1
|
Ackroyd EJ, Heathcote RJP, Ioannou CC. Dynamic colour change in zebrafish ( Danio rerio) across multiple contexts. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241073. [PMID: 39780969 PMCID: PMC11706659 DOI: 10.1098/rsos.241073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Many animals are capable of rapid dynamic colour change, which is particularly well represented in fishes. The proximate mechanisms of dynamic colour change in fishes are well understood; however, less attention has been given to understanding its ecological relevance. In this study, we investigate dynamic colour change in zebrafish (Danio rerio) across multiple contexts, using a protocol to image the colouration of live fish without anaesthesia under standardized conditions. We show that zebrafish respond to different visual environments by darkening their overall colouration in a dark environment and lightening in a light environment. This is consistent with crypsis through background matching as a function of dynamic colour change. Additionally, we find that zebrafish use dynamic colour change to increase the internal contrast of their striped patterning in the presence of conspecifics. We speculate that this may function in social signalling and/or dazzle colouration. We find no effect of a predator stimulus on dynamic colour change. Finally, we discuss the potential for zebrafish to use multiple colouration strategies simultaneously as distance-dependent effects, considering the typical viewing distances of zebrafish and their predators.
Collapse
Affiliation(s)
- Ella J. Ackroyd
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Robert J. P. Heathcote
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Zhu SI, Goodhill GJ. From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish. Front Neural Circuits 2023; 17:1087993. [PMID: 36817645 PMCID: PMC9928868 DOI: 10.3389/fncir.2023.1087993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
A key challenge for neural systems is to extract relevant information from the environment and make appropriate behavioral responses. The larval zebrafish offers an exciting opportunity for studying these sensing processes and sensory-motor transformations. Prey hunting is an instinctual behavior of zebrafish that requires the brain to extract and combine different attributes of the sensory input and form appropriate motor outputs. Due to its small size and transparency the larval zebrafish brain allows optical recording of whole-brain activity to reveal the neural mechanisms involved in prey hunting and capture. In this review we discuss how the larval zebrafish brain processes visual information to identify and locate prey, the neural circuits governing the generation of motor commands in response to prey, how hunting behavior can be modulated by internal states and experience, and some outstanding questions for the field.
Collapse
Affiliation(s)
- Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
3
|
Fouilloux CA, Yovanovich CAM, Rojas B. Tadpole Responses to Environments With Limited Visibility: What We (Don’t) Know and Perspectives for a Sharper Future. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.766725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amphibian larvae typically inhabit relatively shallow freshwater environments, and within these boundaries there is considerable diversity in the structure of the habitats exploited by different species. This diversity in habitat structure is usually taken into account in relation to aspects such as locomotion and feeding, and plays a fundamental role in the classification of tadpoles into ecomorphological guilds. However, its impact in shaping the sensory worlds of different species is rarely addressed, including the optical qualities of each of these types of water bodies and the challenges and limitations that they impose on the repertoire of visual abilities available for a typical vertebrate eye. In this Perspective article, we identify gaps in knowledge on (1) the role of turbidity and light-limited environments in shaping the larval visual system; and (2) the possible behavioral and phenotypic responses of larvae to such environments. We also identify relevant unaddressed study systems paying special attention to phytotelmata, whose small size allows for extensive quantification and manipulation providing a rich and relatively unexplored research model. Furthermore, we generate hypotheses ranging from proximate shifts (i.e., red-shifted spectral sensitivity peaks driven by deviations in chromophore ratios) to ultimate changes in tadpole behavior and phenotype, such as reduced foraging efficiency and the loss of antipredator signaling. Overall, amphibians provide an exciting opportunity to understand adaptations to visually limited environments, and this framework will provide novel experimental considerations and interpretations to kickstart future research based on understanding the evolution and diversity of strategies used to cope with limited visibility.
