1
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
2
|
Krongauz DL, Ayali A, Kaminka GA. Vision-based collective motion: A locust-inspired reductionist model. PLoS Comput Biol 2024; 20:e1011796. [PMID: 38285716 PMCID: PMC10852344 DOI: 10.1371/journal.pcbi.1011796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/08/2024] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
Naturally occurring collective motion is a fascinating phenomenon in which swarming individuals aggregate and coordinate their motion. Many theoretical models of swarming assume idealized, perfect perceptual capabilities, and ignore the underlying perception processes, particularly for agents relying on visual perception. Specifically, biological vision in many swarming animals, such as locusts, utilizes monocular non-stereoscopic vision, which prevents perfect acquisition of distances and velocities. Moreover, swarming peers can visually occlude each other, further introducing estimation errors. In this study, we explore necessary conditions for the emergence of ordered collective motion under restricted conditions, using non-stereoscopic, monocular vision. We present a model of vision-based collective motion for locust-like agents: elongated shape, omni-directional visual sensor parallel to the horizontal plane, and lacking stereoscopic depth perception. The model addresses (i) the non-stereoscopic estimation of distance and velocity, (ii) the presence of occlusions in the visual field. We consider and compare three strategies that an agent may use to interpret partially-occluded visual information at the cost of the computational complexity required for the visual perception processes. Computer-simulated experiments conducted in various geometrical environments (toroidal, corridor, and ring-shaped arenas) demonstrate that the models can result in an ordered or near-ordered state. At the same time, they differ in the rate at which order is achieved. Moreover, the results are sensitive to the elongation of the agents. Experiments in geometrically constrained environments reveal differences between the models and elucidate possible tradeoffs in using them to control swarming agents. These suggest avenues for further study in biology and robotics.
Collapse
Affiliation(s)
| | - Amir Ayali
- School of Zoology and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Gal A. Kaminka
- Computer Science Department, Bar-Ilan Univeristy, Israel
| |
Collapse
|
3
|
Uejima T, Mancinelli E, Niebur E, Etienne-Cummings R. The influence of stereopsis on visual saliency in a proto-object based model of selective attention. Vision Res 2023; 212:108304. [PMID: 37542763 PMCID: PMC10592191 DOI: 10.1016/j.visres.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Some animals including humans use stereoscopic vision which reconstructs spatial information about the environment from the disparity between images captured by eyes in two separate adjacent locations. Like other sensory information, such stereoscopic information is expected to influence attentional selection. We develop a biologically plausible model of binocular vision to study its effect on bottom-up visual attention, i.e., visual saliency. In our model, the scene is organized in terms of proto-objects on which attention acts, rather than on unbound sets of elementary features. We show that taking into account the stereoscopic information improves the performance of the model in the prediction of human eye movements with statistically significant differences.
Collapse
Affiliation(s)
- Takeshi Uejima
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| | - Elena Mancinelli
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Ernst Niebur
- The Solomon Snyder Department of Neuroscience and the Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD, USA
| | - Ralph Etienne-Cummings
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Pahl CC, Ruedas LA. Big boned: How fat storage and other adaptations influenced large theropod foraging ecology. PLoS One 2023; 18:e0290459. [PMID: 37910492 PMCID: PMC10619836 DOI: 10.1371/journal.pone.0290459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/08/2023] [Indexed: 11/03/2023] Open
Abstract
Dinosaur foraging ecology has been the subject of scientific interest for decades, yet much of what we understand about it remains hypothetical. We wrote an agent-based model (ABM) to simulate meat energy sources present in dinosaur environments, including carcasses of giant sauropods, along with living, huntable prey. Theropod dinosaurs modeled in this environment (specifically allosauroids, and more particularly, Allosaurus Marsh, 1877) were instantiated with heritable traits favorable to either hunting success or scavenging success. If hunter phenotypes were more reproductively successful, their traits were propagated into the population through their offspring, resulting in predator specialists. If selective pressure favored scavenger phenotypes, the population would evolve to acquire most of their calories from carrion. Data generated from this model strongly suggest that theropods in sauropod-dominated systems evolved to detect carcasses, consume and store large quantities of fat, and dominate carcass sites. Broadly speaking, selective forces did not favor predatory adaptations, because sauropod carrion resource pools, as we modeled them, were too profitable for prey-based resource pools to be significant. This is the first research to test selective pressure patterns in dinosaurs, and the first to estimate theropod mass based on metabolic constraints.
Collapse
Affiliation(s)
- Cameron C. Pahl
- Department of Biology and Museum of Vertebrate Biology, Science Research and Teaching Center—246, Portland State University, Portland, Oregon, United States of America
| | - Luis A. Ruedas
- Department of Biology and Museum of Vertebrate Biology, Science Research and Teaching Center—246, Portland State University, Portland, Oregon, United States of America
| |
Collapse
|
5
|
Lv XF, Zhong H, Yang HJ, He L, Xiong M, Zhang XL, Wang L, Fang W, Wu J. Study on the postoperative visual function recovery of children with concomitant exotropia based on an augmented reality plasticity model. Front Psychol 2023; 14:1025577. [PMID: 37818421 PMCID: PMC10560856 DOI: 10.3389/fpsyg.2023.1025577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023] Open
Abstract
Objective This study aimed to investigate the clinical application effect of an augmented reality (AR) plasticity model on the postoperative visual function recovery of children with concomitant exotropia. Methods Between September 2019 and October 2021, 28 patients with concomitant exotropia who visited Shenzhen Children's Hospital (9 male and 19 female) were enrolled in this study. The average age of the patients was 6.4 ± 1.8 years. Postoperative rehabilitation training was conducted using a personalized AR binocular visual perception plasticity model developed based on the patient's examination results. After 1 month, 3 months, and 6 months of training, the patients returned to the hospital for examinations of perceptual eye position, static zero-order stereopsis, dynamic first-order fine stereopsis, and dynamic second-order coarse stereopsis to compare the changes in eye position control and stereovision function. Results After 6 months of eye position training, the horizontal perception eye position of the 28 patients was significantly lower than that before training. The difference in eye position at the first and third months compared with that before training was not statistically significant (1st month: z = -2.255, p = 0.024 > 0.017; 3rd month: z = -2.277, p = 0.023 > 0.017; 6th month: z = -3.051, p = 0.002 < 0.017). The difference in vertical perceptual eye position after training compared with that before training was not statistically significant (1st month: z = -0.252, p = 0.801 > 0.017; 3rd month: z = -1.189, p = 0.234 > 0.017; 6th month: z = -2.225, p = 0.026 > 0.017). The difference in 0.8-m static zero-order stereopsis before and after training was not statistically significant (1st month: z = -2.111, p = 0.035 > 0.017; 3rd month: z = -1.097, p = 0.273 > 0.017; 6th month: z = -1.653, p = 0.098 > 0.017). The 1.5-m static zero-order stereopsis was improved after 1 month, 3 months, and 6 months of training compared with that before training (1st month: z = -3.134, p = 0.002 < 0.017; 3rd month: z = -2.835, p = 0.005 < 0.017; 6th month: z = -3.096, p = 0.002 < 0.017). Dynamic first-order fine stereopsis and dynamic second-order coarse stereopsis were measured in the 28 patients before and after training. Patients 1 and 18 had no dynamic first-order fine stereopsis before training, but both regained dynamic stereopsis after 1 month, 3 months, and 6 months of training. Patient 16 had no dynamic first-order fine stereopsis or dynamic second-order coarse stereopsis before training, but first-order and second-order stereopsis had been reconstructed after 1 month, 3 months, and 6 months of training. Conclusion Concomitant exotropia surgery improved the basic problem of eye position at the ocular muscle level, but the patient's perceptual eye position and visual function defects at the brain visual level remained. This might partly explain the poor postoperative clinical effect. The AR plasticity model can improve patients' horizontal perceptual eye position and multi-dimensional stereoscopic function, and its clinical effect warrants further study.
Collapse
Affiliation(s)
- Xiu-Fang Lv
- Department of Ophthalmology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Hui Zhong
- Department of Ophthalmology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Hao-Jiang Yang
- Department of Ophthalmology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People’s Hospital), Shenzhen, China
| | - Li He
- Department of Ophthalmology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Mei Xiong
- Department of Ophthalmology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xiao-Ling Zhang
- Department of Ophthalmology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Li Wang
- Department of Ophthalmology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Wang Fang
- Department of Ophthalmology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jin Wu
- Department of Ophthalmology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Smithers SP, Shao Y, Altham J, Bex PJ. Large depth differences between target and flankers can increase crowding: Evidence from a multi-depth plane display. eLife 2023; 12:e85143. [PMID: 37665324 PMCID: PMC10476968 DOI: 10.7554/elife.85143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Crowding occurs when the presence of nearby features causes highly visible objects to become unrecognizable. Although crowding has implications for many everyday tasks and the tremendous amounts of research reflect its importance, surprisingly little is known about how depth affects crowding. Most available studies show that stereoscopic disparity reduces crowding, indicating that crowding may be relatively unimportant in three-dimensional environments. However, most previous studies tested only small stereoscopic differences in depth in which disparity, defocus blur, and accommodation are inconsistent with the real world. Using a novel multi-depth plane display, this study investigated how large (0.54-2.25 diopters), real differences in target-flanker depth, representative of those experienced between many objects in the real world, affect crowding. Our findings show that large differences in target-flanker depth increased crowding in the majority of observers, contrary to previous work showing reduced crowding in the presence of small depth differences. Furthermore, when the target was at fixation depth, crowding was generally more pronounced when the flankers were behind the target as opposed to in front of it. However, when the flankers were at fixation depth, crowding was generally more pronounced when the target was behind the flankers. These findings suggest that crowding from clutter outside the limits of binocular fusion can still have a significant impact on object recognition and visual perception in the peripheral field.
