1
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
2
|
Swanson DL, Agin TJ, Zhang Y, Oboikovitz P, DuBay S. Metabolic Flexibility in Response to Within-Season Temperature Variability in House Sparrows. Integr Org Biol 2021; 2:obaa039. [PMID: 33791577 PMCID: PMC7810579 DOI: 10.1093/iob/obaa039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The climatic variability hypothesis (CVH) posits that more flexible phenotypes should provide a fitness advantage for organisms experiencing more variable climates. While typically applied across geographically separated populations, whether this principle applies across seasons or other conditions (e.g., open vs. sheltered habitats) which differ in climatic variability remains essentially unstudied. In north-temperate climates, climatic variability in winter usually exceeds that in summer, so extending the CVH to within-population seasonal variation predicts that winter phenotypes should be more flexible than summer phenotypes. We tested this prediction of the within-season extension of the CVH by acclimating summer and winter-collected house sparrows (Passer domesticus) to 24, 5, and -10°C and measuring basal metabolic rate (BMR) and summit metabolic rate (Msum = maximum cold-induced metabolic rate) before and after acclimation (Accl). To examine mechanistic bases for metabolic variation, we measured flight muscle and heart masses and citrate synthase and β-hydroxyacyl coA-dehydrogenase activities. BMR and Msum were higher for cold-acclimated than for warm-acclimated birds, and BMR was higher in winter than in summer birds. Contrary to our hypothesis of greater responses to cold Accl in winter birds, metabolic rates generally decreased over the Accl period for winter birds at all temperatures but increased at cold temperatures for summer birds. Flight muscle and heart masses were not significantly correlated with season or Accl treatment, except for supracoracoideus mass, which was lower at -10°C in winter, but flight muscle and heart masses were positively correlated with BMR and flight muscle mass was positively correlated with Msum. Catabolic enzyme activities were not clearly related to metabolic variation. Thus, our data suggest that predictions of the CVH may not be relevant when extended to seasonal temperature variability at the within-population scale. Indeed, these data suggest that metabolic rates are more prominently upregulated in summer than in winter in response to cold. Metabolic rates tended to decrease during Accl at all temperatures in winter, suggesting that initial metabolic rates at capture (higher in winter) influence metabolic Accl for captive birds.
Collapse
Affiliation(s)
- D L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - T J Agin
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Y Zhang
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - P Oboikovitz
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - S DuBay
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Stawski C, Geiser F. Growing Up in a Changing Climate: How Temperature Affects the Development of Morphological, Behavioral and Physiological Traits of a Marsupial Mammal. Front Physiol 2020; 11:49. [PMID: 32116761 PMCID: PMC7028820 DOI: 10.3389/fphys.2020.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023] Open
Abstract
Climate change is likely to affect many mammalian phenotypes, yet little is known whether and how phenotypic plasticity is involved in responding to thermal challenges during mammalian development. We investigated the effect of continuous cold or warm exposure during development on morphological, behavioral, and functional variables of yellow-footed antechinus (Antechinus flavipes), a semelparous Australian marsupial mammal. Captive-bred young were exposed to two ambient temperatures (T a ), cold (17°C) or warm (25°C), once weaned. Treatments were reversed and metabolic rate (MR) measurements repeated after 2 months. We measured body mass weekly, activity continuously, and MRs over a range of T a once they were adults. Growth rate was similar in both groups, but was faster in males. Antechinus in the warm group were initially more active than the cold group and decreased activity when exposed to cold, whereas the cold group increased activity when exposed to warm. Interestingly, females changed their night-time activity when T a was changed, whereas males changed their daytime activity. MRs were originally lower in the warm group in comparison to the cold group for both sexes and increased slightly for females, but not for males, after being exposed to cold. After exposure to warm T a , the MRs of the cold group decreased significantly over the entire T a -range for both sexes. Our results reveal that temperatures experienced during development can influence behavioral and physiological traits in antechinus. Such phenotypic plasticity is vital for a species that within 1 year is dependent on a single breeding event and experiences a complete population turnover.