Collapse
|
4
|
Cox KD, Woods MB, Reimchen TE. Regional heterogeneity in coral species richness and hue reveals novel global predictors of reef fish intra-family diversity. Sci Rep 2021; 11:18275. [PMID: 34521952 PMCID: PMC8440613 DOI: 10.1038/s41598-021-97862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Habitat heterogeneity shapes biological communities, a well-known process in terrestrial ecosystems but substantially unresolved within coral reef ecosystems. We investigated the extent to which coral richness predicts intra-family fish richness, while simultaneously integrating a striking aspect of reef ecosystems-coral hue. To do so, we quantified the coral richness, coral hue diversity, and species richness within 25 fish families in 74 global ecoregions. We then expanded this to an analysis of all reef fishes (4465 species). Considering coral bleaching as a natural experiment, we subsequently examined hue's contribution to fish communities. Coral species and hue diversity significantly predict each family's fish richness, with the highest correlations (> 80%) occurring in damselfish, butterflyfish, emperors and rabbitfish, lower (60-80%) in substrate-bound and mid-water taxa such as blennies, seahorses, and parrotfish, and lowest (40-60%) in sharks, morays, grunts and triggerfish. The observed trends persisted globally. Coral bleaching's homogenization of reef colouration revealed hue's contribution to maintaining fish richness, abundance, and recruit survivorship. We propose that each additional coral species and associated hue provide added ecological opportunities (e.g. camouflage, background contrast for intraspecific display), facilitating the evolution and co-existence of diverse fish assemblages.
Collapse
Affiliation(s)
- Kieran D Cox
- Department of Biology, University of Victoria, Cunningham 202, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
- Hakai Institute, Heriot Bay, BC, V0P 1H0, Canada.
| | - Mackenzie B Woods
- Department of Biology, University of Victoria, Cunningham 202, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Thomas E Reimchen
- Department of Biology, University of Victoria, Cunningham 202, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
5
|
Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes. Sci Rep 2021; 11:16157. [PMID: 34373560 PMCID: PMC8352966 DOI: 10.1038/s41598-021-95713-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022] Open
Abstract
Hyperspectral data encode information from electromagnetic radiation (i.e., color) of any object in the form of a spectral signature; these data can then be used to distinguish among materials or even map whole landscapes. Although hyperspectral data have been mostly used to study landscape ecology, floral diversity and many other applications in the natural sciences, we propose that spectral signatures can be used for rapid assessment of faunal biodiversity, akin to DNA barcoding and metabarcoding. We demonstrate that spectral signatures of individual, live fish specimens can accurately capture species and clade-level differences in fish coloration, specifically among piranhas and pacus (Family Serrasalmidae), fishes with a long history of taxonomic confusion. We analyzed 47 serrasalmid species and could distinguish spectra among different species and clades, with the method sensitive enough to document changes in fish coloration over ontogeny. Herbivorous pacu spectra were more like one another than they were to piranhas; however, our method also documented interspecific variation in pacus that corresponds to cryptic lineages. While spectra do not serve as an alternative to the collection of curated specimens, hyperspectral data of fishes in the field should help clarify which specimens might be unique or undescribed, complementing existing molecular and morphological techniques.
Collapse
|
6
|
Bartel P, Janiak FK, Osorio D, Baden T. Colourfulness as a possible measure of object proximity in the larval zebrafish brain. Curr Biol 2021; 31:R235-R236. [PMID: 33689717 PMCID: PMC7955152 DOI: 10.1016/j.cub.2021.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The encoding of light increments and decrements by separate On- and Off- systems is a fundamental ingredient of vision, which supports edge detection and makes efficient use of the limited dynamic range of visual neurons1. Theory predicts that the neural representation of On- and Off-signals should be balanced, including across an animal's visible spectrum. Here we find that larval zebrafish violate this textbook expectation: in the zebrafish brain, UV-stimulation near exclusively gives On-responses, blue/green stimulation mostly Off-responses, and red-light alone elicits approximately balanced On- and Off-responses (see also references2-4). We link these findings to zebrafish visual ecology, and suggest that the observed spectral tuning boosts the encoding of object 'colourfulness', which correlates with object proximity in their underwater world5.
