1
|
Kervella M, Cansell C, Criscuolo F, Bouillaud F. Utilization of a Clark electrode device as a respirometer for small insects: A convincing test on ants allowing to detect discontinuous gas exchange. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104698. [PMID: 39159873 DOI: 10.1016/j.jinsphys.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Respirometry provides a direct measure of an organism's O2 consumption rate (VO2), which is a significant component of its metabolic rate (energy expenditure). Amongst ants, variations in lifespan between different social castes (such as workers and queens) can be substantial, varying depending on the species. As metabolic rate is higher in short-living species, we aimed to determine how VO2 and longevity may have coevolved within ant casts. Measuring VO2 in such tiny animal models can be challenging, and as a first methodological step, we validate the use of a Clark electrode, initially designed for measuring mitochondrial respiration control pathways, for assessing VO2 in ants within a sealed chamber. This was done by comparing it with stop-flow VO2 and CO2 production, using a traditional indirect calorimetry device. The global aim is to provide a reliable protocol to conduct accurate comparisons of metabolic rates within and among ant species. As expected, using the Clark electrode entails high time resolution and revealed that queens and workers exhibited discontinuous gas exchange, with episodes of apnea lasting up to 20 min.
Collapse
Affiliation(s)
- Maïly Kervella
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037 Strasbourg Cedex 2, F-67000 Strasbourg, France; Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité-Paris 5, Paris, France.
| | - Céline Cansell
- Université Paris-Saclay, AgroParisTech, CNRS UMR 0914, INRAE, PNCA, Paris, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037 Strasbourg Cedex 2, F-67000 Strasbourg, France
| | - Frederic Bouillaud
- Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité-Paris 5, Paris, France
| |
Collapse
|
2
|
Laurie S, Ainslie L, Mitchell S, Morimoto J. Turmeric shortens lifespan in houseflies. FRONTIERS IN INSECT SCIENCE 2024; 4:1376011. [PMID: 38660018 PMCID: PMC11040687 DOI: 10.3389/finsc.2024.1376011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Climate change poses a significant threat to food security and global public health with the increasing likelihood of insect pest outbreaks. Alternative ways to control insect populations, preferably using environmental-friendly compounds, are needed. Turmeric has been suggested as a natural insecticide with toxicity properties in some insect groups. However, empirical evidence of the effects of turmeric - and their interaction with other ecological factors such as diet - on insect survival has been limited. Here, we tested the effects of turmeric and its interactions with diets differing in protein source in the common housefly, Musca domestica. We found that turmeric shortened lifespan independent of diet and sex. Females in turmeric diets were heavier at death, which was likely driven by a combination of relatively lower rates of body mass loss during their lifetime and a higher percentage of water content at death. Each sex responded differently to the protein source in the diet, and the magnitude of the difference in lifespan between sexes were greatest in diets in which protein source was hydrolysed yeast; individuals from both sexes lived longest in sucrose-milk diets and shortest in diets with hydrolysed yeast. There was no evidence of an interaction between turmeric and diet, suggesting that the toxicity effects are independent of protein source in the diet. Given the seemingly opposing effects of turmeric in insects and mammals being uncovered in the literature, our findings provide further evidence in support of turmeric as a potential natural insecticide.
Collapse
Affiliation(s)
- Sophie Laurie
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leah Ainslie
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Sharon Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen, United Kingdom
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Rau V, Flatt T, Korb J. The remoulding of dietary effects on the fecundity / longevity trade-off in a social insect. BMC Genomics 2023; 24:244. [PMID: 37147612 PMCID: PMC10163710 DOI: 10.1186/s12864-023-09335-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.
Collapse
Affiliation(s)
- Veronika Rau
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
- RIEL, Charles Darwin University Casuarina Campus, Ellengowan Drive, Darwin, NT0811, Australia.