Collapse
Affiliation(s)
- Samuel P Smithers
- Department of Psychology, Northeastern UniversityBostonUnited States
| | - Yulong Shao
- Department of Psychology, Northeastern UniversityBostonUnited States
| | - James Altham
- Department of Psychology, Northeastern UniversityBostonUnited States
| | - Peter J Bex
- Department of Psychology, Northeastern UniversityBostonUnited States
| |
Collapse
|
7
|
Henríquez-Piskulich P, Stuart-Fox D, Elgar M, Marusic I, Franklin AM. Dazzled by shine: gloss as an antipredator strategy in fast moving prey. Behav Ecol 2023; 34:862-871. [PMID: 37744168 PMCID: PMC10516678 DOI: 10.1093/beheco/arad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 09/26/2023] Open
Abstract
Previous studies on stationary prey have found mixed results for the role of a glossy appearance in predator avoidance-some have found that glossiness can act as warning coloration or improve camouflage, whereas others detected no survival benefit. An alternative untested hypothesis is that glossiness could provide protection in the form of dynamic dazzle. Fast moving animals that are glossy produce flashes of light that increase in frequency at higher speeds, which could make it harder for predators to track and accurately locate prey. We tested this hypothesis by presenting praying mantids with glossy or matte targets moving at slow and fast speed. Mantids were less likely to strike glossy targets, independently of speed. Additionally, mantids were less likely to track glossy targets and more likely to hit the target with one out of the two legs that struck rather than both raptorial legs, but only when targets were moving fast. These results support the hypothesis that a glossy appearance may have a function as an antipredator strategy by reducing the ability of predators to track and accurately target fast moving prey.
Collapse
Affiliation(s)
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark Elgar
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ivan Marusic
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amanda M Franklin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Thomas DHN, Kjernsmo K, Scott-Samuel NE, Whitney HM, Cuthill IC. Interactions between color and gloss in iridescent camouflage. Behav Ecol 2023; 34:751-758. [PMID: 37744171 PMCID: PMC10516679 DOI: 10.1093/beheco/arad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 09/26/2023] Open
Abstract
Iridescence is a taxonomically widespread form of structural coloration that produces often intense hues that change with the angle of viewing. Its role as a signal has been investigated in multiple species, but recently, and counter-intuitively, it has been shown that it can function as camouflage. However, the property of iridescence that reduces detectability is, as yet, unclear. As viewing angle changes, iridescent objects change not only in hue but also in intensity, and many iridescent animals are also shiny or glossy; these "specular reflections," both from the target and background, have been implicated in crypsis. Here, we present a field experiment with natural avian predators that separate the relative contributions of color and gloss to the "survival" of iridescent and non-iridescent beetle-like targets. Consistent with previous research, we found that iridescent coloration, and high gloss of the leaves on which targets were placed, enhance survival. However, glossy targets survived less well than matt. We interpret the results in terms of signal-to-noise ratio: specular reflections from the background reduce detectability by increasing visual noise. While a specular reflection from the target attracts attention, a changeable color reduces the signal because, we suggest, normally, the color of an object is a stable feature for detection and identification.
Collapse
Affiliation(s)
- Dylan H N Thomas
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Karin Kjernsmo
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas E Scott-Samuel
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Innes C Cuthill
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Fries M, Brown TW, Jolicoeur C, Boulan B, Boudreau-Pinsonneault C, Javed A, Abram P, Cayouette M. Pou3f1 orchestrates a gene regulatory network controlling contralateral retinogeniculate projections. Cell Rep 2023; 42:112985. [PMID: 37590135 DOI: 10.1016/j.celrep.2023.112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 05/26/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The balance of contralateral and ipsilateral retinogeniculate projections is critical for binocular vision, but the transcriptional programs regulating this process remain ill defined. Here we show that the Pou class homeobox protein POU3F1 is expressed in nascent mouse contralateral retinal ganglion cells (cRGCs) but not ipsilateral RGCs (iRGCs). Upon Pou3f1 inactivation, the proportion of cRGCs is reduced in favor of iRGCs, leading to abnormal projection ratios at the optic chiasm. Conversely, misexpression of Pou3f1 in progenitors increases the production of cRGCs. Using CUT&RUN and RNA sequencing in gain- and loss-of-function assays, we demonstrate that POU3F1 regulates expression of several key members of the cRGC gene regulatory network. Finally, we report that POU3F1 is sufficient to induce RGC-like cell production, even in late-stage retinal progenitors of Atoh7 knockout mice. This work uncovers POU3F1 as a regulator of the cRGC transcriptional program, opening possibilities for optic nerve regenerative therapies.
Collapse
Affiliation(s)
- Michel Fries
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Thomas W Brown
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Benoit Boulan
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Camille Boudreau-Pinsonneault
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pénélope Abram
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
10
|
Saleem AB, Busse L. Interactions between rodent visual and spatial systems during navigation. Nat Rev Neurosci 2023; 24:487-501. [PMID: 37380885 DOI: 10.1038/s41583-023-00716-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Many behaviours that are critical for animals to survive and thrive rely on spatial navigation. Spatial navigation, in turn, relies on internal representations about one's spatial location, one's orientation or heading direction and the distance to objects in the environment. Although the importance of vision in guiding such internal representations has long been recognized, emerging evidence suggests that spatial signals can also modulate neural responses in the central visual pathway. Here, we review the bidirectional influences between visual and navigational signals in the rodent brain. Specifically, we discuss reciprocal interactions between vision and the internal representations of spatial position, explore the effects of vision on representations of an animal's heading direction and vice versa, and examine how the visual and navigational systems work together to assess the relative distances of objects and other features. Throughout, we consider how technological advances and novel ethological paradigms that probe rodent visuo-spatial behaviours allow us to advance our understanding of how brain areas of the central visual pathway and the spatial systems interact and enable complex behaviours.
Collapse
Affiliation(s)
- Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany.
- Bernstein Centre for Computational Neuroscience Munich, Munich, Germany.
| |
Collapse
|
11
|
Harper T, Nemirovsky SI, Tomsic D, Sztarker J. Predatory behavior under monocular and binocular conditions in the semiterrestrial crab Neohelice granulata. Front Behav Neurosci 2023; 17:1186518. [PMID: 37304759 PMCID: PMC10248132 DOI: 10.3389/fnbeh.2023.1186518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Neohelice granulata crabs live in mudflats where they prey upon smaller crabs. Predatory behavior can be elicited in the laboratory by a dummy moving at ground level in an artificial arena. Previous research found that crabs do not use apparent dummy size nor its retinal speed as a criterion to initiate attacks, relying instead on actual size and distance to the target. To estimate the distance to an object on the ground, Neohelice could rely on angular declination below the horizon or, since they are broad-fronted with eye stalks far apart, on stereopsis. Unlike other animals, binocular vision does not widen the visual field of crabs since they already cover 360° monocularly. There exist nonetheless areas of the eye with increased resolution. Methods We tested how predatory responses towards the dummy changed when animals' vision was monocular (one eye occluded by opaque black paint) compared to binocular. Results Even though monocular crabs could still perform predatory behaviors, we found a steep reduction in the number of attacks. Predatory performance defined by the probability of completing the attacks and the success rate (the probability of making contact with the dummy once the attack was initiated) was impaired too. Monocular crabs tended to use frontal, ballistic jumps (lunge behavior) less, and the accuracy of those attacks was reduced. Monocular crabs used prey interception (moving toward the dummy while it approached the crab) more frequently, favoring attacks when the dummy was ipsilateral to the viewing eye. Instead, binocular crabs' responses were balanced in the right and left hemifields. Both groups mainly approached the dummy using the lateral field of view, securing speed of response. Conclusion Although two eyes are not strictly necessary for eliciting predatory responses, binocularity is associated with more frequent and precise attacks.
Collapse
Affiliation(s)
- Thomas Harper
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Sergio Iván Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Tomsic
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado”, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Sztarker
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado”, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Yan Y, Li Z, Li L, Lou Z. Stereopsis-Inspired 3D Visual Imaging System Based on 2D Ruddlesden-Popper Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300831. [PMID: 37035967 DOI: 10.1002/smll.202300831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Stereopsis is of great important functions for humans to perceive and interact with the world. To realize the function of stereoscopic imaging, optoelectronic sensors shall possess good photoresponsive performance, multidirectional sensing, and 3D building capabilities. However, the current imaging sensors are mainly focused on 2D imaging, limiting their practical application scenarios. In this study, a stereopsis-inspired flexible 3D visual imaging system (VIS) based on 2D Ruddlesden-Popper perovskite is demonstrated. The 3D-VIS consists of 800 device units, each of which demonstrates excellent photoresponse performance, mechanical characteristics, and environmental stability. In addition to the capability of detecting 2D reflective images, the 3D-VIS realizes the function of detecting the depth of field and fusing object projections of two directions to invert the 3D image by utilizing voxels to rebuild the spatial structure of the object. In the future, the 3D-VIS will have broad application prospects in medical imaging, virtual reality, industrial automation, and other fields.