Collapse
Affiliation(s)
- Philipp Bartel
- School of Life Sciences, Sussex Neuroscience, University of Sussex, Falmer, Brighton, UK.
| | - Filip K Janiak
- School of Life Sciences, Sussex Neuroscience, University of Sussex, Falmer, Brighton, UK
| | - Daniel Osorio
- School of Life Sciences, Sussex Neuroscience, University of Sussex, Falmer, Brighton, UK
| | - Tom Baden
- School of Life Sciences, Sussex Neuroscience, University of Sussex, Falmer, Brighton, UK; Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Cortesi F, Mitchell LJ, Tettamanti V, Fogg LG, de Busserolles F, Cheney KL, Marshall NJ. Visual system diversity in coral reef fishes. Semin Cell Dev Biol 2020; 106:31-42. [PMID: 32593517 DOI: 10.1016/j.semcdb.2020.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Coral reefs are one of the most species rich and colourful habitats on earth and for many coral reef teleosts, vision is central to their survival and reproduction. The diversity of reef fish visual systems arises from variations in ocular and retinal anatomy, neural processing and, perhaps most easily revealed by, the peak spectral absorbance of visual pigments. This review examines the interplay between retinal morphology and light environment across a number of reef fish species, but mainly focusses on visual adaptations at the molecular level (i.e. visual pigment structure). Generally, visual pigments tend to match the overall light environment or micro-habitat, with fish inhabiting greener, inshore waters possessing longer wavelength-shifted visual pigments than open water blue-shifted species. In marine fishes, particularly those that live on the reef, most species have between two (likely dichromatic) to four (possible tetrachromatic) cone spectral sensitivities and a single rod for crepuscular vision; however, most are trichromatic with three spectral sensitivities. In addition to variation in spectral sensitivity number, spectral placement of the absorbance maximum (λmax) also has a surprising degree of variability. Variation in ocular and retinal anatomy is also observed at several levels in reef fishes but is best represented by differences in arrangement, density and distribution of neural cell types across the retina (i.e. retinal topography). Here, we focus on the seven reef fish families most comprehensively studied to date to examine and compare how behaviour, environment, activity period, ontogeny and phylogeny might interact to generate the exceptional diversity in visual system design that we observe.
Collapse
Affiliation(s)
- Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Laurie J Mitchell
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valerio Tettamanti
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lily G Fogg
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
8
|
Vision in sharks and rays: Opsin diversity and colour vision. Semin Cell Dev Biol 2020; 106:12-19. [PMID: 32331993 DOI: 10.1016/j.semcdb.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
The visual sense of elasmobranch fishes is poorly studied compared to their bony cousins, the teleosts. Nevertheless, the elasmobranch eye features numerous specialisations that have no doubt facilitated the diversification and evolutionary success of this fascinating taxon. In this review, I highlight recent discoveries on the nature and phylogenetic distribution of visual pigments in sharks and rays. Whereas most rays appear to be cone dichromats, all sharks studied to date are cone monochromats and, as a group, have likely abandoned colour vision on multiple occasions. This situation in sharks mirrors that seen in other large marine predators, the pinnipeds and cetaceans, which leads us to reassess the costs and benefits of multiple cone pigments and wavelength discrimination in the marine environment.
Collapse
|
9
|
Franklin AM, Marshall J, Feinstein AD, Bok MJ, Byrd AD, Lewis SM. Differences in signal contrast and camouflage among different colour variations of a stomatopod crustacean, Neogonodactylus oerstedii. Sci Rep 2020; 10:1236. [PMID: 31988305 PMCID: PMC6985165 DOI: 10.1038/s41598-020-57990-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
Animal colouration is often a trade-off between background matching for camouflage from predators, and conspicuousness for communication with con- or heterospecifics. Stomatopods are marine crustaceans known to use colour signals during courtship and contests, while their overall body colouration may provide camouflage. However, we have little understanding of how stomatopods perceive these signals in their environment or whether overall body coloration does provide camouflage from predators. Neogonodactylus oerstedii assess meral spot colour during contests, and meral spot colour varies depending on local habitat. By calculating quantum catch for N. oerstedii's 12 photoreceptors associated with chromatic vision, we found that variation in meral spot total reflectance does not function to increase signal contrast in the local habitat. Neogonodactylus oerstedii also show between-habitat variation in dorsal body colouration. We used visual models to predict a trichromatic fish predator's perception of these colour variations. Our results suggest that sandy and green stomatopods are camouflaged from a typical fish predator in rubble fields and seagrass beds, respectively. To our knowledge, this is the first study to investigate signal contrast and camouflage in a stomatopod. These results provide new insight into the function and evolution of colouration in a species with a complex visual system.
