1
|
McCormick LR, Levin LA, Oesch NW. Reduced Oxygen Impairs Photobehavior in Marine Invertebrate Larvae. THE BIOLOGICAL BULLETIN 2022; 243:255-271. [PMID: 36548968 DOI: 10.1086/717565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOrganisms in coastal waters experience naturally high oxygen variability and steep oxygen gradients with depth, in addition to ocean deoxygenation. They often undergo diel vertical migration involving a change in irradiance that initiates a visual behavior. Retinal function has been shown to be highly sensitive to oxygen loss; here we assess whether visual behavior (photobehavior) in paralarvae of the squid Doryteuthis opalescens and the octopus Octopus bimaculatus is affected by low oxygen conditions, using a novel behavioral paradigm. Larvae showed an irradiance-dependent, descending photobehavior after extinction of the light stimulus, measured through the change in vertical position of larvae in the chamber. The magnitude of photobehavior was decreased as oxygen was reduced, and the response was entirely gone at <6.4 kPa partial pressure of oxygen (<74.7 μmol kg-1 at 15.3 °C) in D. opalescens paralarvae. Oxygen also affected photobehavior in O. bimaculatus paralarvae. The mean vertical velocity of paralarvae was unaffected by exposure to reduced oxygen, indicating that oxygen deficits selectively affect vision prior to locomotion. These findings suggest that variable and declining oxygen conditions in coastal upwelling areas and elsewhere will impair photobehavior and likely affect the distribution, migration behavior, and survival of highly visual marine species.
Collapse
|
2
|
Hobbs L, Banas NS, Cohen JH, Cottier FR, Berge J, Varpe Ø. A marine zooplankton community vertically structured by light across diel to interannual timescales. Biol Lett 2021; 17:20200810. [PMID: 33622076 PMCID: PMC8086989 DOI: 10.1098/rsbl.2020.0810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
The predation risk of many aquatic taxa is dominated by visually searching predators, commonly a function of ambient light. Several studies propose that changes in visual predation will become a major climate-change impact on polar marine ecosystems. The High Arctic experiences extreme seasonality in the light environment, from 24 h light to 24 h darkness, and therefore provides a natural laboratory for studying light and predation risk over diel to seasonal timescales. Here, we show that zooplankton (observed using acoustics) in an Arctic fjord position themselves vertically in relation to light. A single isolume (depth-varying line of constant light intensity, the value of which is set at the lower limit of photobehaviour reponses of Calanus spp. and krill) forms a ceiling on zooplankton distribution. The vertical distribution is structured by light across timescales, from the deepening of zooplankton populations at midday as the sun rises in spring, to the depth to which zooplankton ascend to feed during diel vertical migration. These results suggest that zooplankton might already follow a foraging strategy that will keep visual predation risk roughly constant under changing light conditions, such as those caused by the reduction of sea ice, but likely with energetic costs such as lost feeding opportunities as a result of altered habitat use.
Collapse
Affiliation(s)
- Laura Hobbs
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| | - Neil S. Banas
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
| | - Jonathan H. Cohen
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, Lewes, DE, USA
| | - Finlo R. Cottier
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
- Faculty for Biosciences, Fisheries and Economics, Department for Arctic and Marine Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jørgen Berge
- Faculty for Biosciences, Fisheries and Economics, Department for Arctic and Marine Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Arctic Biology, University Centre in Svalbard, Pb 156, N-9171 Longyearbyen, Norway
- Department of Biology and Technology, Centre of Autonomous Marine Operations and Systems, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Øystein Varpe
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
- Norwegian Institute for Nature Research, 5006 Bergen, Norway
| |
Collapse
|
3
|
Payette W, Sullivan A. The effect of predator kairomones on caudal regeneration by Allegheny Mountain Dusky Salamanders (Desmognathus ochrophaeus). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many prey use autotomy as an antipredator mechanism. Rapid regeneration of autotomized appendages is beneficial because forfeited tissues may serve as organs for energy storage, accessories for locomotion, or indicators of social status. We monitored levels of caudal regeneration by Allegheny Mountain Dusky Salamanders (Desmognathus ochrophaeus Cope, 1859) exposed to kairomones from predatory Eastern Garter Snakes (Thamnophis sirtalis (Linnaeus, 1758)). After the induction of autotomy, salamanders were exposed to one of three treatment regimens: blank (water), or acute (30 min per week) or chronic (constant) exposure to predator kairomones during a 12-week study period. Overall, the mean volume of regenerated tissue, as a percentage of the original tail volume, was highest for individuals exposed to the blank versus predator kairomones. When the combined effects of time elapsed since the induction of caudal autotomy and the different treatment regimens were considered, we found that the mean volume of regenerated tissue was significantly greater for control salamanders beginning 8 weeks after autotomy. The mechanism contributing to the differential rates of regeneration among individuals in our treatment groups is unknown, but previous work suggests that elevated stress related to predation threat can have detrimental effects on wound healing and growth in amphibians.