Collapse
Affiliation(s)
- Yongxu Yan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Zhexin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Linlin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P.R. China
| |
Collapse
|
13
|
Barker CT, Naish D, Trend J, Michels LV, Witmer L, Ridgley R, Rankin K, Clarkin CE, Schneider P, Gostling NJ. Modified skulls but conservative brains? The palaeoneurology and endocranial anatomy of baryonychine dinosaurs (Theropoda: Spinosauridae). J Anat 2023; 242:1124-1145. [PMID: 36781174 PMCID: PMC10184548 DOI: 10.1111/joa.13837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
The digital reconstruction of neurocranial endocasts has elucidated the gross brain structure and potential ecological attributes of many fossil taxa, including Irritator, a spinosaurine spinosaurid from the "mid" Cretaceous (Aptian) of Brazil. With unexceptional hearing capabilities, this taxon was inferred to integrate rapid and controlled pitch-down movements of the head that perhaps aided in the predation of small and agile prey such as fish. However, the neuroanatomy of baryonychine spinosaurids remains to be described, and potentially informs on the condition of early spinosaurids. Using micro-computed tomographic scanning (μCT), we reconstruct the braincase endocasts of Baryonyx walkeri and Ceratosuchops inferodios from the Wealden Supergroup (Lower Cretaceous) of England. We show that the gross endocranial morphology is similar to other non-maniraptoriform theropods, and corroborates previous observations of overall endocranial conservatism amongst more basal theropods. Several differences of unknown taxonomic utility are noted between the pair. Baryonychine neurosensory capabilities include low-frequency hearing and unexceptional olfaction, whilst the differing morphology of the floccular lobe tentatively suggests less developed gaze stabilisation mechanisms relative to spinosaurines. Given the morphological similarities observed with other basal tetanurans, baryonychines likely possessed comparable behavioural sophistication, suggesting that the transition from terrestrial hypercarnivorous ancestors to semi-aquatic "generalists" during the evolution of Spinosauridae did not require substantial modification of the brain and sensory systems.
Collapse
Affiliation(s)
- Chris Tijani Barker
- Institute for Life Sciences, University of Southampton, University Road, Southampton, UK.,Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, UK
| | - Darren Naish
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Jacob Trend
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Lysanne Veerle Michels
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Lawrence Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Ryan Ridgley
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Katy Rankin
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Claire E Clarkin
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Philipp Schneider
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.,High-Performance Vision Systems, Center for Vision, Automation and Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Neil J Gostling
- Institute for Life Sciences, University of Southampton, University Road, Southampton, UK.,School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| |
Collapse
|
14
|
Abstract
Stereopsis has traditionally been considered a complex visual ability, restricted to large-brained animals. The discovery in the 1980s that insects, too, have stereopsis, therefore, challenged theories of stereopsis. How can such simple brains see in three dimensions? A likely answer is that insect stereopsis has evolved to produce simple behaviour, such as orienting towards the closer of two objects or triggering a strike when prey comes within range. Scientific thinking about stereopsis has been unduly anthropomorphic, for example assuming that stereopsis must require binocular fusion or a solution of the stereo correspondence problem. In fact, useful behaviour can be produced with very basic stereoscopic algorithms which make no attempt to achieve fusion or correspondence, or to produce even a coarse map of depth across the visual field. This may explain why some aspects of insect stereopsis seem poorly designed from an engineering point of view: for example, paying no attention to whether interocular contrast or velocities match. Such algorithms demonstrably work well enough in practice for their species, and may prove useful in particular autonomous applications. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Collapse
Affiliation(s)
- Jenny C. A. Read
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear UNE2 4HH, UK
| |
Collapse
|
15
|
Linton P, Morgan MJ, Read JCA, Vishwanath D, Creem-Regehr SH, Domini F. New Approaches to 3D Vision. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210443. [PMID: 36511413 PMCID: PMC9745878 DOI: 10.1098/rstb.2021.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
New approaches to 3D vision are enabling new advances in artificial intelligence and autonomous vehicles, a better understanding of how animals navigate the 3D world, and new insights into human perception in virtual and augmented reality. Whilst traditional approaches to 3D vision in computer vision (SLAM: simultaneous localization and mapping), animal navigation (cognitive maps), and human vision (optimal cue integration) start from the assumption that the aim of 3D vision is to provide an accurate 3D model of the world, the new approaches to 3D vision explored in this issue challenge this assumption. Instead, they investigate the possibility that computer vision, animal navigation, and human vision can rely on partial or distorted models or no model at all. This issue also highlights the implications for artificial intelligence, autonomous vehicles, human perception in virtual and augmented reality, and the treatment of visual disorders, all of which are explored by individual articles. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Collapse
Affiliation(s)
- Paul Linton
- Presidential Scholars in Society and Neuroscience, Center for Science and Society, Columbia University, New York, NY 10027, USA
- Italian Academy for Advanced Studies in America, Columbia University, New York, NY 10027, USA
- Visual Inference Lab, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Michael J. Morgan
- Department of Optometry and Visual Sciences, City, University of London, Northampton Square, London EC1V 0HB, UK
| | - Jenny C. A. Read
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne & Wear NE2 4HH, UK
| | - Dhanraj Vishwanath
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife KY16 9JP, UK
| | | | - Fulvio Domini
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912-9067, USA
| |
Collapse
|
16
|
Wu Y, Fan L, Bai L, Li Q, Gu H, Sun C, Jiang T, Feng J. Ambush predation and the origin of euprimates. SCIENCE ADVANCES 2022; 8:eabn6248. [PMID: 36103535 PMCID: PMC9473580 DOI: 10.1126/sciadv.abn6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Primates of modern aspect (euprimates) are characterized by a suite of characteristics (e.g., convergent orbits, grasping hands and feet, reduced claws, and leaping), but the selective pressures responsible for the evolution of these euprimate characteristics have long remained controversial. Here, we used a molecular phyloecological approach to determine the diet of the common ancestor of living primates (CALP), and the results showed that the CALP had increased carnivory. Given the carnivory of the CALP, along with the general observation that orbital convergence is largely restricted to ambush predators, our study suggests that the euprimate characteristics could have been more specifically adapted for ambush predation. In particular, our behavior experiment further shows that nonclaw climbing can significantly reduce noises, which could benefit the ancestral euprimates' stalking to ambush their prey in trees. Therefore, our study suggests that the distinctive euprimate characteristics may have evolved as their specialized adaptation for ambush predation in arboreal environments.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Longcheng Fan
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Lu Bai
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingqing Li
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hao Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Congnan Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| |
Collapse
|
17
|
Kondoyanni M, Loukatos D, Maraveas C, Drosos C, Arvanitis KG. Bio-Inspired Robots and Structures toward Fostering the Modernization of Agriculture. Biomimetics (Basel) 2022; 7:69. [PMID: 35735585 PMCID: PMC9220914 DOI: 10.3390/biomimetics7020069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
Biomimetics is the interdisciplinary cooperation of biology and technology that offers solutions to practical problems by analyzing biological systems and transferring their principles into applications. This review article focused on biomimetic innovations, including bio-inspired soft robots and swarm robots that could serve multiple functions, including the harvesting of fruits, pest control, and crop management. The research demonstrated commercially available biomimetic innovations, including robot bees by Arugga AI Farming and the Robotriks Traction Unit (RTU) precision farming equipment. Additionally, soft robotic systems have made it possible to mitigate the risk of surface bruises, rupture, the crushing destruction of plant tissue, and plastic deformation in the harvesting of fruits with a soft rind such as apples, cherries, pears, stone fruits, kiwifruit, mandarins, cucumbers, peaches, and pome. Even though the smart farming technologies, which were developed to mimic nature, could help prevent climate change and enhance the intensification of agriculture, there are concerns about long-term ecological impact, cost, and their inability to complement natural processes such as pollination. Despite the problems, the market for bio-inspired technologies with potential agricultural applications to modernize farming and solve the abovementioned challenges has increased exponentially. Future research and development should lead to low-cost FEA robotic grippers and FEA-tendon-driven grippers for crop harvesting. In brief, soft robots and swarm robotics have immense potential in agriculture.