| |
Collapse
|
4
|
Roeder DV, Remy S, Roeder KA. Temperature influences lipid content in the red harvester ant, Pogonomyrmex barbatus. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7193723. [PMID: 37300537 DOI: 10.1093/jisesa/iead040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Temperature is one of the most important environmental conditions affecting physiological processes in ectothermic organisms like ants. Yet, we often lack information on how certain physiological traits covary with temperature across time. Here, we test predictions on how one trait-lipid content-covaries with temperature using a conspicuous, ground-dwelling harvester ant. We focus on lipid content as fat bodies are metabolically active tissues that are important for storing and releasing energy in response to demand, which could be vital for survival under variable temperatures. From March to November, we extracted lipids from surface workers of 14 colonies while simultaneously recording ground temperature. We first assessed if lipid content was highest during cooler temperatures when ants were less active and less metabolically stressed. In doing so, we found that lipid content of ants declined almost 70% from cool months (November lipid content = 14.6%) to hot months (August lipid content = 4.6%). We next assessed if lipid levels from a group of ants collected at a single time point could change by placing individuals into environmental chambers set at 10, 20, and 30°C (i.e., the approximate span of average temperatures from March to November). Temperature again had a significant impact such that after 10 days, lipid content of ants in the hottest chamber (30°C) had decreased by more than 75%. While intraspecific variation in physiological traits often follows seasonal patterns, our results suggest fluctuations in temperature may account for a portion of the variance observed in traits like lipid content.
Collapse
Affiliation(s)
- Diane V Roeder
- Department of Natural Resource Management, South Dakota State University, Brookings, SD 57006, USA
| | - Samantha Remy
- Department of Agriculture, Biology and Health Sciences, Cameron University, Lawton, OK 73505, USA
| | - Karl A Roeder
- Agricultural Research Service, North Central Agricultural Research Laboratory, USDA, Brookings, SD 57006, USA
| |
Collapse
|
5
|
Both age and social environment shape the phenotype of ant workers. Sci Rep 2023; 13:186. [PMID: 36604491 PMCID: PMC9814961 DOI: 10.1038/s41598-022-26515-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Position within the social group has consequences on individual lifespans in diverse taxa. This is especially obvious in eusocial insects, where workers differ in both the tasks they perform and their aging rates. However, in eusocial wasps, bees and ants, the performed task usually depends strongly on age. As such, untangling the effects of social role and age on worker physiology is a key step towards understanding the coevolution of sociality and aging. We performed an experimental protocol that allowed a separate analysis of these two factors using four groups of black garden ant (Lasius niger) workers: young foragers, old foragers, young nest workers, and old nest workers. We highlighted age-related differences in the proteome and metabolome of workers that were primarily related to worker subcaste and only secondarily to age. The relative abundance of proteins and metabolites suggests an improved xenobiotic detoxification, and a fuel metabolism based more on lipid use than carbohydrate use in young ants, regardless of their social role. Regardless of age, proteins related to the digestive function were more abundant in nest workers than in foragers. Old foragers were mostly characterized by weak abundances of molecules with an antibiotic activity or involved in chemical communication. Finally, our results suggest that even in tiny insects, extended lifespan may require to mitigate cancer risks. This is consistent with results found in eusocial rodents and thus opens up the discussion of shared mechanisms among distant taxa and the influence of sociality on life history traits such as longevity.
Collapse
|
6
|
Resource sharing is sufficient for the emergence of division of labour. Nat Commun 2022; 13:7232. [PMID: 36433975 PMCID: PMC9700737 DOI: 10.1038/s41467-022-35038-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
Division of labour occurs in a broad range of organisms. Yet, how division of labour can emerge in the absence of pre-existing interindividual differences is poorly understood. Using a simple but realistic model, we show that in a group of initially identical individuals, division of labour emerges spontaneously if returning foragers share part of their resources with other group members. In the absence of resource sharing, individuals follow an activity schedule of alternating between foraging and other tasks. If non-foraging individuals are fed by other individuals, their alternating activity schedule becomes interrupted, leading to task specialisation and the emergence of division of labour. Furthermore, nutritional differences between individuals reinforce division of labour. Such differences can be caused by increased metabolic rates during foraging or by dominance interactions during resource sharing. Our model proposes a plausible mechanism for the self-organised emergence of division of labour in animal groups of initially identical individuals. This mechanism could also play a role for the emergence of division of labour during the major evolutionary transitions to eusociality and multicellularity.
