Pomacea snail eggs that target the digestive system.
Collapse
Affiliation(s)
- Matías Giglio
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional de La Plata, La Plata, Argentina
| | - Cintia Garro
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional de San Luis, San Luis, San Luis, Argentina.,Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis, San Luis, San Luis, Argentina
| | - Enrique Caviedes-Vidal
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional de San Luis, San Luis, San Luis, Argentina.,Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis, San Luis, San Luis, Argentina
| | - Horacio Heras
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Garro C, Brun A, Karasov WH, Caviedes-Vidal E. Small intestinal epithelial permeability to water-soluble nutrients higher in passerine birds than in rodents. J Anim Physiol Anim Nutr (Berl) 2018; 102:1766-1773. [PMID: 30073711 DOI: 10.1111/jpn.12969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/23/2018] [Accepted: 07/07/2018] [Indexed: 01/01/2023]
Abstract
In the small intestine transcellular and paracellular pathways are implicated in water-soluble nutrient absorption. In small birds the paracellular pathway is quantitatively important while transcellular pathway is much more important in terrestrial mammals. However, there is not a clear understanding of the mechanistic underpinnings of the differences among taxa. This study was aimed to test the hypothesis that paracellular permeability in perfused intestinal segments is higher in passerine birds than rodents. We performed in situ intestinal perfusions on individuals of three species of passerine birds (Passer domesticus, Taeniopygia guttata and Furnarius rufus) and two species of rodents (Mus musculus and Meriones ungiculatus). Using radio-labelled molecules, we measured the uptake of two nutrients absorbed by paracellular and transcellular pathways (L-proline and 3-O-methyl-D-glucose) and one carbohydrate that has no mediated transport (L-arabinose). Birds exhibited ~2 to ~3 times higher L-arabinose clearance per cm2 epithelium than rodents. Moreover, paracellular absorption accounted for proportionally more of 3-O-methyl-D-glucose and L-proline absorption in birds than in rodents. These differences could be explained by differences in intestinal permeability and not by other factors such as increased retention time or higher intestinal nominal surface area. Furthermore, analysis of our results and all other existing data on birds, bats and rodents shows that insectivorous species (one bird, two bats and a rodent) had only 30% of the clearance of L-arabinose of non-insectivorous species. This result may be explained by weaker natural selection for high paracellular permeability in animal- than in plant-consumers. Animal-consumers absorb less sugar and more amino acids, whose smaller molecular size allow them to traverse the paracellular pathway more extensively and faster than glucose.
Collapse
Affiliation(s)
- Cintia Garro
- Laboratorio de Biología Integrativa "Profesor E. Caviedes Codelia", Instituto Multidisciplinario de Investigaciones Biológicas de San Luis y Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis y Consejo de Investigaciones Científicas y Técnicas, San Luis, Argentina
| | - Antonio Brun
- Laboratorio de Biología Integrativa "Profesor E. Caviedes Codelia", Instituto Multidisciplinario de Investigaciones Biológicas de San Luis y Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis y Consejo de Investigaciones Científicas y Técnicas, San Luis, Argentina.,Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin
| | - Enrique Caviedes-Vidal
- Laboratorio de Biología Integrativa "Profesor E. Caviedes Codelia", Instituto Multidisciplinario de Investigaciones Biológicas de San Luis y Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis y Consejo de Investigaciones Científicas y Técnicas, San Luis, Argentina
| |
Collapse
|
4
|
Price ER, Rott KH, Caviedes-Vidal E, Karasov WH. Claudin gene expression patterns do not associate with interspecific differences in paracellular nutrient absorption. Comp Biochem Physiol B Biochem Mol Biol 2016; 191:36-45. [DOI: 10.1016/j.cbpb.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/27/2022]
|
5
|
Price ER, Brun A, Caviedes-Vidal E, Karasov WH. Digestive adaptations of aerial lifestyles. Physiology (Bethesda) 2015; 30:69-78. [PMID: 25559157 DOI: 10.1152/physiol.00020.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Flying vertebrates (birds and bats) are under selective pressure to reduce the size of the gut and the mass of the digesta it carries. Compared with similar-sized nonflying mammals, birds and bats have smaller intestines and shorter retention times. We review evidence that birds and bats have lower spare digestive capacity and partially compensate for smaller intestines with increased paracellular nutrient absorption.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin;
| | - Antonio Brun
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; and
| | - Enrique Caviedes-Vidal
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; and Departamento de Bioquímica y Ciencias Biológicas y Laboratorio de Biología "Professor E. Caviedes Codelia," Universidad Nacional de San Luis, San Luis, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Price ER, Brun A, Gontero-Fourcade M, Fernández-Marinone G, Cruz-Neto AP, Karasov WH, Caviedes-Vidal E. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption. Physiol Biochem Zool 2015; 88:680-4. [PMID: 26658415 DOI: 10.1086/683114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin 53706; 2Laboratorio de Biología Professor E. Caviedes Codelia, Facultad de Ciencias Humanas, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, 5700 San Luis, Argentina; 3Departmento de Zoologia, Universidade Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900 Rio Claro, São Paulo, Brazil; 4Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | | | | | | | | | | | | |
Collapse
|
7
|
Price ER, Rott KH, Caviedes-Vidal E, Karasov WH. Paracellular nutrient absorption is higher in bats than rodents: integrating from intact animals to the molecular level. ACTA ACUST UNITED AC 2014; 217:3483-92. [PMID: 25063860 DOI: 10.1242/jeb.105619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Flying vertebrates have been hypothesized to rely heavily on paracellular absorption of nutrients to compensate for having smaller intestines than non-flyers. We tested this hypothesis in an insectivorous bat (Myotis lucifugus) and two insect-eating rodents (Onychomys leucogaster and Peromyscus leucopus). In intact animals, the fractional absorption of orally dosed l-arabinose (Mr 150) was 82% in M. lucifugus, which was more than twice that of the rodents. Absorption of creatinine (Mr 113) was greater than 50% for all species and did not differ between M. lucifugus and the rodents. We also conducted intestinal luminal perfusions on anesthetized animals. Absorption of l-arabinose per nominal surface area in M. lucifugus was nearly double that of the rodents, while absorption of creatinine was not different among species. Using an everted sleeve preparation, we demonstrated that high concentrations of l-arabinose and creatinine did not inhibit their own uptake, validating their use as passive, paracellular probes. Histological measurements indicated that M. lucifugus has more cells, and presumably more tight junctions, per nominal surface area than P. leucopus. This seems unlikely to explain entirely the higher absorption of l-arabinose in M. lucifugus during perfusions, because l-arabinose absorption normalized to the number of enterocytes was still double that of P. leucopus. As an alternative, we investigated tight junction gene expression. M. lucifugus had higher expression of claudin-1 and claudin-15, and lower expression of claudin-2 relative to P. leucopus. Expression of claudin-7 and occludin did not differ among species. Taken together, our results support the hypothesis that bats have evolved higher paracellular nutrient absorption than non-flying animals, and that this phenomenon might be driven by both histological characteristics and differences in tight junction gene expression.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine H Rott
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Enrique Caviedes-Vidal
- Departamento de Bioquímica y Ciencias Biológicas y Laboratorio de Biología 'Professor E. Caviedes Codelia', Universidad Nacional de San Luis, 5700 San Luis, Argentina Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, 5700 San Luis, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|