Collapse
Affiliation(s)
- Maria Kondoyanni
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Str., Botanikos, 11855 Athens, Greece; (M.K.); (C.M.); (K.G.A.)
| | - Dimitrios Loukatos
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Str., Botanikos, 11855 Athens, Greece; (M.K.); (C.M.); (K.G.A.)
| | - Chrysanthos Maraveas
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Str., Botanikos, 11855 Athens, Greece; (M.K.); (C.M.); (K.G.A.)
| | - Christos Drosos
- Department of Industrial Design and Production Engineering, University of West Attica, 250 Thivon & P. Ralli Str., 12241 Egaleo, Greece;
| | - Konstantinos G. Arvanitis
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Str., Botanikos, 11855 Athens, Greece; (M.K.); (C.M.); (K.G.A.)
| |
Collapse
|
18
|
O’Keeffe J, Yap SH, Llamas-Cornejo I, Nityananda V, Read JCA. A computational model of stereoscopic prey capture in praying mantises. PLoS Comput Biol 2022; 18:e1009666. [PMID: 35587948 PMCID: PMC9159633 DOI: 10.1371/journal.pcbi.1009666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/01/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022] Open
Abstract
We present a simple model which can account for the stereoscopic sensitivity of praying mantis predatory strikes. The model consists of a single “disparity sensor”: a binocular neuron sensitive to stereoscopic disparity and thus to distance from the animal. The model is based closely on the known behavioural and neurophysiological properties of mantis stereopsis. The monocular inputs to the neuron reflect temporal change and are insensitive to contrast sign, making the sensor insensitive to interocular correlation. The monocular receptive fields have a excitatory centre and inhibitory surround, making them tuned to size. The disparity sensor combines inputs from the two eyes linearly, applies a threshold and then an exponent output nonlinearity. The activity of the sensor represents the model mantis’s instantaneous probability of striking. We integrate this over the stimulus duration to obtain the expected number of strikes in response to moving targets with different stereoscopic disparity, size and vertical disparity. We optimised the parameters of the model so as to bring its predictions into agreement with our empirical data on mean strike rate as a function of stimulus size and disparity. The model proves capable of reproducing the relatively broad tuning to size and narrow tuning to stereoscopic disparity seen in mantis striking behaviour. Although the model has only a single centre-surround receptive field in each eye, it displays qualitatively the same interaction between size and disparity as we observed in real mantids: the preferred size increases as simulated prey distance increases beyond the preferred distance. We show that this occurs because of a stereoscopic “false match” between the leading edge of the stimulus in one eye and its trailing edge in the other; further work will be required to find whether such false matches occur in real mantises. Importantly, the model also displays realistic responses to stimuli with vertical disparity and to pairs of identical stimuli offering a “ghost match”, despite not being fitted to these data. This is the first image-computable model of insect stereopsis, and reproduces key features of both neurophysiology and striking behaviour. The praying mantis is the only insect so far known to compute depth using stereoscopic (3D) vision. Mantis stereopsis appears to be simpler than human stereopsis and most machine sterovision algorithms. A computational model of mantis stereopsis may therefore be beneficial to the field of robotics, particularly where computational power is limited. Using a combination of behavioural observations and neurophysiological data, we propose a very simple model structure to describe the prey capture response in the praying mantis. We used the limited available data on the mantis’ size and distance preferences for its prey to train our model parameters. Our simple model is able to qualitatively reproduce previously unexplained characteristics of our training data, and predicts key observations in additional empirical data that was not included in the model training. Whilst we believe our model to be only a partial and heavily simplified account of mantis stereopsis, our results are supportive of our model structure as an approximation of the size and disparity sensors used by the mantis when catching its prey.
Collapse
Affiliation(s)
- James O’Keeffe
- Dyson School of Design Engineering, Imperial College, London, United Kingdom
- * E-mail:
| | - Sin Hui Yap
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
- School of Medical Education, Newcastle University, Johor, Malaysia
| | | | - Vivek Nityananda
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Jenny C. A. Read
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
19
|
Bosse JW, Svenson GJ, Bowers TA, Bourges-Sevenier BM, Ritzmann RE. Context dependent effects on attack and defense behaviors in the praying mantis Tenodera sinensis. J Exp Biol 2022; 225:275277. [PMID: 35502775 DOI: 10.1242/jeb.243710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
Most behavior needs to strike a balance between the competing needs to find food and protect an animal from predators. The factors that influence this balance and the resulting behavior are not well understood in many animals. Here we examined these influences in the praying mantis Tenodera sinensis (Saussure) by presenting perching individuals with alternating sinusoidally moving prey-like stimuli and rapidly expanding looming stimuli then scoring their behavior on a defensive - aggressive scale. In this way, we tested the hypothesis that such behaviors are highly context dependent. Specifically, we found that defensive responses, which are normally very consistent, are decreased in magnitude if the animal has just performed an aggressive response to the previous sinusoid. A thrash behavior not normally seen with looming alone was often seen following aggression. In thrashing the animal tries to push the looming stimulus away. It almost exclusively followed aggressive responses to the sinusoid stimulus. Moreover, aggression levels were found to shift from low to high and back to low as adult animals aged and, in general, female mantises were more aggressive than males. Finally, the specific nature of the mid-life spike in aggressive behaviors differed according to whether the animals were lab-raised or caught in the wild. Lab raised animals showed roughly equal amounts of increased attention to the stimulus and very aggressive strike behaviors whereas wild caught animals tended to either ignore the stimulus or react very aggressively with strikes. Therefore, our hypothesis regarding context dependent effects was supported with all 4 factors influencing the behaviors that were studied.
Collapse
Affiliation(s)
- Jacob W Bosse
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gavin J Svenson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Invertebrate Zoology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA
| | - Troy A Bowers
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | | | - Roy E Ritzmann
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Binocular mirror-symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision. Proc Natl Acad Sci U S A 2022; 119:e2109717119. [PMID: 35298337 PMCID: PMC8944591 DOI: 10.1073/pnas.2109717119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors. Neural mechanisms behind stereopsis, which requires simultaneous disparity inputs from two eyes, have remained mysterious. Here we show how ultrafast mirror-symmetric photomechanical contractions in the frontal forward-facing left and right eye photoreceptors give Drosophila superresolution three-dimensional (3D) vision. By interlinking multiscale in vivo assays with multiscale simulations, we reveal how these photoreceptor microsaccades—by verging, diverging, and narrowing the eyes’ overlapping receptive fields—channel depth information, as phasic binocular image motion disparity signals in time. We further show how peripherally, outside stereopsis, microsaccadic sampling tracks a flying fly’s optic flow field to better resolve the world in motion. These results change our understanding of how insect compound eyes work and suggest a general dynamic stereo-information sampling strategy for animals, robots, and sensors.
Collapse
|
21
|
Ravi S, Siesenop T, Bertrand OJ, Li L, Doussot C, Fisher A, Warren WH, Egelhaaf M. Bumblebees display characteristics of active vision during robust obstacle avoidance flight. J Exp Biol 2022; 225:274096. [PMID: 35067721 PMCID: PMC8920035 DOI: 10.1242/jeb.243021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Insects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath. Head stabilization increased motion contrast of nearby features against the background to enable obstacle detection. As bees approached obstacles, they appeared to modulate avoidance responses based on the relative retinal expansion velocity (RREV) of obstacles and their maximum evasion acceleration was linearly related to RREVmax. Finally, bees prevented collisions through rapid roll manoeuvres implemented by their thorax. Overall, the combination of visuo-motor strategies of bumblebees highlights elegant solutions developed by insects for visually guided flight through cluttered environments.
Collapse
Affiliation(s)
- Sridhar Ravi
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany,School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia,Author for correspondence ()
| | - Tim Siesenop
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Olivier J. Bertrand
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Liang Li
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Charlotte Doussot
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Alex Fisher
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - William H. Warren
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Martin Egelhaaf
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| |
Collapse
|
22
|
Candy TR, Cormack LK. Recent understanding of binocular vision in the natural environment with clinical implications. Prog Retin Eye Res 2021; 88:101014. [PMID: 34624515 PMCID: PMC8983798 DOI: 10.1016/j.preteyeres.2021.101014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Technological advances in recent decades have allowed us to measure both the information available to the visual system in the natural environment and the rich array of behaviors that the visual system supports. This review highlights the tasks undertaken by the binocular visual system in particular and how, for much of human activity, these tasks differ from those considered when an observer fixates a static target on the midline. The everyday motor and perceptual challenges involved in generating a stable, useful binocular percept of the environment are discussed, together with how these challenges are but minimally addressed by much of current clinical interpretation of binocular function. The implications for new technology, such as virtual reality, are also highlighted in terms of clinical and basic research application.
