1
|
Hessel AL, Kuehn MN, Palmer BM, Nissen D, Mishra D, Joumaa V, Freundt JK, Ma W, Nishikawa KC, Irving TC, Linke WA. The distinctive mechanical and structural signatures of residual force enhancement in myofibers. Proc Natl Acad Sci U S A 2024; 121:e2413883121. [PMID: 39680764 DOI: 10.1073/pnas.2413883121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
In muscle, titin proteins connect myofilaments together and are thought to be critical for contraction, especially during residual force enhancement (RFE) when steady-state force is elevated after an active stretch. We investigated titin's function during contraction using small-angle X-ray diffraction to track structural changes before and after 50% titin cleavage and in the RFE-deficient, mdm titin mutant. We report that the RFE state is structurally distinct from pure isometric contractions, with increased thick filament strain and decreased lattice spacing, most likely caused by elevated titin-based forces. Furthermore, no RFE structural state was detected in mdm muscle. We posit that decreased lattice spacing, increased thick filament stiffness, and increased non-cross-bridge forces are the major contributors to RFE. We conclude that titin directly contributes to RFE.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Michel N Kuehn
- Institute of Physiology II, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Devin Nissen
- Biophysics Collaborative Access Team, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Dhruv Mishra
- Department of Biological Sciences, University of Northern Arizona, Flagstaff, AZ 86011
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Johanna K Freundt
- Institute of Physiology II, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Weikang Ma
- Biophysics Collaborative Access Team, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Kiisa C Nishikawa
- Department of Biological Sciences, University of Northern Arizona, Flagstaff, AZ 86011
| | - Thomas C Irving
- Biophysics Collaborative Access Team, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
- Heart Center at University Medical Center Göttingen and German Centre for Cardiovascular Research, Partner Site Lower Saxony, Göttingen 37075, Germany
| |
Collapse
|
2
|
Tomalka A. Eccentric muscle contractions: from single muscle fibre to whole muscle mechanics. Pflugers Arch 2023; 475:421-435. [PMID: 36790515 PMCID: PMC10011336 DOI: 10.1007/s00424-023-02794-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Eccentric muscle loading encompasses several unique features compared to other types of contractions. These features include increased force, work, and performance at decreased oxygen consumption, reduced metabolic cost, improved energy efficiency, as well as decreased muscle activity. This review summarises explanatory approaches to long-standing questions in terms of muscular contraction dynamics and molecular and cellular mechanisms underlying eccentric muscle loading. Moreover, this article intends to underscore the functional link between sarcomeric components, emphasising the fundamental role of titin in skeletal muscle. The giant filament titin reveals versatile functions ranging from sarcomere organisation and maintenance, providing passive tension and elasticity, and operates as a mechanosensory and signalling platform. Structurally, titin consists of a viscoelastic spring segment that allows activation-dependent coupling to actin. This titin-actin interaction can explain linear force increases in active lengthening experiments in biological systems. A three-filament model of skeletal muscle force production (mediated by titin) is supposed to overcome significant deviations between experimental observations and predictions by the classic sliding-filament and cross-bridge theories. Taken together, this review intends to contribute to a more detailed understanding of overall muscle behaviour and force generation-from a microscopic sarcomere level to a macroscopic multi-joint muscle level-impacting muscle modelling, the understanding of muscle function, and disease.