Collapse
Affiliation(s)
- Amanda M Franklin
- Biology Department, Tufts University, Medford, MA, 02155, USA. .,School of Biosciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | - Michael J Bok
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK
| | - Anya D Byrd
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Sara M Lewis
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
10
|
Santon M, Bitton PP, Dehm J, Fritsch R, Harant UK, Anthes N, Michiels NK. Redirection of ambient light improves predator detection in a diurnal fish. Proc Biol Sci 2020; 287:20192292. [PMID: 31964304 PMCID: PMC7015323 DOI: 10.1098/rspb.2019.2292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cases where animals use controlled illumination to improve vision are rare and thus far limited to chemiluminescence, which only functions in darkness. This constraint was recently relaxed by studies on Tripterygion delaisi, a small triplefin that redirects sunlight instead. By reflecting light sideways with its iris, it has been suggested to induce and detect eyeshine in nearby micro-prey. Here, we test whether 'diurnal active photolocation' also improves T. delaisi's ability to detect the cryptobenthic sit-and-wait predator Scorpaena porcus, a scorpionfish with strong daytime retroreflective eyeshine. Three independent experiments revealed that triplefins in which light redirection was artificially suppressed approached scorpionfish significantly closer than two control treatments before moving away to a safer distance. Visual modelling confirmed that ocular light redirection by a triplefin is sufficiently strong to generate a luminance increase in scorpionfish eyeshine that can be perceived by the triplefin over 6-8 cm under average conditions. These distances coincide well with the closest approaches observed. We conclude that light redirection by small, diurnal fish significantly contributes to their ability to visually detect cryptic predators, strongly widening the conditions under which active sensing with light is feasible. We discuss the consequences for fish eye evolution.
Collapse
Affiliation(s)
- Matteo Santon
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Pierre-Paul Bitton
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St John's, NL Canada, A1B 3X9
| | - Jasha Dehm
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,School of Marine Studies, Faculty of Science, Technology and Environment, University of the South Pacific, Laucala Bay Rd, Suva, Fiji
| | - Roland Fritsch
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ulrike K Harant
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Nils Anthes
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Nico K Michiels
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Escobar-Camacho D, Taylor MA, Cheney KL, Green NF, Marshall NJ, Carleton KL. Color discrimination thresholds in a cichlid fish: Metriaclima benetos. J Exp Biol 2019; 222:jeb201160. [PMID: 31399486 PMCID: PMC6765173 DOI: 10.1242/jeb.201160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/05/2019] [Indexed: 01/31/2023]
Abstract
Color vision is essential for animals as it allows them to detect, recognize and discriminate between colored objects. Studies analyzing color vision require an integrative approach, combining behavioral experiments, physiological models and quantitative analyses of photoreceptor stimulation. Here, we demonstrate, for the first time, the limits of chromatic discrimination in Metriaclima benetos, a rock-dwelling cichlid from Lake Malawi, using behavioral experiments and visual modeling. Fish were trained to discriminate between colored stimuli. Color discrimination thresholds were quantified by testing fish chromatic discrimination between the rewarded stimulus and distracter stimuli that varied in chromatic distance (ΔS). This was done under fluorescent lights alone and with additional violet lights. Our results provide two main outcomes. First, cichlid color discrimination thresholds correspond with predictions from the receptor noise limited (RNL) model but only if we assume a Weber fraction higher than the typical value of 5%. Second, cichlids may exhibit limited color constancy under certain lighting conditions as most individuals failed to discriminate colors when violet light was added. We further used the color discrimination thresholds obtained from these experiments to model color discrimination of actual fish colors and backgrounds under natural lighting for Lake Malawi. We found that, for M. benetos, blue is most chromatically contrasting against yellows and space-light, which might be important for discriminating male nuptial colorations and detecting males against the background. This study highlights the importance of lab-based behavioral experiments in understanding color vision and in parameterizing the assumptions of the RNL vision model for different species.