Collapse
|
7
|
Lesne P, Dussutour A, Behmer ST. Effect of queen number on colony-level nutrient regulation, food collection and performance in two polygynous ant species. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104365. [PMID: 35121008 DOI: 10.1016/j.jinsphys.2022.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
There is growing appreciation for how social interactions influence animal foraging behavior, especially with respect to key nutrients. Ants, given their eusocial nature and ability to be reared and manipulated in the laboratory, offer unique opportunities to explore how social interactions influence nutrient regulation and related processes. At the colony-level, ants simultaneously regulate their protein and carbohydrate intake; a regulation tied to the presence of larvae. However, even though 45% of the approximately 10,000 ant species are polygynous, we know little about the influence of queen number on colony-level foraging behavior and performance. Here we explored the direct effects of queen number on colony-level protein-carbohydrate regulation, food collection, survival, and brood production in two polygynous ant species (Nylanderia fulva and Solenopsis invicta). For both species we conducted choice and no-choice experiments using small experimental colonoids (20 workers) with 0, 1, or 2 queens. Both species regulated their relative intake of protein and carbohydrate around a P1:C2 mark. However, only N. fulva responded to the addition of queens, increasing overall food collection, biasing intake towards carbohydrates, and over-collecting imbalanced foods. N. fulva also exhibited reduced survival and reproduction on protein-biased foods. In contrast, S. invicta showed no response to queen number and reduced food collection on the protein-biased diet while maintaining high survival and reproduction. Our results demonstrate the potential for queens of some ant species to impact colony-level foraging and performance, with interspecific variation likely being shaped by differences in life history traits.
Collapse
Affiliation(s)
- Pierre Lesne
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Ortiz-Alvarado Y, Fernández-Casas R, Ortiz-Alvarado CA, Diaz-Iglesias E, Rivera-Marchand B. Behavioral flexibility in Wasmannia auropunctata (Hymenoptera: Formicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:16. [PMID: 34436597 PMCID: PMC8388608 DOI: 10.1093/jisesa/ieab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 06/13/2023]
Abstract
Worker division of labor is a defining trait in social insects. Many species are characterized by having behavioral flexibility where workers perform non-typical tasks for their age depending on the colony's needs. Worker division of labor and behavioral flexibility were examined in the little fire ant Wasmannia auropunctata (Roger, 1863), for which age-related division of labor has been found. Young workers perform nursing duties which include tending of brood and queens, and colony defense, while older workers forage. When nurses were experimentally removed from the colony, foragers were observed carrying out nursing and colony defense duties, yet when foragers were removed nurses did not forage precociously. We also administered juvenile hormone analog, methoprene, to workers. When methoprene was applied, foragers increased their nursing and defense activities while nurses became mainly idle. The behavioral flexibility of foragers of the little fire ant may be evidence of an expansion of worker's repertoires as they age; older workers can perform tasks they have already done in their life while young individuals are not capable of performing tasks ahead of time. This may be an important adaptation associated with the success of this ant as an invasive species.
Collapse
Affiliation(s)
| | - Rafael Fernández-Casas
- Department of Natural Sciences and Mathematics, Inter American University, Bayamon, Puerto Rico
| | | | | | - Bert Rivera-Marchand
- Department of Natural Sciences and Mathematics, Inter American University, Bayamon, Puerto Rico
| |
Collapse
|
9
|
Arien Y, Dag A, Yona S, Tietel Z, Lapidot Cohen T, Shafir S. Effect of diet lipids and omega-6:3 ratio on honey bee brood development, adult survival and body composition. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104074. [PMID: 32540467 DOI: 10.1016/j.jinsphys.2020.104074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/05/2020] [Accepted: 06/09/2020] [Indexed: 05/25/2023]
Abstract
Lipids have a key role in a variety of physiological functions in insects including energy, reproduction, growth and development. Whereas most of the required fatty acids can be synthesized endogenously, omega-3 and omega-6 polyunsaturated fatty acids (PUFA) are essential fatty acids that must be acquired through nutrition. Honey bees (Apis mellifera) obtain lipids from pollen, but different pollens vary in nutritional composition, including of PUFAs. Low floral diversity and abundance may expose bees to nutritional stress. We tested the effect of total lipids concentration and their omega-6:3 ratio on aspects of honey bee physiology: brood development, adult longevity and body fatty acids composition. All three parameters were affected by dietary lipid concentration and omega-6:3 ratio. Higher lipid concentration in diet increased brood production, and high omega-6:3 ratio increased mortality rate and decreased brood rearing. Fatty acid analysis of the bees showed that the amount of lipids and the omega-6:3 ratio in their body generally reflected the composition of the diet on which they fed. Consistent with previous findings of the importance of a balanced omega-6:3 ratio diet for learning performance, we found that such a balanced PUFA diet, with above threshold total lipid composition, is also necessary for maintaining proper colony development.
