1
|
Ortega-Escobar J, Hebets EA, Bingman VP, Wiegmann DD, Gaffin DD. Comparative biology of spatial navigation in three arachnid orders (Amblypygi, Araneae, and Scorpiones). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01612-2. [PMID: 36781447 DOI: 10.1007/s00359-023-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
From both comparative biology and translational research perspectives, there is escalating interest in understanding how animals navigate their environments. Considerable work is being directed towards understanding the sensory transduction and neural processing of environmental stimuli that guide animals to, for example, food and shelter. While much has been learned about the spatial orientation behavior, sensory cues, and neurophysiology of champion navigators such as bees and ants, many other, often overlooked animal species possess extraordinary sensory and spatial capabilities that can broaden our understanding of the behavioral and neural mechanisms of animal navigation. For example, arachnids are predators that often return to retreats after hunting excursions. Many of these arachnid central-place foragers are large and highly conducive to scientific investigation. In this review we highlight research on three orders within the Class Arachnida: Amblypygi (whip spiders), Araneae (spiders), and Scorpiones (scorpions). For each, we describe (I) their natural history and spatial navigation, (II) how they sense the world, (III) what information they use to navigate, and (IV) how they process information for navigation. We discuss similarities and differences among the groups and highlight potential avenues for future research.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Verner P Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Douglas D Gaffin
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
2
|
Gaffin DD, Muñoz MG, Hoefnagels MH. Evidence of learning walks related to scorpion home burrow navigation. J Exp Biol 2022; 225:275795. [PMID: 35638243 PMCID: PMC9250797 DOI: 10.1242/jeb.243947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
The navigation by chemo-textural familiarity hypothesis (NCFH) suggests that scorpions use their midventral pectines to gather chemical and textural information near their burrows and use this information as they subsequently return home. For NCFH to be viable, animals must somehow acquire home-directed ‘tastes’ of the substrate, such as through path integration (PI) and/or learning walks. We conducted laboratory behavioral trials using desert grassland scorpions (Paruroctonus utahensis). Animals reliably formed burrows in small mounds of sand we provided in the middle of circular, sand-lined behavioral arenas. We processed overnight infrared video recordings with a MATLAB script that tracked animal movements at 1–2 s intervals. In all, we analyzed the movements of 23 animals, representing nearly 1500 h of video recording. We found that once animals established their home burrows, they immediately made one to several short, looping excursions away from and back to their burrows before walking greater distances. We also observed similar excursions when animals made burrows in level sand in the middle of the arena (i.e. no mound provided). These putative learning walks, together with recently reported PI in scorpions, may provide the crucial home-directed information requisite for NCFH. Highlighted Article: Evidence that sand scorpions perform looping walks immediately after establishing a burrow and the possible significance of these putative learning walks in terms of scorpion navigation.
Collapse
Affiliation(s)
- Douglas D Gaffin
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Maria G Muñoz
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Mariëlle H Hoefnagels
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
3
|
Guth TL, Persons MH. Landmark‐guided T‐maze learning in the wolf spider
Tigrosa helluo. Ethology 2022. [DOI: 10.1111/eth.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tiffany L. Guth
- Neuroscience Program Biology Department Susquehanna University Selinsgrove Pennsylvania USA
| | - Matthew H. Persons
- Neuroscience Program Biology Department Susquehanna University Selinsgrove Pennsylvania USA
| |
Collapse
|
4
|
Cross FR, Carvell GE, Jackson RR, Grace RC. Arthropod Intelligence? The Case for Portia. Front Psychol 2020; 11:568049. [PMID: 33154726 PMCID: PMC7591756 DOI: 10.3389/fpsyg.2020.568049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Macphail’s “null hypothesis,” that there are no differences in intelligence, qualitative, or quantitative, between non-human vertebrates has been controversial. This controversy can be useful if it encourages interest in acquiring a detailed understanding of how non-human animals express flexible problem-solving capacity (“intelligence”), but limiting the discussion to vertebrates is too arbitrary. As an example, we focus here on Portia, a spider with an especially intricate predatory strategy and a preference for other spiders as prey. We review research on pre-planned detours, expectancy violation, and a