Collapse
Affiliation(s)
- Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
4
|
Mao LY, Xu JY, Shi L, Zheng WH, Liu JS. Food restriction decreases thermoregulation in the silky starling Sturnus sericeus (Aves: Passeriformes). THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1665114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- L.-Y. Mao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - J.-Y. Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - L. Shi
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - W.-H. Zheng
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - J.-S. Liu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
5
|
Wascher CAF, Kotrschal K, Arnold W. Free-living greylag geese adjust their heart rates and body core temperatures to season and reproductive context. Sci Rep 2018; 8:2142. [PMID: 29391604 PMCID: PMC5794972 DOI: 10.1038/s41598-018-20655-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/23/2018] [Indexed: 11/11/2022] Open
Abstract
Animals adaptively regulate their metabolic rate and hence energy expenditure over the annual cycle to cope with energetic challenges. We studied energy management in greylag geese. In all geese, profound seasonal changes of heart rate (fH) and body temperature (Tb) showed peaks in summer and troughs during winter, and also daily modulation of fH and Tb. Daily mean fH was on average 22% lower at the winter trough than at the summer peak, whereas daily mean Tb at the winter trough was only about 1 °C below the summer peak. Daily means of Tb together with those of air temperature and day length were the most important predictors of daily mean fH, which was further modulated by precipitation, reproductive state, and, to a minor degree, social rank. Peaks of fH and Tb occurred earlier in incubating females compared to males. Leading goslings increased daily mean fH. Our results suggest that in greylag geese, pronounced changes of fH over the year are caused by photoperiod-induced changes of endogenous heat production. Similar to large non-hibernating mammals, tolerance of lower Tb during winter seems the major factor permitting this. On top of these major seasonal changes, fH and Tb are elevated in incubating females.
Collapse
Affiliation(s)
- Claudia A F Wascher
- Core facility Konrad Lorenz Forschungsstelle for Behahviour and Cognition, University of Vienna, Fischerau 11, A-4645, Grünau im Almtal, Austria. .,Department of Biology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, United Kingdom.
| | - Kurt Kotrschal
- Core facility Konrad Lorenz Forschungsstelle for Behahviour and Cognition, University of Vienna, Fischerau 11, A-4645, Grünau im Almtal, Austria.,Department of Behavioural Biology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Walter Arnold
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, A-1160, Vienna, Austria
| |
Collapse
|
6
|
Swanson DL, McKechnie AE, Vézina F. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms. J Comp Physiol B 2017; 187:1039-1056. [PMID: 28401293 DOI: 10.1007/s00360-017-1096-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
Adaptive explanations for both high and low body mass-independent basal metabolic rate (BMR) in endotherms are pervasive in evolutionary physiology, but arguments implying a direct adaptive benefit of high BMR are troublesome from an energetic standpoint. Here, we argue that conclusions about the adaptive benefit of BMR need to be interpreted, first and foremost, in terms of energetics, with particular attention to physiological traits on which natural selection is directly acting. We further argue from an energetic perspective that selection should always act to reduce BMR (i.e., maintenance costs) to the lowest level possible under prevailing environmental or ecological demands, so that high BMR per se is not directly adaptive. We emphasize the argument that high BMR arises as a correlated response to direct selection on other physiological traits associated with high ecological or environmental costs, such as daily energy expenditure (DEE) or capacities for activity or thermogenesis. High BMR thus represents elevated maintenance costs required to support energetically demanding lifestyles, including living in harsh environments. BMR is generally low under conditions of relaxed selection on energy demands for high metabolic capacities (e.g., thermoregulation, activity) or conditions promoting energy conservation. Under these conditions, we argue that selection can act directly to reduce BMR. We contend that, as a general rule, BMR should always be as low as environmental or ecological conditions permit, allowing energy to be allocated for other functions. Studies addressing relative reaction norms and response times to fluctuating environmental or ecological demands for BMR, DEE, and metabolic capacities and the fitness consequences of variation in BMR and other metabolic traits are needed to better delineate organismal metabolic responses to environmental or ecological selective forces.
Collapse
Affiliation(s)
- David L Swanson
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069, USA.
| | - Andrew E McKechnie
- Department of Zoology and Entomology, DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - François Vézina
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada.,Groupe de recherche sur les environnements nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada
| |
Collapse
|