Collapse
Affiliation(s)
| | - Michaela A Taylor
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
12
|
Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL. Colours and colour vision in reef fishes: Past, present and future research directions. JOURNAL OF FISH BIOLOGY 2019; 95:5-38. [PMID: 30357835 DOI: 10.1111/jfb.13849] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Uli E Siebeck
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen L Cheney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Biology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Visual modelling supports the potential for prey detection by means of diurnal active photolocation in a small cryptobenthic fish. Sci Rep 2019; 9:8089. [PMID: 31147614 PMCID: PMC6542814 DOI: 10.1038/s41598-019-44529-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
Active sensing has been well documented in animals that use echolocation and electrolocation. Active photolocation, or active sensing using light, has received much less attention, and only in bioluminescent nocturnal species. However, evidence has suggested the diurnal triplefin Tripterygion delaisi uses controlled iris radiance, termed ocular sparks, for prey detection. While this form of diurnal active photolocation was behaviourally described, a study exploring the physical process would provide compelling support for this mechanism. In this paper, we investigate the conditions under which diurnal active photolocation could assist T. delaisi in detecting potential prey. In the field, we sampled gammarids (genus Cheirocratus) and characterized the spectral properties of their eyes, which possess strong directional reflectors. In the laboratory, we quantified ocular sparks size and their angle-dependent radiance. Combined with environmental light measurements and known properties of the visual system of T. delaisi, we modeled diurnal active photolocation under various scenarios. Our results corroborate that diurnal active photolocation should help T. delaisi detect gammarids at distances relevant to foraging, 4.5 cm under favourable conditions and up to 2.5 cm under average conditions. To determine the prevalence of diurnal active photolocation for micro-prey, we encourage further theoretical and empirical work.
Collapse
|
14
|
Cheney KL, Green NF, Vibert AP, Vorobyev M, Marshall NJ, Osorio DC, Endler JA. An Ishihara-style test of animal colour vision. J Exp Biol 2019; 222:222/1/jeb189787. [DOI: 10.1242/jeb.189787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Colour vision mediates ecologically relevant tasks for many animals, such as mate choice, foraging and predator avoidance. However, our understanding of animal colour perception is largely derived from human psychophysics, and behavioural tests of non-human animals are required to understand how colour signals are perceived. Here, we introduce a novel test of colour vision in animals inspired by the Ishihara colour charts, which are widely used to identify human colour deficiencies. In our method, distractor dots have a fixed chromaticity (hue and saturation) but vary in luminance. Animals can be trained to find single target dots that differ from distractor dots in chromaticity. We provide MATLAB code for creating these stimuli, which can be modified for use with different animals. We demonstrate the success of this method with triggerfish, Rhinecanthus aculeatus, which quickly learnt to select target dots that differed from distractor dots, and highlight behavioural parameters that can be measured, including success of finding the target dot, time to detection and error rate. We calculated discrimination thresholds by testing whether target colours that were of increasing colour distances (ΔS) from distractor dots could be detected, and calculated discrimination thresholds in different directions of colour space. At least for some colours, thresholds indicated better discrimination than expected from the receptor noise limited (RNL) model assuming 5% Weber fraction for the long-wavelength cone. This methodology could be used with other animals to address questions such as luminance thresholds, sensory bias, effects of sensory noise, colour categorization and saliency.
Collapse
Affiliation(s)
- Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F. Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander P. Vibert
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Misha Vorobyev
- Department of Optometry and Vision Science, The University of Auckland, Auckland 1142, New Zealand
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel C. Osorio
- School of Life Sciences, The University of Sussex, Brighton BN1 9QG, UK
| | - John A. Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
15
|
Gygax M, Rentsch AK, Rudman SM, Rennison DJ. Differential predation alters pigmentation in threespine stickleback (Gasterosteus aculeatus). J Evol Biol 2018; 31:1589-1598. [PMID: 30055069 DOI: 10.1111/jeb.13354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 07/10/2018] [Indexed: 11/27/2022]
Abstract
Animal pigmentation plays a key role in many biological interactions, including courtship and predator avoidance. Sympatric benthic and limnetic ecotypes of threespine stickleback (Gasterosteus aculeatus) exhibit divergent pigment patterns. To test whether differential predation by cutthroat trout contributes to the differences in pigmentation seen between the ecotypes, we used a within-generation selection experiment on F2 benthic-limnetic hybrids. After 10 months of differential selection, we compared the pigmentation of fish under trout predation to control fish not exposed to trout predation. We found that stickleback exhibited more lateral barring in ponds with trout predation. Ponds with trout were also less turbid, and a greater degree of barring was negatively correlated with the magnitude of turbidity across pond replicates. A more benthic diet, a proxy for habitat use, was also correlated with greater lateral barring and green dorsal pigmentation. These patterns suggest that differential exposure to cutthroat trout predation may explain the divergence in body pigmentation between benthic and limnetic ecotypes.