capacity to solve confinement problems where, in each of these three contexts, there is experimental evidence of innate cognitive capacities and reliance on internal representation. These cognitive capacities are related to, but not identical to, intelligence. When discussing intelligence, as when discussing cognition, it is more useful to envisage a continuum instead of something that is simply present or not; in other words, a continuum pertaining to flexible problem-solving capacity for “intelligence” and a continuum pertaining to reliance on internal representation for “cognition.” When envisaging a continuum pertaining to intelligence, Daniel Dennett’s notion of four Creatures (Darwinian, Skinnerian, Popperian, and Gregorian) is of interest, with the distinction between Skinnerian and Popperian Creatures being especially relevant when considering Portia. When we consider these distinctions, a case can be made for Portia being a Popperian Creature. Like Skinnerian Creatures, Popperian Creatures express flexible problem solving capacity, but the manner in which this capacity is expressed by Popperian Creatures is more distinctively cognitive.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Georgina E Carvell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Randolph C Grace
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
5
|
Homing in the arachnid taxa Araneae and Amblypygi. Anim Cogn 2020; 23:1189-1204. [PMID: 32894371 DOI: 10.1007/s10071-020-01424-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Adequate homing is essential for the survival of any animal when it leaves its home to find prey or a mate. There are several strategies by which homing can be carried out: (a) retrace the outbound path; (b) use a 'cognitive map'; or (c) use path integration (PI). Here, I review the state of the art of research on spiders (Araneae) and whip spiders (Amblypygi) homing behaviour. The main strategy described in the literature as being used by these arachnids is PI. Behavioural and neural substrates of PI are described in a small group of spider families (Agelenidae, Lycosidae, Gnaphosidae, Ctenidae and Theraphosidae) and a whip spider family (Phrynidae). In spiders, the cues used to detect the position of the animal relative to its home are the position of the sun, polarized light patterns, web elasticity and landmarks. In whip spiders, the cues used are olfactory, tactile and, with a more minor role, visual. The use of a magnetic field in whip spiders has been rejected both with field and laboratory studies. Concerning the distance walked in PI, the possibility of using optic flow and idiothetic information in spiders is considered. The studies about outbound and inbound paths in whip spiders seem to suggest they do not follow the PI rules. As a conclusion, these arachnids' navigation relies on multimodal cues. We have detailed knowledge about the sensory origin (visual, olfactory, mechanosensory receptors) of neural information, but we are far from knowing the central neural structures where sensory information is integrated.
Collapse
|
6
|
Wiegmann DD, Casto P, Hebets EA, Bingman VP. Distortion of the local magnetic field appears to neither disrupt nocturnal navigation nor cue shelter recognition in the amblypygidParaphrynus laevifrons. Ethology 2019. [DOI: 10.1111/eth.12985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Daniel D. Wiegmann
- Department of Biological Sciences Bowling Green State University Bowling Green OH USA
- J. P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University Bowling Green OH USA
| | - Patrick Casto
- Department of Biological Sciences Bowling Green State University Bowling Green OH USA
| | - Eileen A. Hebets
- School of Biological Sciences University of Nebraska‐Lincoln Lincoln NE USA
| | - Verner P. Bingman
- J. P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University Bowling Green OH USA
- Department of Psychology Bowling Green State University Bowling Green OH USA
| |
Collapse
|
7
|
Iwatani Y, Ogawa H, Shidara H, Sakura M, Sato T, Hojo MK, Honma A, Tsurui-Sato K. Markerless visual servo control of a servosphere for behavior observation of a variety of wandering animals. Adv Robot 2019. [DOI: 10.1080/01691864.2019.1570334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yasushi Iwatani
- Department of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Hiroto Ogawa
- Department of Biological Science, Hokkaido University, Sapporo, Japan
| | - Hisashi Shidara
- Department of Biological Science, Hokkaido University, Sapporo, Japan
| | | | - Takuya Sato
- Department of Biology, Kobe University, Kobe, Japan
| | - Masaru K. Hojo
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Atsushi Honma
- Okinawa Prefectural Plant Protection Center, Naha, Japan
- Graduate School of Agriculture, University of the Ryukyus, Nishihara, Japan
| | - Kaori Tsurui-Sato
- Center for Strategic Research Project, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
8
|
Knight K. Wolf spiders’ three pairs of odometer eyes. J Exp Biol 2017. [DOI: 10.1242/jeb.154369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|