Collapse
Affiliation(s)
- T Rowan Candy
- School of Optometry, Programs in Vision Science, Neuroscience and Cognitive Science, Indiana University, 800 East Atwater Avenue, Bloomington, IN, 47405, USA.
| | - Lawrence K Cormack
- Department of Psychology, Institute for Neuroscience, and Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
23
|
The primary visual cortex of Cetartiodactyls: organization, cytoarchitectonics and comparison with perissodactyls and primates. Brain Struct Funct 2021; 227:1195-1225. [PMID: 34604923 PMCID: PMC9046356 DOI: 10.1007/s00429-021-02392-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
Cetartiodactyls include terrestrial and marine species, all generally endowed with a comparatively lateral position of their eyes and a relatively limited binocular field of vision. To this day, our understanding of the visual system in mammals beyond the few studied animal models remains limited. In the present study, we examined the primary visual cortex of Cetartiodactyls that live on land (sheep, Père David deer, giraffe); in the sea (bottlenose dolphin, Risso’s dolphin, long-finned pilot whale, Cuvier’s beaked whale, sperm whale and fin whale); or in an amphibious environment (hippopotamus). We also sampled and studied the visual cortex of the horse (a closely related perissodactyl) and two primates (chimpanzee and pig-tailed macaque) for comparison. Our histochemical and immunohistochemical results indicate that the visual cortex of Cetartiodactyls is characterized by a peculiar organization, structure, and complexity of the cortical column. We noted a general lesser lamination compared to simians, with diminished density, and an apparent simplification of the intra- and extra-columnar connections. The presence and distribution of calcium-binding proteins indicated a notable absence of parvalbumin in water species and a strong reduction of layer 4, usually enlarged in the striated cortex, seemingly replaced by a more diffuse distribution in neighboring layers. Consequently, thalamo-cortical inputs are apparently directed to the higher layers of the column. Computer analyses and statistical evaluation of the data confirmed the results and indicated a substantial correlation between eye placement and cortical structure, with a markedly segregated pattern in cetaceans compared to other mammals. Furthermore, cetacean species showed several types of cortical lamination which may reflect differences in function, possibly related to depth of foraging and consequent progressive disappearance of light, and increased importance of echolocation.
Collapse
|
24
|
Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Abstract
Most animals have at least some binocular overlap, i.e., a region of space that is viewed by both eyes. This reduces the overall visual field and raises the problem of combining two views of the world, seen from different vantage points, into a coherent whole. However, binocular vision also offers many potential advantages, including increased ability to see around obstacles and increased contrast sensitivity. One particularly interesting use for binocular vision is comparing information from both eyes to derive information about depth. There are many different ways in which this might be done, but in this review, I refer to them all under the general heading of stereopsis. This review examines the different possible uses of binocular vision and stereopsis and compares what is currently known about the neural basis of stereopsis in different taxa. Studying different animals helps us break free of preconceptions stemming from the way that stereopsis operates in human vision and provides new insights into the different possible forms of stereopsis. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jenny C A Read
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| |
Collapse
|
26
|
Luu W, Zangerl B, Kalloniatis M, Kim J. Effects of stereopsis on vection, presence and cybersickness in head-mounted display (HMD) virtual reality. Sci Rep 2021; 11:12373. [PMID: 34117273 PMCID: PMC8196155 DOI: 10.1038/s41598-021-89751-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/28/2021] [Indexed: 11/08/2022] Open
Abstract
Stereopsis provides critical information for the spatial visual perception of object form and motion. We used virtual reality as a tool to understand the role of global stereopsis in the visual perception of self-motion and spatial presence using virtual environments experienced through head-mounted displays (HMDs). Participants viewed radially expanding optic flow simulating different speeds of self-motion in depth, which generated the illusion of self-motion in depth (i.e., linear vection). Displays were viewed with the head either stationary (passive radial flow) or laterally swaying to the beat of a metronome (active conditions). Multisensory conflict was imposed in active conditions by presenting displays that either: (i) compensated for head movement (active compensation condition), or (ii) presented pure radial flow with no compensation during head movement (active no compensation condition). In Experiment 1, impairing stereopsis by anisometropic suppression in healthy participants generated declines in reported vection strength, spatial presence and severity of cybersickness. In Experiment 2, vection and presence ratings were compared between participants with and without clinically-defined global stereopsis. Participants without global stereopsis generated impaired vection and presence similarly to those found in Experiment 1 by subjects with induced stereopsis impairment. We find that reducing global stereopsis can have benefits of reducing cybersickness, but has adverse effects on aspects of self-motion perception in HMD VR.
Collapse
Affiliation(s)
- Wilson Luu
- School of Optometry and Vision Science, University of New South Wales (UNSW Sydney), Kensington, Australia.
- Centre for Eye Health, University of New South Wales (UNSW Sydney), Kensington, Australia.
| | - Barbara Zangerl
- School of Optometry and Vision Science, University of New South Wales (UNSW Sydney), Kensington, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales (UNSW Sydney), Kensington, Australia
- Centre for Eye Health, University of New South Wales (UNSW Sydney), Kensington, Australia
| | - Juno Kim
- School of Optometry and Vision Science, University of New South Wales (UNSW Sydney), Kensington, Australia.
| |
Collapse
|
27
|
Johnson KP, Fitzpatrick MJ, Zhao L, Wang B, McCracken S, Williams PR, Kerschensteiner D. Cell-type-specific binocular vision guides predation in mice. Neuron 2021; 109:1527-1539.e4. [PMID: 33784498 PMCID: PMC8112612 DOI: 10.1016/j.neuron.2021.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
Predators use vision to hunt, and hunting success is one of evolution's main selection pressures. However, how viewing strategies and visual systems are adapted to predation is unclear. Tracking predator-prey interactions of mice and crickets in 3D, we find that mice trace crickets with their binocular visual fields and that monocular mice are poor hunters. Mammalian binocular vision requires ipsi- and contralateral projections of retinal ganglion cells (RGCs) to the brain. Large-scale single-cell recordings and morphological reconstructions reveal that only a small subset (9 of 40+) of RGC types in the ventrotemporal mouse retina innervate ipsilateral brain areas (ipsi-RGCs). Selective ablation of ipsi-RGCs (<2% of RGCs) in the adult retina drastically reduces the hunting success of mice. Stimuli based on ethological observations indicate that five ipsi-RGC types reliably signal prey. Thus, viewing strategies align with a spatially restricted and cell-type-specific set of ipsi-RGCs that supports binocular vision to guide predation.
Collapse
Affiliation(s)
- Keith P Johnson
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Fitzpatrick
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bing Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean McCracken
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip R Williams
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Abstract
Knowing one's body dimensions is a core aspect of individual experience and self-awareness. A recent study illustrates how bees take into account their own body size both in preparation for and while traversing small gaps.
Collapse
Affiliation(s)
- Joanna Brebner
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | - Lars Chittka
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
29
|
Pita D, Fernández-Juricic E. Zebrafish Neighbor Distance Changes Relative to Conspecific Size, Position in the Water Column, and the Horizon: A Video-Playback Experiment. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.568752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many fish form schools and maintain visual contact with their neighbors in a three-dimensional environment. In this study, we assessed whether zebrafish modified their spacing and interaction time in an additive or multiplicative way relative to multiple sources of social information using computer animations. We simultaneously manipulated: (a) the size of the virtual conspecific (as a proxy of social cue magnitude), (b) the position of the virtual conspecific in the water column (as a proxy of the level of perceived risk), and (c) the absence/presence of the visual horizon (as a proxy of depth perception). We found that the size of the virtual conspecific independently affected spacing behavior (zebrafish increased their separation distance as conspecific size increased). However, some of these factors interacted significantly, such that their effects on social behavior depended on each other. For instance, zebrafish increased their separation distance under high risk conditions when the virtual conspecific was larger, but this risk effect disappeared when the conspecific was the same size or smaller, likely to avoid aggression. Also, zebrafish increased their separation distance when depth perception was enhanced under low risk conditions, but the effect of depth perception disappeared under high risk conditions. Overall, we found that certain dimensions of the visual social environment affected zebrafish spacing behavior in different ways, but they did not affect social interaction time. We discuss the implications of these findings for the spatial organization of fish schools.
Collapse
|
30
|
|
31
|
Bu R, Xiao F, Lovell PG, Ye Z, Shi H. Structural and colored disruption as camouflage strategies in two sympatric Asian box turtle species (Cuora spp.). Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
32
|
Disparity Sensitivity and Binocular Integration in Mouse Visual Cortex Areas. J Neurosci 2020; 40:8883-8899. [PMID: 33051348 DOI: 10.1523/jneurosci.1060-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023] Open
Abstract
Binocular disparity, the difference between the two eyes' images, is a powerful cue to generate the 3D depth percept known as stereopsis. In primates, binocular disparity is processed in multiple areas of the visual cortex, with distinct contributions of higher areas to specific aspects of depth perception. Mice, too, can perceive stereoscopic depth, and neurons in primary visual cortex (V1) and higher-order, lateromedial (LM) and rostrolateral (RL) areas were found to be sensitive to binocular disparity. A detailed characterization of disparity tuning across mouse visual areas is lacking, however, and acquiring such data might help clarifying the role of higher areas for disparity processing and establishing putative functional correspondences to primate areas. We used two-photon calcium imaging in female mice to characterize the disparity tuning properties of neurons in visual areas V1, LM, and RL in response to dichoptically presented binocular gratings, as well as random dot correlograms (RDC). In all three areas, many neurons were tuned to disparity, showing strong response facilitation or suppression at optimal or null disparity, respectively, even in neurons classified as monocular by conventional ocular dominance (OD) measurements. Neurons in higher areas exhibited broader and more asymmetric disparity tuning curves compared with V1, as observed in primate visual cortex. Finally, we probed neurons' sensitivity to true stereo correspondence by comparing responses to correlated RDC (cRDC) and anticorrelated RDC (aRDC). Area LM, akin to primate ventral visual stream areas, showed higher selectivity for correlated stimuli and reduced anticorrelated responses, indicating higher-level disparity processing in LM compared with V1 and RL.SIGNIFICANCE STATEMENT A major cue for inferring 3D depth is disparity between the two eyes' images. Investigating how binocular disparity is processed in the mouse visual system will not only help delineating the role of mouse higher areas for visual processing, but also shed light on how the mammalian brain computes stereopsis. We found that binocular integration is a prominent feature of mouse visual cortex, as many neurons are selectively and strongly modulated by binocular disparity. Comparison of responses to correlated and anticorrelated random dot correlograms (RDC) revealed that lateromedial area (LM) is more selective to correlated stimuli, while less sensitive to anticorrelated stimuli compared with primary visual cortex (V1) and rostrolateral area (RL), suggesting higher-level disparity processing in LM, resembling primate ventral visual stream areas.
