1
|
Nishiguchi T, Ishikawa A. Convergent Gene Duplication in Arctic and Antarctic Teleost Fishes. Zoolog Sci 2025; 42. [PMID: 39932755 DOI: 10.2108/zs240098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 05/08/2025]
Abstract
Teleost fishes have independently colonized polar regions multiple times, facing many physiological and biochemical challenges due to frigid temperatures. Although increased gene copy numbers can contribute to adaptive evolution in extreme environments, it remains unclear which categories of genes exhibit increased copy numbers associated with polar colonization. Using 104 species of ray-finned fishes, we systematically identified genes with a significant correlation between copy number and polar colonization after phylogenetic correction. Several genes encoding extracellular glycoproteins, including zona pellucida (ZP) proteins, which increase their copy number in Antarctic notothenioid fishes, exhibited elevated copy numbers across multiple polar fish lineages. Additionally, some genes reported to be highly expressed under cold stress, such as cold-inducible RNA-binding protein (CIRBP), had significantly increased copy numbers in polar fishes. Further analysis will provide a fundamental basis for understanding the role of gene duplication in polar adaptations.
Collapse
Affiliation(s)
- Tomoya Nishiguchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan,
| | - Asano Ishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan,
| |
Collapse
|
2
|
Saravia J, Nualart D, Paschke K, Pontigo JP, Navarro JM, Vargas-Chacoff L. Temperature and immune challenges modulate the transcription of genes of the ubiquitin and apoptosis pathways in two high-latitude Notothenioid fish across the Antarctic Polar Front. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1429-1443. [PMID: 38658493 DOI: 10.1007/s10695-024-01348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Thermal variations due to global climate change are expected to modify the distributions of marine ectotherms, with potential pathogen translocations. This is of particular concern at high latitudes where cold-adapted stenothermal fish such as the Notothenioids occur. However, little is known about the combined effects of thermal fluctuations and immune challenges on the balance between cell damage and repair processes in these fish. The aim of this study was to determine the effect of thermal variation on specific genes involved in the ubiquitination and apoptosis pathways in two congeneric Notothenioid species, subjected to simulated bacterial and viral infections. Adult fish of Harpagifer bispinis and Harpagifer antarcticus were collected from Punta Arenas (Chile) and King George Island (Antarctica), respectively, and distributed as follows: injected with PBS (control), LPS (2.5 mg/kg) or Poly I:C (2 mg/kg) and then submitted to 2, 5 and 8 °C. After 1 week, samples of gills, liver and spleen were taken to evaluate the expression by real-time PCR of specific genes involved in ubiquitination (E3-ligase enzyme) and apoptosis (BAX and SMAC/DIABLO). Gene expression was tissue-dependent and increased with increasing temperature in the gills and liver while showing an opposite pattern in the spleen. Studying a pair of sister species that occur across the Antarctic Polar Front can help us understand the particular pressures of intertidal lifestyles and the effect of temperature in combination with biological stressors on cell damage and repair capacity in a changing environment.
Collapse
Affiliation(s)
- Julia Saravia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Laboratorio de Genómica y Ecología Molecular Antártica y Sub-Antártica (LAGEMAS), Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| | - Daniela Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de La Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
3
|
Buscaglia M, Iriarte JL, Schulz F, Díez B. Adaptation strategies of giant viruses to low-temperature marine ecosystems. THE ISME JOURNAL 2024; 18:wrae162. [PMID: 39178288 PMCID: PMC11512752 DOI: 10.1093/ismejo/wrae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.
Collapse
Affiliation(s)
- Marianne Buscaglia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| | - José Luis Iriarte
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Avda. El Bosque 01789, Punta Arenas 6210445, Chile
- Instituto de Acuicultura y Medio Ambiente, Universidad Austral de Chile, Los Pinos s/n Balneario Pelluco, Puerto Montt 5500000, Chile
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Beatriz Díez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| |
Collapse
|
4
|
Li QQ, Zhang J, Wang HY, Niu SF, Wu RX, Tang BG, Wang QH, Liang ZB, Liang YS. Transcriptomic Response of the Liver Tissue in Trachinotus ovatus to Acute Heat Stress. Animals (Basel) 2023; 13:2053. [PMID: 37443851 DOI: 10.3390/ani13132053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress.