Collapse
Affiliation(s)
- Michelle Gygax
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ana K Rentsch
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Seth M Rudman
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Diana J Rennison
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Living Light 2018: Conference Report. Biomimetics (Basel) 2018; 3:biomimetics3020011. [PMID: 31105233 PMCID: PMC6352687 DOI: 10.3390/biomimetics3020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Living Light is a biennial conference focused on all aspects of light–matter interaction in biological organisms with a broad, interdisciplinary outlook. The 2018 edition was held at the Møller Centre in Cambridge, UK, from April 11th to April 14th, 2018. Living Light’s main goal is to bring together researchers from different backgrounds (e.g., biologists, physicists and engineers) in order to discuss the current state of the field and sparkle new collaborations and new interdisciplinary projects. With over 90 national and international attendees, the 2018 edition of the conference was strongly multidisciplinary: oral and poster presentations encompassed a wide range of topics ranging from the evolution and development of structural colors in living organisms and their genetic manipulation to the study of fossil photonic structures.
Collapse
|
17
|
Harant UK, Santon M, Bitton PP, Wehrberger F, Griessler T, Meadows MG, Champ CM, Michiels NK. Do the fluorescent red eyes of the marine fish Tripterygion delaisi stand out? In situ and in vivo measurements at two depths. Ecol Evol 2018; 8:4685-4694. [PMID: 29760908 PMCID: PMC5938470 DOI: 10.1002/ece3.4025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
Since the discovery of red fluorescence in fish, much effort has been invested to elucidate its potential functions, one of them being signaling. This implies that the combination of red fluorescence and reflection should generate a visible contrast against the background. Here, we present in vivo iris radiance measurements of Tripterygion delaisi under natural light conditions at 5 and 20 m depth. We also measured substrate radiance of shaded and exposed foraging sites at those depths. To assess the visual contrast of the red iris against these substrates, we used the receptor noise model for chromatic contrasts and Michelson contrast for achromatic calculations. At 20 m depth, T. delaisi iris radiance generated strong achromatic contrasts against substrate radiance, regardless of exposure, and despite substrate fluorescence. Given that downwelling light above 600 nm is negligible at this depth, we can attribute this effect to iris fluorescence. Contrasts were weaker in 5 m. Yet, the pooled radiance caused by red reflection and fluorescence still exceeded substrate radiance for all substrates under shaded conditions and all but Jania rubens and Padina pavonia under exposed conditions. Due to the negative effects of anesthesia on iris fluorescence, these estimates are conservative. We conclude that the requirements to create visual brightness contrasts are fulfilled for a wide range of conditions in the natural environment of T. delaisi.