Collapse
Affiliation(s)
- Yael Arien
- B. Triwaks Bee Research Center, Department of Entomology, Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Arnon Dag
- Gilat Research Center, Institute of Plant Sciences, Agricultural Research Organization, Negev, Israel
| | - Shiran Yona
- B. Triwaks Bee Research Center, Department of Entomology, Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zipora Tietel
- Gilat Research Center, Institute of Postharvest and Food Science, Agricultural Research Organization, Negev, Israel
| | - Taly Lapidot Cohen
- Gilat Research Center, Institute of Postharvest and Food Science, Agricultural Research Organization, Negev, Israel
| | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
10
|
Gutiérrez Y, Phung T, Mumma H, Ambrose‐Winters A, Scherber C, Smith CR. Growth and survival of the superorganism: Ant colony macronutrient intake and investment. Ecol Evol 2020; 10:7901-7915. [PMID: 32760573 PMCID: PMC7391535 DOI: 10.1002/ece3.6520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, we used two common ant species (Lasius niger and Lasius neoniger) to assay how they translate variation in the diet (both in composition and frequency) into growth. We measured colony development for over 8 months and measured several phenotypic traits of the worker caste, and examined whether forager preference corresponded with diet quality. Optimal colony growth was a balance between survival and growth, and each of these was maximized with different nutrient regimes. Interestingly, forager preference was not totally aligned with the diet that maximized colony growth. Our results highlight that: (a) organism and superorganism size are controlled by the same nutrients, and this may reflect a common molecular basis for size across life's organizational levels, (b) there are nutrient trade-offs that are associated with life-history trade-offs, likely leading to selection for a balanced diet, and (c) the connection between the preference of foragers for different nutrients and how nutrient combinations affect colony success and demographics are complex and only beginning to be understood.
Collapse
Affiliation(s)
| | - Tung Phung
- Department of BiologyEarlham CollegeRichmondINUSA
| | - Harald Mumma
- Department of BiologyEarlham CollegeRichmondINUSA
| | | | | | | |
Collapse
|
11
|
Bernadou A, Hoffacker E, Pable J, Heinze J. Lipid content influences division of labour in a clonal ant. J Exp Biol 2020; 223:jeb219238. [PMID: 32107304 DOI: 10.1242/jeb.219238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022]
Abstract
The fat body, a major metabolic hub in insects, is involved in many functions, e.g. energy storage, nutrient sensing and immune response. In social insects, fat appears to play an additional role in division of labour between egg layers and workers, which specialize in non-reproductive tasks inside and outside their nest. For instance, reproductives are more resistant to starvation, and changes in fat content have been associated with the transition from inside to outside work or reproductive activities. However, most studies have been correlative and we still need to unravel the causal interrelationships between fat content and division of both reproductive and non-reproductive labour. Clonal ants, e.g. Platythyrea punctata, are ideal models for studying task partitioning without confounding variation in genotype and morphology. In this study, we examined the range of variation and flexibility of fat content throughout the lifespan of workers, the threshold of corpulence associated with foraging or reproduction and whether low fat content is a cause rather than a consequence of the transition to foraging. We found that lipid stores change with division of labour from corpulent to lean and, in reverted nurses, back to corpulent. In addition, our data show the presence of fat content thresholds that trigger the onset of foraging or egg-laying behaviour. Our study supports the view that mechanisms that regulate reproduction and foraging in solitary insects, in particular the nutritional status of individuals, have been co-opted to regulate division of labour in colonies of social insects.
Collapse
Affiliation(s)
- Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Elisabeth Hoffacker
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Pable
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Kraus S, Gómez-Moracho T, Pasquaretta C, Latil G, Dussutour A, Lihoreau M. Bumblebees adjust protein and lipid collection rules to the presence of brood. Curr Zool 2019; 65:437-446. [PMID: 31413716 PMCID: PMC6688571 DOI: 10.1093/cz/zoz026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Animals have evolved foraging strategies to acquire blends of nutrients that maximize fitness traits. In social insects, nutrient regulation is complicated by the fact that few individuals, the foragers, must address the divergent nutritional needs of all colony members simultaneously, including other workers, the reproductives, and the brood. Here we used 3D nutritional geometry design to examine how bumblebee workers regulate their collection of 3 major macronutrients in the presence and absence of brood. We provided small colonies artificial nectars (liquid diets) and pollens (solid diets) varying in their compositions of proteins, lipids, and carbohydrates during 2 weeks. Colonies given a choice between nutritionally complementary diets self-selected foods to reach a target ratio of 71% proteins, 6% carbohydrates, and 23% lipids, irrespective of the presence of brood. When confined to a single nutritionally imbalanced solid diet, colonies without brood regulated lipid collection and over-collected protein relative to this target ratio, whereas colonies with brood regulated both lipid and protein collection. This brood effect on the regulation of nutrient collection by workers suggests that protein levels are critical for larval development. Our results highlight the importance of considering bee nutrition as a multidimensional phenomenon to better assess the effects of environmental impoverishment and malnutrition on population declines.