Collapse
|
33
|
Galloway JAM, Green SD, Stevens M, Kelley LA. Finding a signal hidden among noise: how can predators overcome camouflage strategies? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190478. [PMID: 32420842 PMCID: PMC7331011 DOI: 10.1098/rstb.2019.0478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Substantial progress has been made in the past 15 years regarding how prey use a variety of visual camouflage types to exploit both predator visual processing and cognition, including background matching, disruptive coloration, countershading and masquerade. By contrast, much less attention has been paid to how predators might overcome these defences. Such strategies include the evolution of more acute senses, the co-opting of other senses not targeted by camouflage, changes in cognition such as forming search images, and using behaviours that change the relationship between the cryptic individual and the environment or disturb prey and cause movement. Here, we evaluate the methods through which visual camouflage prevents detection and recognition, and discuss if and how predators might evolve, develop or learn counter-adaptations to overcome these. This article is part of the theme issue ‘Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- James A M Galloway
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK
| | - Samuel D Green
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK
| | - Martin Stevens
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK
| | - Laura A Kelley
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK
| |
Collapse
|
34
|
Iwaniuk AN, Wylie DR. Sensory systems in birds: What we have learned from studying sensory specialists. J Comp Neurol 2020; 528:2902-2918. [PMID: 32133638 DOI: 10.1002/cne.24896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
Abstract
"Diversity" is an apt descriptor of the research career of Jack Pettigrew as it ranged from the study of trees, to clinical conditions, to sensory neuroscience. Within sensory neuroscience, he was fascinated by the evolution of sensory systems across species. Here, we review some of his work on avian sensory specialists and research that he inspired in others. We begin with an overview of the importance of the Wulst in stereopsis and the need for further study of the Wulst in relation to binocularity across avian species. Next, we summarize recent anatomical, behavioral, and physiological studies on optic flow specializations in hummingbirds. Beyond vision, we discuss the first evidence of a tactile "fovea" in birds and how this led to detailed studies of tactile specializations in waterfowl and sensorimotor systems in parrots. We then describe preliminary studies by Pettigrew of two endemic Australian species, the plains-wanderer (Pedionomus torquatus) and letter-winged kite (Elanus scriptus), that suggest the evolution of some unique auditory and visual specializations in relation to their unique behavior and ecology. Finally, we conclude by emphasizing the importance of a comparative and integrative approach to understanding avian sensory systems and provide an example of one system that has yet to be properly examined: tactile facial bristles in birds. Through reviewing this research and offering future avenues for discovery, we hope that others also embrace the comparative approach to understanding sensory system evolution in birds and other vertebrates.
Collapse
Affiliation(s)
- Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Binocular responsiveness of projection neurons of the praying mantis optic lobe in the frontal visual field. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:165-181. [PMID: 32088748 PMCID: PMC7069917 DOI: 10.1007/s00359-020-01405-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/30/2022]
Abstract
Praying mantids are the only insects proven to have stereoscopic vision (stereopsis): the ability to perceive depth from the slightly shifted images seen by the two eyes. Recently, the first neurons likely to be involved in mantis stereopsis were described and a speculative neuronal circuit suggested. Here we further investigate classes of neurons in the lobula complex of the praying mantis brain and their tuning to stereoscopically-defined depth. We used sharp electrode recordings with tracer injections to identify visual projection neurons with input in the optic lobe and output in the central brain. In order to measure binocular response fields of the cells the animals watched a vertical bar stimulus in a 3D insect cinema during recordings. We describe the binocular tuning of 19 neurons projecting from the lobula complex and the medulla to central brain areas. The majority of neurons (12/19) were binocular and had receptive fields for both eyes that overlapped in the frontal region. Thus, these neurons could be involved in mantis stereopsis. We also find that neurons preferring different contrast polarity (bright vs dark) tend to be segregated in the mantis lobula complex, reminiscent of the segregation for small targets and widefield motion in mantids and other insects.
Collapse
|
36
|
Supple JA, Pinto-Benito D, Khoo C, Wardill TJ, Fabian ST, Liu M, Pusdekar S, Galeano D, Pan J, Jiang S, Wang Y, Liu L, Peng H, Olberg RM, Gonzalez-Bellido PT. Binocular Encoding in the Damselfly Pre-motor Target Tracking System. Curr Biol 2020; 30:645-656.e4. [DOI: 10.1016/j.cub.2019.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/16/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
|
37
|
Feord RC, Sumner ME, Pusdekar S, Kalra L, Gonzalez-Bellido PT, Wardill TJ. Cuttlefish use stereopsis to strike at prey. SCIENCE ADVANCES 2020; 6:eaay6036. [PMID: 31934631 PMCID: PMC6949036 DOI: 10.1126/sciadv.aay6036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
The camera-type eyes of vertebrates and cephalopods exhibit remarkable convergence, but it is currently unknown whether the mechanisms for visual information processing in these brains, which exhibit wildly disparate architecture, are also shared. To investigate stereopsis in a cephalopod species, we affixed "anaglyph" glasses to cuttlefish and used a three-dimensional perception paradigm. We show that (i) cuttlefish have also evolved stereopsis (i.e., the ability to extract depth information from the disparity between left and right visual fields); (ii) when stereopsis information is intact, the time and distance covered before striking at a target are shorter; (iii) stereopsis in cuttlefish works differently to vertebrates, as cuttlefish can extract stereopsis cues from anticorrelated stimuli. These findings demonstrate that although there is convergent evolution in depth computation, cuttlefish stereopsis is likely afforded by a different algorithm than in humans, and not just a different implementation.
Collapse
Affiliation(s)
- R. C. Feord
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - M. E. Sumner
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - S. Pusdekar
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - L. Kalra
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - P. T. Gonzalez-Bellido
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Trevor J. Wardill
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
38
|
Second-order cues to figure motion enable object detection during prey capture by praying mantises. Proc Natl Acad Sci U S A 2019; 116:27018-27027. [PMID: 31818943 DOI: 10.1073/pnas.1912310116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Detecting motion is essential for animals to perform a wide variety of functions. In order to do so, animals could exploit motion cues, including both first-order cues-such as luminance correlation over time-and second-order cues, by correlating higher-order visual statistics. Since first-order motion cues are typically sufficient for motion detection, it is unclear why sensitivity to second-order motion has evolved in animals, including insects. Here, we investigate the role of second-order motion in prey capture by praying mantises. We show that prey detection uses second-order motion cues to detect figure motion. We further present a model of prey detection based on second-order motion sensitivity, resulting from a layer of position detectors feeding into a second layer of elementary-motion detectors. Mantis stereopsis, in contrast, does not require figure motion and is explained by a simpler model that uses only the first layer in both eyes. Second-order motion cues thus enable prey motion to be detected, even when perfectly matching the average background luminance and independent of the elementary motion of any parts of the prey. Subsequent to prey detection, processes such as stereopsis could work to determine the distance to the prey. We thus demonstrate how second-order motion mechanisms enable ecologically relevant behavior such as detecting camouflaged targets for other visual functions including stereopsis and target tracking.
Collapse
|
39
|
An interhemispheric neural circuit allowing binocular integration in the optic tectum. Nat Commun 2019; 10:5471. [PMID: 31784529 PMCID: PMC6884480 DOI: 10.1038/s41467-019-13484-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Binocular stereopsis requires the convergence of visual information from corresponding points in visual space seen by two different lines of sight. This may be achieved by superposition of retinal input from each eye onto the same downstream neurons via ipsi- and contralaterally projecting optic nerve fibers. Zebrafish larvae can perceive binocular cues during prey hunting but have exclusively contralateral retinotectal projections. Here we report brain activity in the tectal neuropil ipsilateral to the visually stimulated eye, despite the absence of ipsilateral retinotectal projections. This activity colocalizes with arbors of commissural neurons, termed intertectal neurons (ITNs), that connect the tectal hemispheres. ITNs are GABAergic, establish tectal synapses bilaterally and respond to small moving stimuli. ITN-ablation impairs capture swim initiation when prey is positioned in the binocular strike zone. We propose an intertectal circuit that controls execution of the prey-capture motor program following binocular localization of prey, without requiring ipsilateral retinotectal projections. Zebrafish larvae can binocularly detect prey objects in order to strike but lack ipsilateral retinotectal fibers for binocular superposition of visual information. Here the authors describe commissural intertectal neurons and show that they are required for the initiation of capture strikes.