Collapse
Affiliation(s)
- André Tomalka
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
3
|
Hessel AL, Kuehn M, Palmer BM, Nissen D, Mishra D, Joumaa V, Freundt J, Ma W, Nishikawa KC, Irving T, Linke WA. The distinctive mechanical and structural signatures of residual force enhancement in myofibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529125. [PMID: 36865266 PMCID: PMC9980001 DOI: 10.1101/2023.02.19.529125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
In muscle, titin proteins connect myofilaments together and are thought to be critical for contraction, especially during residual force enhancement (RFE) when force is elevated after an active stretch. We investigated titin's function during contraction using small-angle X-ray diffraction to track structural changes before and after 50% titin cleavage and in the RFE-deficient, mdm titin mutant. We report that the RFE state is structurally distinct from pure isometric contractions, with increased thick filament strain and decreased lattice spacing, most likely caused by elevated titin-based forces. Furthermore, no RFE structural state was detected in mdm muscle. We posit that decreased lattice spacing, increased thick filament stiffness, and increased non-crossbridge forces are the major contributors to RFE. We conclude that titin directly contributes to RFE.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont; Burlington, VT, 05405-1705, USA
| | - Devin Nissen
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, IL, USA
| | - Dhruv Mishra
- Department of Biological Sciences, University of Northern Arizona; Flagstaff AZ, USA
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Johanna Freundt
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, IL, USA
| | - Kiisa C. Nishikawa
- Department of Biological Sciences, University of Northern Arizona; Flagstaff AZ, USA
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, IL, USA
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster; Muenster, Germany
| |
Collapse
|
4
|
Vatovec R, Kozinc Ž, Voglar M. The Effects of Isometric Fatigue on Trunk Muscle Stiffness: Implications for Shear-Wave Elastography Measurements. SENSORS (BASEL, SWITZERLAND) 2022; 22:9476. [PMID: 36502176 PMCID: PMC9735660 DOI: 10.3390/s22239476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Muscle stiffness has been implicated as a possible factor in low back pain risk. There are few studies on the effects of isometric fatigue on the shear modulus of trunk muscles. This study aimed to investigate the effects of trunk isometric fatigue on the passive and active (during low and high-level contractions) shear moduli of the erector spinae (ES) and superficial and deep multifidus (MF) muscles. We assessed passive and active shear modulus using shear-wave elastography in healthy young participants (n = 22; 11 males, 11 females), before and after an isometric trunk extension fatigue protocol. Maximal voluntary force decreased from 771.2 ± 249.8 N before fatigue to 707.3 ± 204.1 N after fatigue (-8.64%; p = 0.003). Passive shear modulus was significantly decreased after fatigue in the MF muscle (p = 0.006-0.022; Cohen's d = 0.40-46), but not the ES muscle (p = 0.867). Active shear modulus during low-level contraction was not affected by fatigue (p = 0.697-0.701), while it was decreased during high-level contraction for both muscles (p = 0.011; d = 0.29-0.34). Sex-specific analysis indicated the decrease in ES shear modulus was significant in males (p = 0.015; d = 0.31), but not in females (p = 0.140). Conversely, the shear modulus in superficial MF had a statistically significant decrease in females (p = 0.002; d = 0.74) but not in males (p = 0.368). These results have important implications for further investigations of the mechanistic interaction between physical workloads, sex, muscle stiffness (and other variables affecting trunk stability and neuromuscular control), and the development/persistence of low back pain.
Collapse
Affiliation(s)
- Rok Vatovec
- Department of Physiotherapy, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
| | - Žiga Kozinc
- Department of Kinesiology, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
| | - Matej Voglar
- Department of Physiotherapy, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
| |
Collapse
|
5
|
Hessel AL, Monroy JA, Nishikawa KC. Non-cross Bridge Viscoelastic Elements Contribute to Muscle Force and Work During Stretch-Shortening Cycles: Evidence From Whole Muscles and Permeabilized Fibers. Front Physiol 2021; 12:648019. [PMID: 33854441 PMCID: PMC8039322 DOI: 10.3389/fphys.2021.648019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The sliding filament-swinging cross bridge theory of skeletal muscle contraction provides a reasonable description of muscle properties during isometric contractions at or near maximum isometric force. However, it fails to predict muscle force during dynamic length changes, implying that the model is not complete. Mounting evidence suggests that, along with cross bridges, a Ca2+-sensitive viscoelastic element, likely the titin