1
|
Sabry Z, Ho A, Ireland D, Rabeler C, Cochet-Escartin O, Collins EMS. Pharmacological or genetic targeting of Transient Receptor Potential (TRP) channels can disrupt the planarian escape response. PLoS One 2019; 14:e0226104. [PMID: 31805147 PMCID: PMC6894859 DOI: 10.1371/journal.pone.0226104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
In response to noxious stimuli, planarians cease their typical ciliary gliding and exhibit an oscillatory type of locomotion called scrunching. We have previously characterized the biomechanics of scrunching and shown that it is induced by specific stimuli, such as amputation, noxious heat, and extreme pH. Because these specific inducers are known to activate Transient Receptor Potential (TRP) channels in other systems, we hypothesized that TRP channels control scrunching. We found that chemicals known to activate TRPA1 (allyl isothiocyanate (AITC) and hydrogen peroxide) and TRPV (capsaicin and anandamide) in other systems induce scrunching in the planarian species Dugesia japonica and, except for anandamide, in Schmidtea mediterranea. To confirm that these responses were specific to either TRPA1 or TRPV, respectively, we tried to block scrunching using selective TRPA1 or TRPV antagonists and RNA interference (RNAi) mediated knockdown. Unexpectedly, co-treatment with a mammalian TRPA1 antagonist, HC-030031, enhanced AITC-induced scrunching by decreasing the latency time, suggesting an agonistic relationship in planarians. We further confirmed that TRPA1 in both planarian species is necessary for AITC-induced scrunching using RNAi. Conversely, while co-treatment of a mammalian TRPV antagonist, SB-366791, also enhanced capsaicin-induced reactions in D. japonica, combined knockdown of two previously identified D. japonica TRPV genes (DjTRPVa and DjTRPVb) did not inhibit capsaicin-induced scrunching. RNAi of DjTRPVa/DjTRPVb attenuated scrunching induced by the endocannabinoid and TRPV agonist, anandamide. Overall, our results show that although scrunching induction can involve different initial pathways for sensing stimuli, this behavior's signature dynamical features are independent of the inducer, implying that scrunching is a stereotypical planarian escape behavior in response to various noxious stimuli that converge on a single downstream pathway. Understanding which aspects of nociception are conserved or not across different organisms can provide insight into the underlying regulatory mechanisms to better understand pain sensation.
Collapse
Affiliation(s)
- Ziad Sabry
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Alicia Ho
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Olivier Cochet-Escartin
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
2
|
Turner HN, Patel AA, Cox DN, Galko MJ. Injury-induced cold sensitization in Drosophila larvae involves behavioral shifts that require the TRP channel Brv1. PLoS One 2018; 13:e0209577. [PMID: 30586392 PMCID: PMC6306221 DOI: 10.1371/journal.pone.0209577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Nociceptive sensitization involves an increase in responsiveness of pain sensing neurons to sensory stimuli, typically through the lowering of their nociceptive threshold. Nociceptive sensitization is common following tissue damage, inflammation, and disease and serves to protect the affected area while it heals. Organisms can become sensitized to a range of noxious and innocuous stimuli, including thermal stimuli. The basic mechanisms underlying sensitization to warm or painfully hot stimuli have begun to be elucidated, however, sensitization to cold is not well understood. Here, we develop a Drosophila assay to study cold sensitization after UV-induced epidermal damage in larvae. Larvae respond to acute cold stimuli with a set of unique behaviors that include a contraction of the head and tail (CT) or a raising of the head and tail into a U-Shape (US). Under baseline, non-injured conditions larvae primarily produce a CT response to an acute cold (10°C) stimulus, however, we show that cold-evoked responses shift following tissue damage: CT responses decrease, US responses increase and some larvae exhibit a lateral body roll (BR) that is typically only observed in response to high temperature and noxious mechanical stimuli. At the cellular level, class III neurons are required for the decrease in CT, chordotonal neurons are required for the increase in US, and chordotonal and class IV neurons are required for the appearance of BR responses after UV. At the molecular level, we found that the transient receptor potential (TRP) channel brivido-1 (brv1) is required for these behavioral shifts. Our Drosophila model will allow us to precisely identify the genes and circuits involved in cold nociceptive sensitization.
Collapse
Affiliation(s)
- Heather N. Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail: (DNC); (MJG)
| | - Michael J. Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DNC); (MJG)
| |
Collapse
|
3
|
Summers T, Hanten B, Peterson W, Burrell B. Endocannabinoids Have Opposing Effects On Behavioral Responses To Nociceptive And Non-nociceptive Stimuli. Sci Rep 2017; 7:5793. [PMID: 28724917 PMCID: PMC5517658 DOI: 10.1038/s41598-017-06114-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
The endocannabinoid system is thought to modulate nociceptive signaling making it a potential therapeutic target for treating pain. However, there is evidence that endocannabinoids have both pro- and anti-nociceptive effects. In previous studies using Hirudo verbana (the medicinal leech), endocannabinoids were found to depress nociceptive synapses, but enhance non-nociceptive synapses. Here we examined whether endocannabinoids have similar bidirectional effects on behavioral responses to nociceptive vs. non-nociceptive stimuli in vivo. Hirudo were injected with either the 2-arachidonoylglycerol (2-AG) or anandamide and tested for changes in response to nociceptive and non-nociceptive stimuli. Both endocannabinoids enhanced responses to non-nociceptive stimuli and reduced responses to nociceptive stimuli. These pro- and anti-nociceptive effects were blocked by co-injection of a TRPV channel inhibitor, which are thought to function as an endocannabinoid receptor. In experiments to determine the effects of endocannabinoids on animals that had undergone injury-induced sensitization, 2-AG and anandamide diminished sensitization to nociceptive stimuli although the effects of 2-AG were longer lasting. Sensitized responses to non-nociceptive stimuli were unaffected 2-AG or anandamide. These results provide evidence that endocannabinoids can have opposing effects on nociceptive vs. non-nociceptive pathways and suggest that cannabinoid-based therapies may be more appropriate for treating pain disorders in which hyperalgesia and not allodynia is the primary symptom.
Collapse
Affiliation(s)
- Torrie Summers
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.,Riot Games, Santa Monica, CA, USA
| | - Brandon Hanten
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Warren Peterson
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Brian Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
4
|
Hasan R, Leeson-Payne ATS, Jaggar JH, Zhang X. Calmodulin is responsible for Ca 2+-dependent regulation of TRPA1 Channels. Sci Rep 2017; 7:45098. [PMID: 28332600 PMCID: PMC5362816 DOI: 10.1038/srep45098] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/20/2017] [Indexed: 12/04/2022] Open
Abstract
TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly.
Collapse
Affiliation(s)
- Raquibul Hasan
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.,Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Alasdair T S Leeson-Payne
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xuming Zhang
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.,Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.,Schcool of Life &Health Sciences, Aston University, Aston triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
5
|
Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 2017; 117:1461-1473. [PMID: 28053241 DOI: 10.1152/jn.00600.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.
Collapse
Affiliation(s)
- Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
6
|
Bais S, Churgin MA, Fang-Yen C, Greenberg RM. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP) Channels in Schistosoma mansoni. PLoS Negl Trop Dis 2015; 9:e0004295. [PMID: 26655809 PMCID: PMC4676680 DOI: 10.1371/journal.pntd.0004295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ), the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP) channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7-8) subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX) induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA) in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew A. Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert M. Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|