Collapse
Affiliation(s)
- Stéphane Kraus
- Research Center on Animal Cognition (CRCA), Center for Intergrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse, France
| | | | | | | | | | | |
Collapse
|
13
|
Jensen K, Michaelsen JV, Larsen MT, Kristensen TN, Holmstrup M, Overgaard J. Increased lipid accumulation but not reduced metabolism explains improved starvation tolerance in cold-acclimated arthropod predators. Naturwissenschaften 2018; 105:65. [DOI: 10.1007/s00114-018-1593-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
|
14
|
Poissonnier L, Arganda S, Simpson SJ, Dussutour A, Buhl J. Nutrition in extreme food specialists: An illustration using termites. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laure‐Anne Poissonnier
- School of Agriculture, Food and Wine The University of Adelaide Adelaide South Australia Australia
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Sara Arganda
- Área de Biodiversidad y Conservación Universidad Rey Juan Carlos Madrid Spain
| | - Stephen J. Simpson
- Charles Perkins Centre and School of Life and Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Jerome Buhl
- School of Agriculture, Food and Wine The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
15
|
Lihoreau M, Gómez-Moracho T, Pasquaretta C, Costa JT, Buhl C. Social nutrition: an emerging field in insect science. CURRENT OPINION IN INSECT SCIENCE 2018; 28:73-80. [PMID: 30551770 DOI: 10.1016/j.cois.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 06/09/2023]
Abstract
Nutrition is thought to be a major driver of social evolution, yet empirical support for this hypothesis is scarce. Here we illustrate how conceptual advances in nutritional ecology illuminate some of the mechanisms by which nutrition mediates social interactions in insects. We focus on experiments and models of nutritional geometry and argue that they provide a powerful means for comparing nutritional phenomena across species exhibiting various social ecologies. This approach, initially developed to study the nutritional behaviour of individual insects, has been increasingly used to study insect groups and societies, leading to the emerging field of social nutrition. We discuss future directions for exploring how these nutritional mechanisms may influence major social transitions in insects and other animals.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse, France.
| | - Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse, France
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse, France
| | - James T Costa
- Highlands Biological Station, 265 N. Sixth Street, Highlands, NC 28741, USA; Department of Biology, Western Carolina University, Cullowhee, NC 28723, USA
| | - Camille Buhl
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Southern Australia 5005, Australia
| |
Collapse
|
16
|
Giehr J, Heinze J, Schrempf A. Group demography affects ant colony performance and individual speed of queen and worker aging. BMC Evol Biol 2017; 17:173. [PMID: 28764664 PMCID: PMC5540184 DOI: 10.1186/s12862-017-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background The performance and fitness of social societies mainly depends on the efficiency of interactions between reproductive individuals and helpers. Helpers need to react to the group’s requirements and to adjust their tasks accordingly, while the reproductive individual has to adjust its reproductive rate. Social insects provide a good system to study the interrelations between individual and group characteristics. In general, sterile workers focus on brood care and foraging while the queen lays eggs. Reproductive division of labor is determined by caste and not interchangeable as, e.g., in social mammals or birds. Hence, changing social and environmental conditions require a flexible response by each caste. In the ant Cardiocondyla obscurior, worker task allocation is based on age polyethism, with young workers focusing on brood care and old workers on foraging. Here, we examine how group age demography affects colony performance and fitness in colonies consisting of only old or young workers and a single old or young queen. We hypothesized that both groups will be fully functional, but that the forced task shift affects the individuals’ performance. Moreover, we expected reduced worker longevity in groups with only young workers due to precocious foraging but no effect on queen longevity depending on group composition. Results Neither the performance of queens nor that of workers declined strongly with time per se, but offspring number and weight were influenced by queen age and the interaction between queen and worker age. Individual residual life expectancy strongly depended on colony demography instead of physiological age. While worker age affected queen longevity only slightly, exposing old workers to the conditions of colony founding increased their life spans by up to 50% relative to workers that had emerged shortly before colony set-up. Conclusions The social environment strongly affected the tempo of aging and senescence in C. obscurior, highlighting the plasticity of life expectancy in social insects. Furthermore, colonies obtained the highest reproductive output when consisting of same-aged queens and workers independent of their physiological age. However, workers appeared to be able to adjust their behavior to the colony’s needs and not to suffer from age-dependent restrictions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1026-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany.