Collapse
Affiliation(s)
- W.I. Payette
- Department of Biology, Houghton College, Houghton, NY 14744, USA
| | - A.M. Sullivan
- Department of Biology, Houghton College, Houghton, NY 14744, USA
- Department of Biology, Houghton College, Houghton, NY 14744, USA
| |
Collapse
|
4
|
Brown ER, Cepeda MR, Mascuch SJ, Poulson-Ellestad KL, Kubanek J. Chemical ecology of the marine plankton. Nat Prod Rep 2019; 36:1093-1116. [DOI: 10.1039/c8np00085a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A review of chemically mediated interactions in planktonic marine environments covering new studies from January 2015 to December 2017.
Collapse
Affiliation(s)
- Emily R. Brown
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Marisa R. Cepeda
- School of Chemistry and Biochemistry
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Samantha J. Mascuch
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | | | - Julia Kubanek
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| |
Collapse
|
5
|
Spitzner F, Meth R, Krüger C, Nischik E, Eiler S, Sombke A, Torres G, Harzsch S. An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front Zool 2018; 15:27. [PMID: 29989069 PMCID: PMC6035453 DOI: 10.1186/s12983-018-0271-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The life history stages of brachyuran crustaceans include pelagic larvae of the Zoea type which grow by a series of moults from one instar to the next. Zoeae actively feed and possess a wide range of organ systems necessary for autonomously developing in the plankton. They also display a rich behavioural repertoire that allows for responses to variations in environmental key factors such as light, hydrostatic pressure, tidal currents, and temperature. Brachyuran larvae have served as distinguished models in the field of Ecological Developmental Biology fostering our understanding of diverse ecophysiological aspects such as phenotypic plasticity, carry-over effects on life-history traits, and adaptive mechanisms that enhance tolerance to fluctuations in environmental abiotic factors. In order to link such studies to the level of tissues and organs, this report analyses the internal anatomy of laboratory-reared larvae of the European shore crab Carcinus maenas. This species has a native distribution extending across most European waters and has attracted attention because it has invaded five temperate geographic regions outside of its native range and therefore can serve as a model to analyse thermal tolerance of species affected by rising sea temperatures as an effect of climate change. RESULTS Here, we used X-ray micro-computed tomography combined with 3D reconstruction to describe organogenesis in brachyuran larvae. We provide a detailed atlas of the larval internal organization to complement existing descriptions of its external morphology. In a multimethodological approach, we also used cuticular autofluorescence and classical histology to analyse the anatomy of selected organ systems. CONCLUSIONS Much of our fascination for the anatomy of brachyuran larvae stems from the opportunity to observe a complex organism on a single microscopic slide and the realization that the entire decapod crustacean bauplan unfolds from organ anlagen compressed into a miniature organism in the sub-millimetre range. The combination of imaging techniques used in the present study provides novel insights into the bewildering diversity of organ systems that brachyuran larvae possess. Our analysis may serve as a basis for future studies bridging the fields of evolutionary developmental biology and ecological developmental biology.
Collapse
Affiliation(s)
- Franziska Spitzner
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Rebecca Meth
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Christina Krüger
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Emanuel Nischik
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Stefan Eiler
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A/F, 11418 Stockholm, Sweden
| | - Andy Sombke
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Gabriela Torres
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| |
Collapse
|
6
|
Abstract
The currently unsurpassed diversity of photoreceptors found in the eyes of stomatopods, or mantis shrimps, is achieved through a variety of opsin-based visual pigments and optical filters. However, the presence of extraocular photoreceptors in these crustaceans is undescribed. Opsins have been found in extraocular tissues across animal taxa, but their functions are often unknown. Here, we show that the mantis shrimp Neogonodactylus oerstedii has functional cerebral photoreceptors, which expands the suite of mechanisms by which mantis shrimp sense light. Illumination of extraocular photoreceptors elicits behaviors akin to common arthropod escape responses, which persist in blinded individuals. The anterior central nervous system, which is illuminated when a mantis shrimp's cephalothorax protrudes from its burrow to search for predators, prey, or mates, appears to be photosensitive and to feature two types of opsin-based, potentially histaminergic photoreceptors. A pigmented ventral eye that may be capable of color discrimination extends from the cerebral ganglion, or brain, against the transparent outer carapace, and exhibits a rapid electrical response when illuminated. Additionally, opsins and histamine are expressed in several locations of the eyestalks and cerebral ganglion, where any photoresponses could contribute to shelter-seeking behaviors and other functions.
