1
|
Hajkazemian M, Bossé C, Mozūraitis R, Emami SN. Battleground midgut: The cost to the mosquito for hosting the malaria parasite. Biol Cell 2020; 113:79-94. [PMID: 33125724 DOI: 10.1111/boc.202000039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
In eco-evolutionary studies of parasite-host interactions, virulence is defined as a reduction in host fitness as a result of infection relative to an uninfected host. Pathogen virulence may either promote parasite transmission, when correlated with higher parasite replication rate, or decrease the transmission rate if the pathogen quickly kills the host. This evolutionary mechanism, referred to as 'trade-off' theory, proposes that pathogen virulence evolves towards a level that most benefits the transmission. It has been generally predicted that pathogens evolve towards low virulence in their insect vectors, mainly due to the high dependence of parasite transmission on their vector survival. Therefore, the degree of virulence which malaria parasites impose on mosquito vectors may depend on several external and internal factors. Here, we review briefly (i) the role of mosquito in parasite development, with a particular focus on mosquito midgut as the battleground between Plasmodium and the mosquito host. We aim to point out (ii) the histology of the mosquito midgut epithelium and its role in host defence against parasite's countermeasures in the three main battle sites, namely (a) the lumen (microbiota and biochemical environment), (b) the peritrophic membrane (physical barrier) and (c) the tubular epithelium including the basal membrane (physical and biochemical barrier). Lastly, (iii) we describe the impact which malaria parasite and its virulence factors have on mosquito fitness.
Collapse
Affiliation(s)
- Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Clément Bossé
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,François Rabelais University, Tours, France
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Molecular Attraction AB, Hägersten, Stockholm, Sweden.,Natural Resources Institute, FES, University of Greenwich, London, UK
| |
Collapse
|
2
|
Baia-da-Silva DC, Orfanó AS, Nacif-Pimenta R, de Melo FF, Guerra MGVB, Lacerda MVG, Monteiro WM, Pimenta PFP. Microanatomy of the American Malaria Vector Anopheles aquasalis (Diptera: Culicidae: Anophelinae) Midgut: Ultrastructural and Histochemical Observations. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1636-1649. [PMID: 31321415 PMCID: PMC6821279 DOI: 10.1093/jme/tjz114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 06/10/2023]
Abstract
The mosquito gut is divided into foregut, midgut, and hindgut. The midgut functions in storage and digestion of the bloodmeal. This study used light, scanning (SEM), and transmission (TEM) electron microscopy to analyze in detail the microanatomy and morphology of the midgut of nonblood-fed Anopheles aquasalis females. The midgut epithelium is a monolayer of columnar epithelial cells that is composed of two populations: microvillar epithelial cells and basal cells. The microvillar epithelial cells can be further subdivided into light and dark cells, based on their affinities to toluidine blue and their electron density. FITC-labeling of the anterior midgut and posterior midgut with lectins resulted in different fluorescence intensities, indicating differences in carbohydrate residues. SEM revealed a complex muscle network composed of circular and longitudinal fibers that surround the entire midgut. In summary, the use of a diverse set of morphological methods revealed the general microanatomy of the midgut and associated tissues of An. aquasalis, which is a major vector of Plasmodium spp. (Haemosporida: Plasmodiidae) in America.
Collapse
Affiliation(s)
- Djane C Baia-da-Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
| | - Alessandra S Orfanó
- Instituto Leônidas and Maria Deane, Fundação Oswaldo Cruz-Manaus, Rua Terezina, Adrianópolis, CEP, Manaus, AM, Brazil
| | - Rafael Nacif-Pimenta
- Instituto Leônidas and Maria Deane, Fundação Oswaldo Cruz-Manaus, Rua Terezina, Adrianópolis, CEP, Manaus, AM, Brazil
| | - Fabricio F de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, Candeias, CEP, Vitória da Conquista, BA, Brazil
| | - Maria G V B Guerra
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Av. Augusto de Lima, Barro Preto, CEP, Belo Horizonte, MG, Brazil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
| | - Paulo F P Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Instituto Leônidas and Maria Deane, Fundação Oswaldo Cruz-Manaus, Rua Terezina, Adrianópolis, CEP, Manaus, AM, Brazil
| |
Collapse
|
3
|
Dixon DP, Van Ekeris L, Linser PJ. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E213. [PMID: 28230813 PMCID: PMC5334767 DOI: 10.3390/ijerph14020213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/22/2023]
Abstract
In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the new millennium.
Collapse
Affiliation(s)
- Daniel P Dixon
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
- The Anastasia Mosquito Control District, St. Augustine Florida, Saint Augustine, FL 32092, USA.
| | - Leslie Van Ekeris
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
| | - Paul J Linser
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
| |
Collapse
|
4
|
Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti. Comp Biochem Physiol B Biochem Mol Biol 2016; 204:35-44. [PMID: 27836744 DOI: 10.1016/j.cbpb.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector.
Collapse
|