Collapse
|
40
|
Peckre LR, Lowie A, Brewer D, Ehmke E, Welser K, Shaw E, Wall C, Pouydebat E, Fabre AC. Food mobility and the evolution of grasping behaviour: a case study in strepsirrhine primates. ACTA ACUST UNITED AC 2019; 222:jeb.207688. [PMID: 31558589 DOI: 10.1242/jeb.207688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 01/31/2023]
Abstract
Manual grasping is widespread among tetrapods but is more prominent and dexterous in primates. Whether the selective pressures that drove the evolution of dexterous hand grasping involved the collection of fruit or predation on mobile insects remains an area of debate. One way to explore this question is to examine preferences for manual versus oral grasping of a moving object. Previous studies on strepsirrhines have shown a preference for oral grasping when grasping static food items and a preference for manual grasping when grasping mobile prey such as insects, but little is known about the factors at play. Using a controlled experiment with a simple and predictable motion of a food item, we tested and compared the grasping behaviours of 53 captive individuals belonging to 17 species of strepsirrhines while grasping swinging food items and static food items. The swinging motion increased the frequency of hand-use for all individuals. Our results provide evidence that the swinging motion of the food is a sufficient parameter to increase hand grasping in a wide variety of strepsirrhine primates. From an evolutionary perspective, this result gives some support to the idea that hand-grasping abilities evolved under selective pressure associated with the predation of food items in motion. Looking at a common grasping pattern across a large set of species, this study provides important insight into comparative approaches to understanding the evolution of the hand grasping of food in primates and potentially other tetrapod taxa.
Collapse
Affiliation(s)
- Louise Rachel Peckre
- UMR 7179 CNRS/MNHN, 57 rue Cuvier, Case postale 55, 75231 Paris Cedex 5, France .,Behavioral Ecology and Sociobiology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.,Leibniz Science Campus 'Primate Cognition', 37077 Göttingen, Germany
| | - Aurélien Lowie
- UMR 7179 CNRS/MNHN, 57 rue Cuvier, Case postale 55, 75231 Paris Cedex 5, France.,Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | - Erin Ehmke
- Duke Lemur Center, Durham, NC 27705, USA
| | - Kay Welser
- Duke Lemur Center, Durham, NC 27705, USA
| | - Erin Shaw
- Duke Lemur Center, Durham, NC 27705, USA
| | - Christine Wall
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | | | - Anne-Claire Fabre
- UMR 7179 CNRS/MNHN, 57 rue Cuvier, Case postale 55, 75231 Paris Cedex 5, France.,Duke Lemur Center, Durham, NC 27705, USA.,Department of Life Sciences, The Natural History Museum, London SW7 5DB, UK
| |
Collapse
|
41
|
Huang JV, Wei Y, Krapp HG. A biohybrid fly-robot interface system that performs active collision avoidance. BIOINSPIRATION & BIOMIMETICS 2019; 14:065001. [PMID: 31412322 DOI: 10.1088/1748-3190/ab3b23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have designed a bio-hybrid fly-robot interface (FRI) to study sensorimotor control in insects. The FRI consists of a miniaturized recording platform mounted on a two-wheeled robot and is controlled by the neuronal spiking activity of an identified visual interneuron, the blowfly H1-cell. For a given turning radius of the robot, we found a proportional relationship between the spike rate of the H1-cell and the relative distance of the FRI from the patterned wall of an experimental arena. Under closed-loop conditions during oscillatory forward movements biased towards the wall, collision avoidance manoeuvres were triggered whenever the H1-cell spike rate exceeded a certain threshold value. We also investigated the FRI behaviour in corners of the arena. The ultimate goal is to enable autonomous and energy-efficient manoeuvrings of the FRI within arbitrary visual environments.
Collapse
Affiliation(s)
- Jiaqi V Huang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
42
|
Romero CA, Snow JC. Methods for Presenting Real-world Objects Under Controlled Laboratory Conditions. J Vis Exp 2019. [PMID: 31282889 DOI: 10.3791/59762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Our knowledge of human object vision is based almost exclusively on studies in which the stimuli are presented in the form of computerized two-dimensional (2-D) images. In everyday life, however, humans interact predominantly with real-world solid objects, not images. Currently, we know very little about whether images of objects trigger similar behavioral or neural processes as do real-world exemplars. Here, we present methods for bringing the real-world into the laboratory. We detail methods for presenting rich, ecologically-valid real-world stimuli under tightly-controlled viewing conditions. We describe how to match closely the visual appearance of real objects and their images, as well as novel apparatus and protocols that can be used to present real objects and computerized images on successively interleaved trials. We use a decision-making paradigm as a case example in which we compare willingness-to-pay (WTP) for real snack foods versus 2-D images of the same items. We show that WTP increases by 6.6% for food items displayed as real objects versus high-resolution 2-D colored images of the same foods -suggesting that real foods are perceived as being more valuable than their images. Although presenting real object stimuli under controlled conditions presents several practical challenges for the experimenter, this approach will fundamentally expand our understanding of the cognitive and neural processes that underlie naturalistic vision.
Collapse
|
43
|
Brusko GD, Yoon JW, Wang MY. Through the Eyes of a Neurosurgeon - How Binocular Disparity Translates into Surgical Performance. Neurosurgery 2019; 84:E142-E143. [PMID: 30590792 DOI: 10.1093/neuros/nyy625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- G Damian Brusko
- Department of Neurological Surgery University of Miami Miller School of Medicine Miami, Florida
| | - Jang W Yoon
- Department of Neurological Surgery University of Miami Miller School of Medicine Miami, Florida
| | - Michael Y Wang
- Department of Neurological Surgery University of Miami Miller School of Medicine Miami, Florida
| |
Collapse
|
44
|
Adams WJ, Graf EW, Anderson M. Disruptive coloration and binocular disparity: breaking camouflage. Proc Biol Sci 2019; 286:20182045. [PMID: 30963917 PMCID: PMC6408597 DOI: 10.1098/rspb.2018.2045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/21/2019] [Indexed: 01/16/2023] Open
Abstract
Many species employ camouflage to disguise their true shape and avoid detection or recognition. Disruptive coloration is a form of camouflage in which high-contrast patterns obscure internal features or break up an animal's outline. In particular, edge enhancement creates illusory, or 'fake' depth edges within the animal's body. Disruptive coloration often co-occurs with background matching, and together, these strategies make it difficult for an observer to visually segment an animal from its background. However, stereoscopic vision could provide a critical advantage in the arms race between perception and camouflage: the depth information provided by binocular disparities reveals the true three-dimensional layout of a scene, and might, therefore, help an observer to overcome the effects of disruptive coloration. Human observers located snake targets embedded in leafy backgrounds. We analysed performance (response time) as a function of edge enhancement, illumination conditions and the availability of binocular depth cues. We confirm that edge enhancement contributes to effective camouflage: observers were slower to find snakes whose patterning contains 'fake' depth edges. Importantly, however, this effect disappeared when binocular depth cues were available. Illumination also affected detection: under directional illumination, where both the leaves and snake produced strong cast shadows, snake targets were localized more quickly than in scenes rendered under ambient illumination. In summary, we show that illusory depth edges, created via disruptive coloration, help to conceal targets from human observers. However, cast shadows and binocular depth information improve detection by providing information about the true three-dimensional structure of a scene. Importantly, the strong interaction between disparity and edge enhancement suggests that stereoscopic vision has a critical role in breaking camouflage, enabling the observer to overcome the disruptive effects of edge enhancement.
Collapse
Affiliation(s)
- Wendy J. Adams
- Department of Psychology, University of Southampton, Southampton SO17 1BJ, UK
| | | | | |
Collapse
|
45
|
Nityananda V, Joubier C, Tan J, Tarawneh G, Read JCA. Motion-in-depth perception and prey capture in the praying mantis Sphodromantis lineola. J Exp Biol 2019; 222:jeb.198614. [DOI: 10.1242/jeb.198614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Perceiving motion-in-depth is essential to detecting approaching or receding objects, predators and prey. This can be achieved using several cues, including binocular stereoscopic cues such as changing disparity and interocular velocity differences, and monocular cues such as looming. While these have been studied in detail in humans, only looming responses have been well characterized in insects and we know nothing about the role of stereo cues and how they might interact with looming cues. We used our 3D insect cinema in a series of experiments to investigate the role of the stereo cues mentioned above, as well as looming, in the perception of motion-in-depth during predatory strikes by the praying mantis Sphodromantis lineola. Our results show that motion-in-depth does increase the probability of mantis strikes but only for the classic looming stimulus, an expanding luminance edge. Approach indicated by radial motion of a texture or expansion of a motion-defined edge, or by stereoscopic cues, all failed to elicit increased striking. We conclude that mantises use stereopsis to detect depth but not motion-in-depth, which is detected via looming.