Collapse
Affiliation(s)
- Ulrike K Harant
- Animal Evolutionary Ecology Institute of Evolution and Ecology Department of Biology Faculty of Science University of Tuebingen Tuebingen Germany
| | - Matteo Santon
- Animal Evolutionary Ecology Institute of Evolution and Ecology Department of Biology Faculty of Science University of Tuebingen Tuebingen Germany
| | - Pierre-Paul Bitton
- Animal Evolutionary Ecology Institute of Evolution and Ecology Department of Biology Faculty of Science University of Tuebingen Tuebingen Germany
| | - Florian Wehrberger
- Animal Evolutionary Ecology Institute of Evolution and Ecology Department of Biology Faculty of Science University of Tuebingen Tuebingen Germany
| | - Thomas Griessler
- Animal Evolutionary Ecology Institute of Evolution and Ecology Department of Biology Faculty of Science University of Tuebingen Tuebingen Germany
| | - Melissa G Meadows
- Animal Evolutionary Ecology Institute of Evolution and Ecology Department of Biology Faculty of Science University of Tuebingen Tuebingen Germany.,Present address: Department of Biology Saint Francis University Loretto PA USA
| | - Connor M Champ
- Animal Evolutionary Ecology Institute of Evolution and Ecology Department of Biology Faculty of Science University of Tuebingen Tuebingen Germany
| | - Nico K Michiels
- Animal Evolutionary Ecology Institute of Evolution and Ecology Department of Biology Faculty of Science University of Tuebingen Tuebingen Germany
| |
Collapse
|
18
|
Endler JA, Mappes J. The current and future state of animal coloration research. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160352. [PMID: 28533467 PMCID: PMC5444071 DOI: 10.1098/rstb.2016.0352] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
Animal colour patterns are a model system for understanding evolution because they are unusually accessible for study and experimental manipulation. This is possible because their functions are readily identifiable. In this final paper of the symposium we provide a diagram of the processes affecting colour patterns and use this to summarize their functions and put the other papers in a broad context. This allows us to identify significant 'holes' in the field that only become obvious when we see the processes affecting colour patterns, and their interactions, as a whole. We make suggestions about new directions of research that will enhance our understanding of both the evolution of colour patterns and visual signalling but also illuminate how the evolution of multiple interacting traits works.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- John A Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Johanna Mappes
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, PO Box 35, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|
19
|
Phillips GAC, How MJ, Lange JE, Marshall NJ, Cheney KL. Disruptive colouration in reef fish: does matching the background reduce predation risk? J Exp Biol 2017; 220:1962-1974. [DOI: 10.1242/jeb.151480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/13/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Animals use disruptive colouration to prevent detection or recognition by potential predators or prey. Highly contrasting elements within colour patterns, including vertical or horizontal bars, are thought to be effective at distracting attention away from body form and reducing detection likelihood. However, it is unclear whether such patterns need to be a good match to the spatial characteristics of the background to gain cryptic benefits. We tested this hypothesis using the iconic vertically barred humbug damselfish, Dascyllus aruanus (Linneaus 1758), a small reef fish that lives among the finger-like projections of branching coral colonies. Using behavioural experiments, we demonstrated that the spatial frequency of the humbug pattern does not need to exactly match the spatial frequency of the coral background to reduce the likelihood of being attacked by two typical reef fish predators: slingjaw wrasse, Epibulus insidiator (Pallas 1770), and coral trout, Plectropomus leopardus (Lacépède 1802). Indeed, backgrounds with a slightly higher spatial frequency than the humbug body pattern provided more protection from predation than well-matched backgrounds. These results were consistent for both predator species, despite differences in their mode of foraging and visual acuity, which was measured using anatomical techniques. We also showed that a slight mismatch in the orientation of the vertical bars did not increase the chances of detection. However, the likelihood of attack did increase significantly when the bars were perpendicular to the background. Our results provide evidence that fish camouflage is more complex than it initially appears, with likely many factors influencing the detection likelihood of prey by relevant predators.
Collapse
Affiliation(s)
| | - Martin J. How
- School of Biological Sciences, The University of Bristol, Bristol BS8 1TQ, UK
| | - Julia E. Lange
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Escobar-Camacho D, Marshall J, Carleton KL. Behavioral color vision in a cichlid fish: Metriaclima benetos. ACTA ACUST UNITED AC 2017; 220:2887-2899. [PMID: 28546509 DOI: 10.1242/jeb.160473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 01/30/2023]
Abstract
Color vision is the capacity to discriminate color regardless of brightness. It is essential for many fish species as they rely on color discrimination for numerous ecological tasks. The study of color vision is important because it can unveil the mechanisms that shape coloration patterns, visual system sensitivities and, hence, visual signals. In order to better understand the mechanisms underlying color vision, an integrative approach is necessary. This usually requires combining behavioral, physiological and genetic experiments with quantitative modeling, resulting in a distinctive characterization of the visual system. Here, we provide new data on the color vision of a rock-dwelling cichlid from Lake Malawi: Metriaclima benetos. For this study we used a behavioral approach to demonstrate color vision through classical conditioning, complemented with modeling of color vision to estimate color contrast. For our experiments we took into account opsin coexpression and considered whether cichlids exhibit a dichromatic or a trichromatic visual system. Behavioral experiments confirmed color vision in M. benetos; most fish were significantly more likely to choose the trained over the distracter stimuli, irrespective of brightness. Our results are supported by visual modeling that suggests that cichlids are trichromats and achieve color vision through color opponency mechanisms, which are a result of three different photoreceptor channels. Our analyses also suggest that opsin coexpression can negatively affect perceived color contrast. This study is particularly relevant for research on the cichlid lineage because cichlid visual capabilities and coloration patterns are implicated in their adaptive radiation.