| | - Jürgen Heinze
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Alexandra Schrempf
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
17
|
Adámková A, Adámek M, Mlček J, Borkovcová M, Bednářová M, Kouřimská L, Skácel J, Vítová E. Welfare of the mealworm (Tenebrio molitor) breeding with regard to nutrition value and food safety. POTRAVINARSTVO 2017. [DOI: 10.5219/779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Nguyen AD, DeNovellis K, Resendez S, Pustilnik JD, Gotelli NJ, Parker JD, Cahan SH. Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants. J Comp Physiol B 2017; 187:1107-1116. [DOI: 10.1007/s00360-017-1101-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
|
19
|
Csata E, Bernadou A, Rákosy-Tican E, Heinze J, Markó B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:167-172. [PMID: 28082084 DOI: 10.1016/j.jinsphys.2017.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/02/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Parasite infection often results in alterations in host behaviour. These changes vary greatly in their magnitude, from slight shifts in the time spent by the host performing a given activity to the appearance of novel behaviours. The effects of parasites can differ with the age and the physiological condition of the host. Rickia wasmannii is an ectoparasitic fungal symbiont in Myrmica ants that covers the whole body surface of the host and reduces its lifespan. The fungus is present in both young and old individuals, making it an optimal subject for the study of age-related parasitic effects. We tested the effect of fungal infection on the locomotory activity of the Myrmica scabrinodis ant in different age categories. The fat content of workers was measured as a proxy for their physiological status. Based on our findings, old workers bore more thalli and were leaner than young individuals, while they tended to move at higher speeds and with a lower degree of meandering. Young individuals covered smaller distances, at slower speeds and with a higher degree of meandering. Contrary to our expectations, the infection intensity of R. wasmannii affected neither the fat content nor the locomotory activity of ant workers. However, the two age classes seem to have different strategies with regards to the relationship between fat content and distance covered. Our results suggest that characteristics of locomotory activity differ between the age classes in many respects, and are also influenced by their physiological status, but parasitism by R. wasmannii does not seem to have a straightforward effect on any of the variables studied.
Collapse
Affiliation(s)
- Enikő Csata
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006 Cluj-Napoca, Clinicilor 5-7, Romania.
| | - Abel Bernadou
- Department of Zoology and Evolutionary Biology, University of Regensburg, D-93040 Regensburg, Germany.
| | - Elena Rákosy-Tican
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 400006 Cluj-Napoca, Clinicilor 5-7, Romania
| | - Jürgen Heinze
- Department of Zoology and Evolutionary Biology, University of Regensburg, D-93040 Regensburg, Germany
| | - Bálint Markó
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006 Cluj-Napoca, Clinicilor 5-7, Romania
| |
Collapse
|
20
|
Kohlmeier P, Negroni MA, Kever M, Emmling S, Stypa H, Feldmeyer B, Foitzik S. Intrinsic worker mortality depends on behavioral caste and the queens' presence in a social insect. Naturwissenschaften 2017; 104:34. [PMID: 28353195 DOI: 10.1007/s00114-017-1452-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/30/2022]
Abstract
According to the classic life history theory, selection for longevity depends on age-dependant extrinsic mortality and fecundity. In social insects, the common life history trade-off between fecundity and longevity appears to be reversed, as the most fecund individual, the queen, often exceeds workers in lifespan several fold. But does fecundity directly affect intrinsic mortality also in social insect workers? And what is the effect of task on worker mortality? Here, we studied how social environment and behavioral caste affect intrinsic mortality of ant workers. We compared worker survival between queenless and queenright Temnothorax longispinosus nests and demonstrate that workers survive longer under the queens' absence. Temnothorax ant workers fight over reproduction when the queen is absent and dominant workers lay eggs. Worker fertility might therefore increase lifespan, possibly due to a positive physiological link between fecundity and longevity, or better care for fertile workers. In social insects, division of labor among workers is age-dependant with young workers caring for the brood and old ones going out to forage. We therefore expected nurses to survive longer than foragers, which is what we found. Surprisingly, inactive inside workers showed a lower survival than nurses but comparable to that of foragers. The reduced longevity of inactive workers could be due to them being older than the nurses, or due to a positive effect of activity on lifespan. Overall, our study points to behavioral caste-dependent intrinsic mortality rates and a positive association between fertility and longevity not only in queens but also in ant workers.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany.
| | - Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Stefanie Emmling
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Heike Stypa
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| |
Collapse
|
21
|
Helms Cahan S, Nguyen AD, Stanton-Geddes J, Penick CA, Hernáiz-Hernández Y, DeMarco BB, Gotelli NJ. Modulation of the heat shock response is associated with acclimation to novel temperatures but not adaptation to climatic variation in the ants Aphaenogaster picea and A. rudis. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:113-120. [DOI: 10.1016/j.cbpa.2016.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/04/2023]
|
22
|
Arganda S, Bouchebti S, Bazazi S, Le Hesran S, Puga C, Latil G, Simpson SJ, Dussutour A. Parsing the life-shortening effects of dietary protein: effects of individual amino acids. Proc Biol Sci 2017; 284:20162052. [PMID: 28053059 PMCID: PMC5247493 DOI: 10.1098/rspb.2016.2052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/05/2016] [Indexed: 11/12/2022] Open
Abstract
High-protein diets shorten lifespan in many organisms. Is it because protein digestion is energetically costly or because the final products (the amino acids) are harmful? To answer this question while circumventing the life-history trade-off between reproduction and longevity, we fed sterile ant workers on diets based on whole proteins or free amino acids. We found that (i) free amino acids shortened lifespan even more than proteins; (ii) the higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio, ants eating free amino acids had more lipid reserves than those eating whole proteins; and (iv) on whole protein diets, ants seem to regulate food intake by prioritizing sugar, while on free amino acid diets, they seem to prioritize amino acids. To test the effect of the amino acid profile, we tested diets containing proportions of each amino acid that matched the ant's exome; surprisingly, longevity was unaffected by this change. We further tested diets with all amino acids under-represented except one, finding that methionine, serine, threonine and phenylalanine are especially harmful. All together, our results show certain amino acids are key elements behind the high-protein diet reduction in lifespan.
Collapse
Affiliation(s)
- Sara Arganda
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
- Department of Biology, Boston University, Boston, MA, USA
| | - Sofia Bouchebti
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Sepideh Bazazi
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Sophie Le Hesran
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Camille Puga
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Stephen J Simpson
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Audrey Dussutour
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
23
|
Warner DA, Johnson MS, Nagy TR. Validation of Body Condition Indices and Quantitative Magnetic Resonance in Estimating Body Composition in a Small Lizard. ACTA ACUST UNITED AC 2016; 325:588-597. [PMID: 28035770 DOI: 10.1002/jez.2053] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022]
Abstract
Measurements of body condition are typically used to assess an individual's quality, health, or energetic state. Most indices of body condition are based on linear relationships between body length and mass. Although these indices are simple to obtain, nonlethal, and useful indications of energetic state, their accuracy at predicting constituents of body condition (e.g., fat and lean mass) are often unknown. The objectives of this research were to (1) validate the accuracy of another simple and noninvasive method, quantitative magnetic resonance (QMR), at estimating body composition in a small-bodied lizard, Anolis sagrei, and (2) evaluate the accuracy of two indices of body condition (based on length-mass relationships) at predicting body fat, lean, and water mass. Comparisons of results from QMR scans to those from chemical carcass analysis reveal that QMR measures body fat, lean, and water mass with excellent accuracy in male and female lizards. With minor calibration from regression equations, QMR will be a reliable method of estimating body composition of A. sagrei. Body condition indices were positively related to absolute estimates of each constituent of body composition, but these relationships showed considerable variation around regression lines. In addition, condition indices did not predict fat, lean, or water mass when adjusted for body mass. Thus, our results emphasize the need for caution when interpreting body condition based upon linear measurements of animals. Overall, QMR provides an alternative noninvasive method for accurately measuring fat, lean, and water mass in these small-bodied animals.
Collapse
Affiliation(s)
- Daniel A Warner
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Maria S Johnson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
24
|
Knight K. Famished foragers suffer malnutrition faster than fat workers. J Exp Biol 2016. [DOI: 10.1242/jeb.139576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|