protein, contributes to muscle force and work. The purpose of this study was to develop a multi-level approach deploying stretch-shortening cycles (SSCs) to test the hypothesis that, along with cross bridges, Ca2+-sensitive viscoelastic elements in sarcomeres contribute to force and work. Using whole soleus muscles from wild type and mdm mice, which carry a small deletion in the N2A region of titin, we measured the activation- and phase-dependence of enhanced force and work during SSCs with and without doublet stimuli. In wild type muscles, a doublet stimulus led to an increase in peak force and work per cycle, with the largest effects occurring for stimulation during the lengthening phase of SSCs. In contrast, mdm muscles showed neither doublet potentiation features, nor phase-dependence of activation. To further distinguish the contributions of cross bridge and non-cross bridge elements, we performed SSCs on permeabilized psoas fiber bundles activated to different levels using either [Ca2+] or [Ca2+] plus the myosin inhibitor 2,3-butanedione monoxime (BDM). Across activation levels ranging from 15 to 100% of maximum isometric force, peak force, and work per cycle were enhanced for fibers in [Ca2+] plus BDM compared to [Ca2+] alone at a corresponding activation level, suggesting a contribution from Ca2+-sensitive, non-cross bridge, viscoelastic elements. Taken together, our results suggest that a tunable viscoelastic element such as titin contributes to: (1) persistence of force at low [Ca2+] in doublet potentiation; (2) phase- and length-dependence of doublet potentiation observed in wild type muscles and the absence of these effects in mdm muscles; and (3) increased peak force and work per cycle in SSCs. We conclude that non-cross bridge viscoelastic elements, likely titin, contribute substantially to muscle force and work, as well as the phase-dependence of these quantities, during dynamic length changes.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Jenna A Monroy
- W.M. Keck Science Department, Claremont Colleges, Claremont, CA, United States
| | - Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
6
|
Vera AM, Peterson LE, Dong D, Haghshenas V, Yetter TR, Delgado DA, McCulloch PC, Varner KE, Harris JD. High Prevalence of Connective Tissue Gene Variants in Professional Ballet. Am J Sports Med 2020; 48:222-228. [PMID: 31765226 DOI: 10.1177/0363546519887955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is a high prevalence of hypermobility spectrum disorder (HSD) in dancers. While there is no known genetic variant for HSD, hypermobile Ehlers-Danlos syndrome is a genetic disorder that exists within HSD. There are many connective tissue disorders (CTDs) with known (and unknown) genes associated with hypermobility. Hypermobility has distinct advantages for participation in flexibility sports, including ballet. PURPOSE To determine the prevalence of gene variants associated with hypermobility in a large professional ballet company. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS In this cross-sectional investigation, 51 professional male and female dancers from a large metropolitan ballet company were eligible and offered participation after an oral and written informed consent process. Whole blood was obtained from peripheral venipuncture, and DNA was isolated. Isolated DNA was subsequently enriched for the coding exons of 60 genes associated with CTD that included hypermobility as a phenotype, including Ehlers-Danlos syndromes, osteogenesis imperfecta, Marfan syndrome, and others. Genes were targeted with hybrid capture technology. Prepared DNA libraries were then sequenced with next-generation sequencing technology. Genetic database search tools (Human Gene Mutation Database and e!Ensembl, http://useast.ensembl.org/ ) were used to query specific variants. Descriptive statistics were calculated. RESULTS Of 51 dancers, 32 (63%) agreed to participate in DNA analysis (mean ± SD age, 24.3 ± 4.4 years; 18 men, 14 women). Twenty-eight dancers had at least 1 variant in the 60 genes tested, for an 88% prevalence. A total of 80 variants were found. A variant in 26 of the 60 genes was found in at least 1 dancer. Among the 28 dancers with variants, 16 were found in the TTN gene; 10 in ZNF469; 5 in RYR1; 4 in COL12A1; 3 in ABCC6 and COL6A2; 2 in ADAMTS2, CBS, COL1A2, COL6A3, SLC2A10, TNC, and TNXB; and 1 in ATP6V0A2, B4GALT7, BMP1, COL11A1, COL5A2, COL6A1, DSE, FBN1, FBN2, NOTCH1, PRDM5, SMAD3, and TGFBR1. Nine variants found in this population have never been reported. No identified variant was identical to any other variant. No identified variant was known to be disease causing. In the general population, the prevalence of each variant ranges from never reported to 0.33%. In the study population, the prevalence of each variant was 3.13%. There was no association between hypermobility scores and genetic variants. CONCLUSION Genetic variants in CTD-associated genes are highly prevalent (88%) in professional ballet dancers. This may significantly account for the high degree of motion in this population.