Collapse
Affiliation(s)
- Vivek Nityananda
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Coline Joubier
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- M2 Comportement Animal et Humain, École doctorale de Rennes, Vie Agro Santé, University of Rennes 1, Rennes 35000, France
| | - Jerry Tan
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ghaith Tarawneh
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jenny C. A. Read
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
46
|
Semeraro F, Forbice E, Nascimbeni G, Cillino S, Bonfiglio VME, Filippelli ME, Bartollino S, Costagliola C. Ocular Refraction at Birth and Its Development During the First Year of Life in a Large Cohort of Babies in a Single Center in Northern Italy. Front Pediatr 2019; 7:539. [PMID: 32083036 PMCID: PMC7001530 DOI: 10.3389/fped.2019.00539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/11/2019] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate refraction at birth and during the first year of life in a large cohort of babies born in a single center in Northern Italy. We also aimed to analyze refractive errors in relation to the gestational age at birth. An observational ophthalmological assessment was performed within 24 h of birth on 12,427 newborns. Refraction was examined using streak retinoscopy after the administration of tropicamide (1%). Values in the range of between +0.50 ≤ D ≤ +4.00 were defined as physiological refraction at birth. Newborns with refraction values outside of the physiological range were followed up during the first year of life. Comparative analyses were conducted in a subgroup of babies with known gestational ages. The following distribution of refraction at birth was recorded: 88.03% of the babies had physiological refraction, 5.03% had moderate hyperopia, 2.14% had severe hyperopia, 3.4%, had emmetropia, 0.45%, had myopia, 0.94% had astigmatism, and 0.01% had anisometropia. By the end of the first year of life, we observed reductions in hyperopia and astigmatism, and stabilization of myopia. Preterm babies had a four-fold higher risk of congenital myopia and a three-fold higher risk of congenital emmetropia as compared to term babies. Refraction profiles obtained at birth changed during the first year of life, leading to a normalization of the refraction values. Gestational age at birth affected the incidence of refractive errors and amblyopia.
Collapse
Affiliation(s)
- Francesco Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Eliana Forbice
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppe Nascimbeni
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | | | | | - Maria Elena Filippelli
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Campobasso, Italy
| |
Collapse
|
47
|
Railo H, Saastamoinen J, Kylmälä S, Peltola A. Binocular disparity can augment the capacity of vision without affecting subjective experience of depth. Sci Rep 2018; 8:15798. [PMID: 30361498 PMCID: PMC6202414 DOI: 10.1038/s41598-018-34137-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022] Open
Abstract
Binocular disparity results in a tangible subjective experience of three-dimensional world, but whether disparity also augments objective perceptual performance remains debated. We hypothesized that the improved coding of depth enabled by binocular disparity allows participants to individuate more objects at a glance as the objects can be more efficiently differentiated from each other and the background. We asked participants to enumerate objects in briefly presented naturalistic (Experiment 1) and artificial (Experiment 2) scenes in immersive virtual reality. This type of enumeration task yields well-documented capacity limits where up to 3-4 items can be enumerated rapidly and accurately, known as subitizing. Our results show that although binocular disparity did not yield a large general improvement in enumeration accuracy or reaction times, it improved participants' ability to process the items right after the limit of perceptual capacity. Binocular disparity also sped-up response times by 27 ms on average when artificial stimuli (cubes) were used. Interestingly, the influence of disparity on subjectively experienced depth revealed a clearly different pattern than the influence of disparity on objective performance. This suggests that the functional and subjective sides of stereopsis can be dissociated. Altogether our results suggest that binocular disparity may increase the number of items the visual system can simultaneously process. This may help animals to better resolve and track objects in complex, cluttered visual environments.
Collapse
Affiliation(s)
- Henry Railo
- Department of Clinical Neurophysiology, University of Turku and Turku University Hospital, FI-20521, Turku, Finland.
- Department of Psychology, University of Turku, Turku, 20014, Finland.
| | - Joni Saastamoinen
- Department of Psychology, University of Turku, Turku, 20014, Finland
| | - Sipi Kylmälä
- Department of Psychology, University of Turku, Turku, 20014, Finland
| | - Aapo Peltola
- Turku Game Lab, Turku University of Applied Sciences, Turku, 20520, Finland
| |
Collapse
|
48
|
Alizadeh AM, Van Dromme IC, Janssen P. Single-cell responses to three-dimensional structure in a functionally defined patch in macaque area TEO. J Neurophysiol 2018; 120:2806-2818. [PMID: 30230993 DOI: 10.1152/jn.00198.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both dorsal and ventral visual pathways harbor several areas sensitive to gradients of binocular disparity (i.e., higher-order disparity). Although a wealth of information exists about disparity processing in early visual (V1, V2, and V3) and end-stage areas, TE in the ventral stream, and the anterior intraparietal area (AIP) in the dorsal stream, little is known about midlevel area TEO in the ventral pathway. We recorded single-unit responses to disparity-defined curved stimuli in a functional magnetic resonance imaging (fMRI) activation elicited by curved surfaces compared with flat surfaces in the macaque area TEO. This fMRI activation contained a small proportion of disparity-selective neurons, with very few of them second-order disparity selective. Overall, this population of TEO neurons did not preserve its three-dimensional structure selectivity across positions in depth, indicating a lack of higher-order disparity selectivity, but showed stronger responses to flat surfaces than to curved surfaces, as predicted by the fMRI experiment. The receptive fields of the responsive TEO cells were relatively small and generally foveal. A linear support vector machine classifier showed that this population of disparity-selective TEO neurons contains reliable information about the sign of curvature and the position in depth of the stimulus. NEW & NOTEWORTHY We recorded in a part of the macaque area TEO that is activated more by curved surfaces than by flat surfaces at different disparities using the same stimuli. In contrast to previous studies, this functional magnetic resonance imaging-defined patch did not contain a large number of higher-order disparity-selective neurons. However, a linear support vector machine could reliably classify both the sign of the disparity gradient and the position in depth of the stimuli.
Collapse
Affiliation(s)
- Amir-Mohammad Alizadeh
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| | - Ilse C Van Dromme
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| | - Peter Janssen
- Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute , Leuven , Belgium
| |
Collapse
|
49
|
O'Connor AR, Tidbury LP. Stereopsis: are we assessing it in enough depth? Clin Exp Optom 2018; 101:485-494. [PMID: 29377291 PMCID: PMC6033147 DOI: 10.1111/cxo.12655] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 01/17/2023] Open
Abstract
The assessment of stereoacuity is an integral part of the ophthalmic assessment, with the responses used to inform clinical management decisions. Stereoacuity impacts on many aspects of life, but there are discrepancies reported where people without measurable stereoacuity report appreciating 3-D vision. This could be due, in part, to the presentation of the stimuli. A literature review was undertaken to evaluate current assessment techniques, how they relate to patient outcomes, identify the limitations of current tests and discuss how they could be improved. Recent evidence has been collated on currently available tests, used commonly within vision clinics, with normative data provided allowing responses to the tests to be interpreted. The relevance of the results is evaluated in relation to a range of outcomes, where a reduced level of stereopsis has a negative impact on the ability of an individual to perform many tasks, and can lead to an increase in difficulty interacting in the world. Current tests are limited in the aspects of stereoacuity they assess and their ability to precisely measure stereopsis. The world is not static, yet clinical tests are limited to measuring static stereoacuity, even though higher grades of depth perception can be identified in the presence of changing depth. Presentation methods of stereoacuity tests have remained similar over time, with a limited number of disparity levels assessed. New assessment methods are becoming available that include automated staircase testing to present multiple levels of disparity using digital technology. Current clinical tests are limited in their presentation, and are poor at detecting/measuring stereoacuity in those with limited stereopsis. Given the relevance of the stereoacuity measurement to management choices and functional outcomes, new testing methods would be beneficial to fully assess stereoacuity, both static and dynamic.
Collapse
Affiliation(s)
- Anna R O'Connor
- Directorate of Orthoptics and Vision ScienceUniversity of LiverpoolLiverpoolUK
| | - Laurence P Tidbury
- Directorate of Orthoptics and Vision ScienceUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
50
|
Nityananda V, Tarawneh G, Henriksen S, Umeton D, Simmons A, Read JCA. A Novel Form of Stereo Vision in the Praying Mantis. Curr Biol 2018; 28:588-593.e4. [PMID: 29429616 DOI: 10.1016/j.cub.2018.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/19/2022]
Abstract
Stereopsis is the ability to estimate distance based on the different views seen in the two eyes [1-5]. It is an important model perceptual system in neuroscience and a major area of machine vision. Mammalian, avian, and almost all machine stereo algorithms look for similarities between the luminance-defined images in the two eyes, using a series of computations to produce a map showing how depth varies across the scene [3, 4, 6-14]. Stereopsis has also evolved in at least one invertebrate, the praying mantis [15-17]. Mantis stereopsis is presumed to be simpler than vertebrates' [15, 18], but little is currently known about the underlying computations. Here, we show that mantis stereopsis uses a fundamentally different computational algorithm from vertebrate stereopsis-rather than comparing luminance in the two eyes' images directly, mantis stereopsis looks for regions of the images where luminance is changing. Thus, while there is no evidence that mantis stereopsis works at all with static images, it successfully reveals the distance to a moving target even in complex visual scenes with targets that are perfectly camouflaged against the background in terms of texture. Strikingly, these insects outperform human observers at judging stereoscopic distance when the pattern of luminance in the two eyes does not match. Insect stereopsis has thus evolved to be computationally efficient while being robust to poor image resolution and to discrepancies in the pattern of luminance between the two eyes. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Vivek Nityananda
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ghaith Tarawneh
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Sid Henriksen
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Diana Umeton
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Adam Simmons
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jenny C A Read
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|