Collapse
Affiliation(s)
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
21
|
Bitton PP, Harant UK, Fritsch R, Champ CM, Temple SE, Michiels NK. Red fluorescence of the triplefin Tripterygion delaisi is increasingly visible against background light with increasing depth. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161009. [PMID: 28405391 PMCID: PMC5383848 DOI: 10.1098/rsos.161009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
The light environment in water bodies changes with depth due to the absorption of short and long wavelengths. Below 10 m depth, red wavelengths are almost completely absent rendering any red-reflecting animal dark and achromatic. However, fluorescence may produce red coloration even when red light is not available for reflection. A large number of marine taxa including over 270 fish species are known to produce red fluorescence, yet it is unclear under which natural light environment fluorescence contributes perceptively to their colours. To address this question we: (i) characterized the visual system of Tripterygion delaisi, which possesses fluorescent irides, (ii) separated the colour of the irides into its reflectance and fluorescence components and (iii) combined these data with field measurements of the ambient light environment to calculate depth-dependent perceptual chromatic and achromatic contrasts using visual modelling. We found that triplefins have cones with at least three different spectral sensitivities, including differences between the two members of the double cones, giving them the potential for trichromatic colour vision. We also show that fluorescence contributes increasingly to the radiance of the irides with increasing depth. Our results support the potential functionality of red fluorescence, including communicative roles such as species and sex identity, and non-communicative roles such as camouflage.
Collapse
Affiliation(s)
- Pierre-Paul Bitton
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrike K. Harant
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, 72076 Tübingen, Germany
| | - Roland Fritsch
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, 72076 Tübingen, Germany
| | - Connor M. Champ
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, 72076 Tübingen, Germany
| | - Shelby E. Temple
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Nico K. Michiels
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Bitton PP, Janisse K, Doucet SM. Assessing Sexual Dicromatism: The Importance of Proper Parameterization in Tetrachromatic Visual Models. PLoS One 2017; 12:e0169810. [PMID: 28076391 PMCID: PMC5226829 DOI: 10.1371/journal.pone.0169810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/21/2016] [Indexed: 11/19/2022] Open
Abstract
Perceptual models of animal vision have greatly contributed to our understanding of animal-animal and plant-animal communication. The receptor-noise model of color contrasts has been central to this research as it quantifies the difference between two colors for any visual system of interest. However, if the properties of the visual system are unknown, assumptions regarding parameter values must be made, generally with unknown consequences. In this study, we conduct a sensitivity analysis of the receptor-noise model using avian visual system parameters to systematically investigate the influence of variation in light environment, photoreceptor sensitivities, photoreceptor densities, and light transmission properties of the ocular media and the oil droplets. We calculated the chromatic contrast of 15 plumage patches to quantify a dichromatism score for 70 species of Galliformes, a group of birds that display a wide range of sexual dimorphism. We found that the photoreceptor densities and the wavelength of maximum sensitivity of the short-wavelength-sensitive photoreceptor 1 (SWS1) can change dichromatism scores by 50% to 100%. In contrast, the light environment, transmission properties of the oil droplets, transmission properties of the ocular media, and the peak sensitivities of the cone photoreceptors had a smaller impact on the scores. By investigating the effect of varying two or more parameters simultaneously, we further demonstrate that improper parameterization could lead to differences between calculated and actual contrasts of more than 650%. Our findings demonstrate that improper parameterization of tetrachromatic visual models can have very large effects on measures of dichromatism scores, potentially leading to erroneous inferences. We urge more complete characterization of avian retinal properties and recommend that researchers either determine whether their species of interest possess an ultraviolet or near-ultraviolet sensitive SWS1 photoreceptor, or present models for both.
Collapse
Affiliation(s)
- Pierre-Paul Bitton
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
- * E-mail:
| | - Kevyn Janisse
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Stéphanie M. Doucet
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|