Collapse
Affiliation(s)
- Angelina M Vera
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, USA
| | - Leif E Peterson
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, USA
| | - David Dong
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, USA
| | - Varan Haghshenas
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, USA
| | - Thomas R Yetter
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, USA
| | | | | | - Kevin E Varner
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, USA
| | - Joshua D Harris
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Begovic H, Can F, Yağcioğlu S, Ozturk N. Passive stretching-induced changes detected during voluntary muscle contractions. Physiother Theory Pract 2018; 36:731-740. [PMID: 30015563 DOI: 10.1080/09593985.2018.1491660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Stretching exercises are known for reduction of musculoskeletal stiffness and elongation of electromechanical delay (EMD). However, computing a change in stiffness by means of time delays, detected between onset of electromyographic (EMG), mechanomyographic (MMG) and force signals, can reveal changes in subcomponents (Δt EMG-MMG and Δt MMG-FORCE) of EMD after stretching. In our study, the effect of stretching was investigated while quadriceps femoris (QF) muscle performed isometric contractions. The EMG, MMG, and Force signals were recorded from rectus femoris (RF) and vastus medialis (VM) during five voluntarily isometric contractions at 15°, 30°, and 45° of knee flexion angle, while the leg was positioned on a custom-made device. Subjects in both intervention and control groups underwent same recording procedure before and after stretching. No difference between the baseline repeated contractions (before stretching) was ensured by ANOVA for repeated measures while a difference between PRE and POST was analyzed and concluded based on the effect size results. The EMD did not change; however, subcomponents (Δt EMG-MMG and Δt MMG-FORCE) showed differences within RF and VM muscles after stretching. The 30° knee flexion angle appears to be a position where isometric contraction intensity needs to be carefully monitored during rehabilitation period.
Collapse
Affiliation(s)
- Haris Begovic
- Department of Physical Therapy and Rehabilitation, Hacettepe University , Ankara, Turkey.,Department of Biomedical Engineering, Hong Kong Polytechnic University , Hong Kong
| | - Filiz Can
- Department of Physical Therapy and Rehabilitation, Hacettepe University , Ankara, Turkey
| | - Suha Yağcioğlu
- Department of Biophysics, Faculty of Medicine, Hacettepe University , Ankara, Turkey
| | - Necla Ozturk
- Department of Biophysics, Faculty of Medicine, Maltepe University , Istanbul, Turkey
| |
Collapse
|
8
|
Schoenrock B, Zander V, Dern S, Limper U, Mulder E, Veraksitš A, Viir R, Kramer A, Stokes MJ, Salanova M, Peipsi A, Blottner D. Bed Rest, Exercise Countermeasure and Reconditioning Effects on the Human Resting Muscle Tone System. Front Physiol 2018; 9:810. [PMID: 30018567 PMCID: PMC6037768 DOI: 10.3389/fphys.2018.00810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/08/2018] [Indexed: 01/11/2023] Open
Abstract
The human resting muscle tone (HRMT) system provides structural and functional support to skeletal muscle and associated myofascial structures (tendons, fascia) in normal life. Little information is available on changes to the HRMT in bed rest. A set of dynamic oscillation mechanosignals ([Hz], [N/m], log decrement, [ms]) collected and computed by a hand-held digital palpation device (MyotonPRO) were used to study changes in tone and in key biomechanical and viscoelastic properties in global and postural skeletal muscle tendons and fascia from a non-exercise control (CTR) and an exercise (JUMP) group performing reactive jumps on a customized sledge system during a 60 days head-down tilt bed rest (RSL Study 2015–2016). A set of baseline and differential natural oscillation signal patterns were identified as key determinants in resting muscle and myofascial structures from back, thigh, calf, patellar and Achilles tendon, and plantar fascia. The greatest changes were found in thigh and calf muscle and tendon, with little change in the shoulder muscles. Functional tests (one leg jumps, electromyography) showed only trends in relevant leg muscle groups. Increased anti-Collagen-I immunoreactivity found in CTR soleus biopsy cryosections was absent from JUMP. Results allow for a muscle health status definition after chronic disuse in bed rest without and with countermeasure, and following reconditioning. Findings improve our understanding of structural and functional responses of the HRMT to disuse and exercise, may help to guide treatment in various clinical settings (e.g., muscle tone disorders, neuro-rehabilitation), and promote monitoring of muscle health and training status in personalized sport and space medicine.