Collapse
|
7
|
Charpentier CL, Cohen JH. Kairomones from an estuarine fish increase visual sensitivity in brine shrimp (Artemia franciscana) from Great Salt Lake, Utah, USA. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:197-208. [PMID: 29164331 DOI: 10.1007/s00359-017-1230-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/24/2022]
Abstract
Chemical cues from fish, or kairomones, often impact the behavior of zooplankton. These behavioral changes are thought to improve predator avoidance. For example, marine and estuarine crustacean zooplankton become more sensitive to light after kairomone exposure, which likely deepens their vertical distribution into darker waters during the day and thereby reduces their visibility to fish predators. Here, we show that kairomones from an estuarine fish induce similar behavioral responses in adult brine shrimp (Artemia franciscana) from an endorheic, hypersaline lake, Great Salt Lake, Utah, USA. Given downwelling light stimuli, kairomone-exposed A. franciscana induce a descent response upon dimmer light flashes than they do in the absence of kairomones. Using extracellular electroretinogram (ERG) recordings, we also find that kairomones induce physiological changes in the retina that may lead to increased visual sensitivity, suggesting that kairomone-induced changes to photobehavior are mediated at the photoreceptor level. However, kairomones did not induce structural changes within the eye. Although A. franciscana inhabit endorheic environments that are too saline for most fish, kairomones from an estuarine fish amplify photobehavior in these branchiopod crustaceans. The mechanism for this behavioral change has both similarities to and differences from that described in marine malacostracan crustaceans.
Collapse
Affiliation(s)
- Corie L Charpentier
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE, 19958, USA. .,Department of Marine and Coastal Sciences, Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901, USA.
| | - Jonathan H Cohen
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE, 19958, USA
| |
Collapse
|
8
|
McCormick LR, Levin LA. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0322. [PMID: 28784712 PMCID: PMC5559417 DOI: 10.1098/rsta.2016.0322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 05/04/2023]
Abstract
Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with 'fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Collapse
Affiliation(s)
- Lillian R McCormick
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| |
Collapse
|
9
|
Cronin TW, Bok MJ, Lin C. Crustacean Larvae—Vision in the Plankton. Integr Comp Biol 2017; 57:1139-1150. [DOI: 10.1093/icb/icx007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
10
|
Charpentier CL, Wright AJ, Cohen JH. Fish kairomones induce spine elongation and reduce predation in marine crab larvae. Ecology 2017; 98:1989-1995. [DOI: 10.1002/ecy.1899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/11/2017] [Accepted: 05/03/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Corie L. Charpentier
- School of Marine Science and Policy; College of Earth, Ocean and Environment; University of Delaware; 700 Pilottown Road Lewes Delaware 19958 USA
| | - Alexander J. Wright
- School of Marine Science and Policy; College of Earth, Ocean and Environment; University of Delaware; 700 Pilottown Road Lewes Delaware 19958 USA
| | - Jonathan H. Cohen
- School of Marine Science and Policy; College of Earth, Ocean and Environment; University of Delaware; 700 Pilottown Road Lewes Delaware 19958 USA
| |
Collapse
|
11
|
Mitchell MD, Bairos-Novak KR, Ferrari MCO. Mechanisms underlying the control of responses to predator odours in aquatic prey. J Exp Biol 2017; 220:1937-1946. [DOI: 10.1242/jeb.135137] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
In aquatic systems, chemical cues are a major source of information through which animals are able to assess the current state of their environment to gain information about local predation risk. Prey use chemicals released by predators (including cues from a predator's diet) and other prey (such as alarm cues and disturbance cues) to mediate a range of behavioural, morphological and life-history antipredator defences. Despite the wealth of knowledge on the ecology of antipredator defences, we know surprisingly little about the physiological mechanisms that control the expression of these defensive traits. Here, we summarise the current literature on the mechanisms known to specifically mediate responses to predator odours, including dietary cues. Interestingly, these studies suggest that independent pathways may control predator-specific responses, highlighting the need for greater focus on predator-derived cues when looking at the mechanistic control of responses. Thus, we urge researchers to tease apart the effects of predator-specific cues (i.e. chemicals representing a predator's identity) from those of diet-mediated cues (i.e. chemicals released from a predator's diet), which are known to mediate different ecological endpoints. Finally, we suggest some key areas of research that would greatly benefit from a more mechanistic approach.
Collapse
Affiliation(s)
- Matthew D. Mitchell
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| | | | - Maud C. O. Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| |
Collapse
|
12
|
Charpentier CL, Cohen JH. Acidification and γ-aminobutyric acid independently alter kairomone-induced behaviour. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160311. [PMID: 27703697 PMCID: PMC5043316 DOI: 10.1098/rsos.160311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/25/2016] [Indexed: 05/24/2023]
Abstract
Exposure to high pCO2 or low pH alters sensation and behaviour in many marine animals. We show that crab larvae lose their ability to detect and/or process predator kairomones after exposure to low pH over a time scale relevant to diel pH cycles in coastal environments. Previous work suggests that acidification affects sensation and behaviour through altered neural function, specifically the action of γ-aminobutyric acid (GABA), because a GABA antagonist, gabazine, restores the original behaviour. Here, however, gabazine resulted in a loss of kairomone detection/processing, regardless of pH. Our results also suggest that GABAergic signalling is necessary for kairomone identification in these larvae. Hence, the mechanism for the observed pH effect varies from the original GABA hypothesis. Furthermore, we suggest that this pH effect is adaptive under diel-cycling pH.
Collapse
|
13
|
Knight K. Scent of doom improves larvae's vision. J Exp Biol 2015. [DOI: 10.1242/jeb.133330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|