Collapse
Affiliation(s)
- Britt Schoenrock
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Vanja Zander
- Neuroscience Group, German Sports University, Cologne, Germany
| | - Sebastian Dern
- Neuroscience Group, German Sports University, Cologne, Germany
| | - Ulrich Limper
- Human Physiology, German Aerospace Center, Cologne, Germany
| | - Edwin Mulder
- Human Physiology, German Aerospace Center, Cologne, Germany
| | - Alar Veraksitš
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Ragnar Viir
- Ragnar Viir, Limited Partnership, Helsinki, Finland
| | - Andreas Kramer
- Neuromechanics Research Group, Sport Sciences, University of Konstanz, Konstanz, Germany
| | - Maria J Stokes
- Faculty of Health Sciences, University of Southampton, Southampton, United Kingdom
| | - Michele Salanova
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Berlin, Germany
| | | | - Dieter Blottner
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Berlin, Germany
| |
Collapse
|
9
|
Ivanenko Y, Gurfinkel VS. Human Postural Control. Front Neurosci 2018; 12:171. [PMID: 29615859 PMCID: PMC5869197 DOI: 10.3389/fnins.2018.00171] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
From ancient Greece to nowadays, research on posture control was guided and shaped by many concepts. Equilibrium control is often considered part of postural control. However, two different levels have become increasingly apparent in the postural control system, one level sets a distribution of tonic muscle activity (“posture”) and the other is assigned to compensate for internal or external perturbations (“equilibrium”). While the two levels are inherently interrelated, both neurophysiological and functional considerations point toward distinct neuromuscular underpinnings. Disturbances of muscle tone may in turn affect movement performance. The unique structure, specialization and properties of skeletal muscles should also be taken into account for understanding important peripheral contributors to postural regulation. Here, we will consider the neuromechanical basis of habitual posture and various concepts that were rather influential in many experimental studies and mathematical models of human posture control.
Collapse
Affiliation(s)
- Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Victor S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Tomalka A, Rode C, Schumacher J, Siebert T. The active force-length relationship is invisible during extensive eccentric contractions in skinned skeletal muscle fibres. Proc Biol Sci 2018; 284:rspb.2016.2497. [PMID: 28469023 DOI: 10.1098/rspb.2016.2497] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
In contrast to experimentally observed progressive forces in eccentric contractions, cross-bridge and sliding-filament theories of muscle contraction predict that varying myofilament overlap will lead to increases and decreases in active force during eccentric contractions. Non-cross-bridge contributions potentially explain the progressive total forces. However, it is not clear whether underlying abrupt changes in the slope of the nonlinear force-length relationship are visible in long isokinetic stretches, and in which proportion cross-bridges and non-cross-bridges contribute to muscle force. Here, we show that maximally activated single skinned rat muscle fibres behave (almost across the entire working range) like linear springs. The force slope is about three times the maximum isometric force per optimal length. Cross-bridge and non-cross-bridge contributions to the muscle force were investigated using an actomyosin inhibitor. The experiments revealed a nonlinear progressive contribution of non-cross-bridge forces and suggest a nonlinear cross-bridge contribution similar to the active force-length relationship (though with increased optimal length and maximum isometric force). The linear muscle behaviour might significantly reduce the control effort. Moreover, the observed slight increase in slope with initial length is in accordance with current models attributing the non-cross-bridge force to titin.
Collapse
Affiliation(s)
- André Tomalka
- Institute of Sport and Movement Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Baden-Württemberg, Germany
| | - Christian Rode
- Department of Motion Science, Friedrich-Schiller-University Jena, 07749 Jena, Thuringia, Germany
| | - Jens Schumacher
- Institute of Mathematics/Stochastics, Friedrich-Schiller-University Jena, 07749 Jena, Thuringia, Germany
| | - Tobias Siebert
- Institute of Sport and Movement Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Baden-Württemberg, Germany
| |
Collapse
|
11
|
The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca 2+ biosensors and active/passive biomechanics in muscle and biomaterials. Biosens Bioelectron 2017; 102:589-599. [PMID: 29245144 DOI: 10.1016/j.bios.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/11/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
Abstract
We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca2+ ion responses (force resolution 1µN, 0-10mN for the given sensor; [Ca2+] range ~ 100nM-25µM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1µm encoder resolution; stepper motors, 4µm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research. Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers.
Collapse
|
12
|
Lieber RL, Roberts TJ, Blemker SS, Lee SSM, Herzog W. Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil 2017; 14:108. [PMID: 29058612 PMCID: PMC5651624 DOI: 10.1186/s12984-017-0318-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/05/2017] [Indexed: 01/06/2023] Open
Abstract
The following papers by Richard Lieber (Skeletal Muscle as an Actuator), Thomas Roberts (Elastic Mechanisms and Muscle Function), Silvia Blemker (Skeletal Muscle has a Mind of its Own: a Computational Framework to Model the Complex Process of Muscle Adaptation) and Sabrina Lee (Muscle Properties of Spastic Muscle (Stroke and CP) are summaries of their representative contributions for the session on skeletal muscle mechanics, energetics and plasticity at the 2016 Biomechanics and Neural Control of Movement Conference (BANCOM 2016). Dr. Lieber revisits the topic of sarcomere length as a fundamental property of skeletal muscle contraction. Specifically, problems associated with sarcomere length non-uniformity and the role of sarcomerogenesis in diseases such as cerebral palsy are critically discussed. Dr. Roberts then makes us aware of the (often neglected) role of the passive tissues in muscles and discusses the properties of parallel elasticity and series elasticity, and their role in muscle function. Specifically, he identifies the merits of analyzing muscle deformations in three dimensions (rather than just two), because of the potential decoupling of the parallel elastic element length from the contractile element length, and reviews the associated implications for the architectural gear ratio of skeletal muscle contraction. Dr. Blemker then tackles muscle adaptation using a novel way of looking at adaptive processes and what might drive adaptation. She argues that cells do not have pre-programmed behaviors that are controlled by the nervous system. Rather, the adaptive responses of muscle fibers are determined by sub-cellular signaling pathways that are affected by mechanical and biochemical stimuli; an exciting framework with lots of potential. Finally, Dr. Lee takes on the challenging task of determining human muscle properties in vivo. She identifies the dilemma of how we can demonstrate the effectiveness of a treatment, specifically in cases of muscle spasticity following stroke or in children with cerebral palsy. She then discusses the merits of ultrasound based elastography, and the clinical possibilities this technique might hold. Overall, we are treated to a vast array of basic and clinical problems in skeletal muscle mechanics and physiology, with some solutions, and many suggestions for future research.
Collapse
Affiliation(s)
- Richard L Lieber
- Rehabilitation Institute of Chicago, Chicago, USA.,Northwestern University, Evanston, USA
| | | | | | | | - Walter Herzog
- University of Calgary, Faculty of Kinesiology, Calgary, Canada.
| |
Collapse
|
13
|
Nocella M, Cecchi G, Colombini B. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature. J Physiol 2017; 595:4317-4328. [PMID: 28332714 DOI: 10.1113/jp273672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Actomyosin ATP hydrolysis occurring during muscle contraction releases inorganic phosphate [Pi ] in the myoplasm. High [Pi ] reduces force and affects force kinetics in skinned muscle fibres at low temperature. These effects decrease at high temperature, raising the question of their importance under physiological conditions. This study provides the first analysis of the effects of Pi on muscle performance in intact mammalian fibres at physiological temperature. Myoplasmic [Pi ] was raised by fatiguing the fibres with a series of tetanic contractions. [Pi ] increase reduces muscular force mainly by decreasing the force of the single molecular motor, the crossbridge, and alters the crossbridge response to fast length perturbation indicating faster kinetics. These results are in agreement with schemes of actomyosin ATPase and the crossbridge cycle including a low- or no-force state and show that fibre length changes perturb the Pi -sensitive force generation of the crossbridge cycle. ABSTRACT Actomyosin ATP hydrolysis during muscle contraction releases inorganic phosphate, increasing [Pi ] in the myoplasm. Experiments in skinned fibres at low temperature (10-12°C) have shown that [Pi ] increase depresses isometric force and alters the kinetics of actomyosin interaction. However, the effects of Pi decrease with temperature and this raises the question of the role of Pi under physiological conditions. The present experiments were performed to investigate this point. Intact fibre bundles isolated from the flexor digitorum brevis of C57BL/6 mice were stimulated with a series of tetanic contractions at 1.5 s intervals at 33°C. As show previously the most significant change induced by a bout of contractile activity similar to the initial 10 tetani of the series was an increase of [Pi ] without significant Ca2+ or pH changes. Measurements of force, stiffness and responses to fast stretches and releases were therefore made on the 10th tetanus of the series and compared with control. We found that (i) tetanic force at the 10th tetanus was ∼20% smaller than control without a significant decrease of crossbridge stiffness; and (ii) the force recovery following quick stretches and releases was faster than in control. These results indicate that at physiological temperature the increase of [Pi ] occurring during early fatigue reduces tetanic force mainly by depressing the individual crossbridge force and accelerating crossbridge kinetics.
Collapse
Affiliation(s)
- M Nocella
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. B. Morgagni, 63, 50134, Florence, Italy
| | - G Cecchi
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. B. Morgagni, 63, 50134, Florence, Italy
| | - B Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. B. Morgagni, 63, 50134, Florence, Italy
| |
Collapse
|