Collapse
Affiliation(s)
- Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Hong-Yang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
5
|
Buggiotti L, Yudin NS, Larkin DM. Copy Number Variants in Two Northernmost Cattle Breeds Are Related to Their Adaptive Phenotypes. Genes (Basel) 2022; 13:genes13091595. [PMID: 36140763 PMCID: PMC9498843 DOI: 10.3390/genes13091595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Copy number variations (CNVs) are genomic structural variants with potential functional and evolutionary effects on phenotypes. In this study, we report the identification and characterization of CNVs from the whole-genome resequencing data of two northernmost cattle breeds from Russia: the Yakut and Kholmogory cattle and their phylogenetically most related breeds, Hanwoo and Holstein, respectively. Comparisons of the CNV regions (CNVRs) among the breeds led to the identification of breed-specific CNVRs shared by cold-adapted Kholmogory and Yakut cattle. An investigation of their overlap with genes, regulatory domains, conserved non-coding elements (CNEs), enhancers, and quantitative trait loci (QTLs) was performed to further explore breed-specific biology and adaptations. We found CNVRs enriched for gene ontology terms related to adaptation to environments in both the Kholmogory and Yakut breeds and related to thermoregulation specifically in Yakut cattle. Interestingly, the latter has also been supported when exploring the enrichment of breed-specific CNVRs in the regulatory domains and enhancers, CNEs, and QTLs implying the potential contribution of CNVR to the Yakut and Kholmogory cattle breeds’ adaptation to a harsh environment.
Collapse
Affiliation(s)
- Laura Buggiotti
- Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Nikolay S. Yudin
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genomics Center, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science (ICG SB RAS), Novosibirsk 630090, Russia
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
- Correspondence:
| |
Collapse
|
6
|
O’Brien KM, Oldham CA, Sarrimanolis J, Fish A, Castellini L, Vance J, Lekanof H, Crockett EL. Warm acclimation alters antioxidant defences but not metabolic capacities in the Antarctic fish, Notothenia coriiceps. CONSERVATION PHYSIOLOGY 2022; 10:coac054. [PMID: 35935168 PMCID: PMC9346567 DOI: 10.1093/conphys/coac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The Southern Ocean surrounding the Western Antarctic Peninsula region is rapidly warming. Survival of members of the dominant suborder of Antarctic fishes, the Notothenioidei, will likely require thermal plasticity and adaptive capacity in key traits delimiting thermal tolerance. Herein, we have assessed the thermal plasticity of several cellular and biochemical pathways, many of which are known to be associated with thermal tolerance in notothenioids, including mitochondrial function, activities of aerobic and anaerobic enzymes, antioxidant defences, protein ubiquitination and degradation in cardiac, oxidative skeletal muscles and gill of Notothenia coriiceps warm acclimated to 4°C for 22 days or 5°C for 42 days. Levels of triacylglycerol (TAG) were measured in liver and oxidative and glycolytic skeletal muscles, and glycogen in liver and glycolytic muscle to assess changes in energy stores. Metabolic pathways displayed minimal thermal plasticity, yet antioxidant defences were lower in heart and oxidative skeletal muscles of warm-acclimated animals compared with animals held at ambient temperature. Despite higher metabolic rates at elevated temperature, energy storage depots of TAG and glycogen increase in liver and remain unchanged in muscle with warm acclimation. Overall, our studies reveal that N. coriiceps displays thermal plasticity in some key traits that may contribute to their survival as the Southern Ocean continues to warm.
Collapse
Affiliation(s)
- Kristin M O’Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Corey A Oldham
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Jon Sarrimanolis
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Autumn Fish
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Luke Castellini
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Jenna Vance
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| | - Hayley Lekanof
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | | |
Collapse
|
7
|
Nie M, Ni W, Wang L, Gao Q, Liu D, Tian F, Wang Z, Zhang C, Qi D. Insights Into miRNA-mRNA Regulatory Mechanisms of Cold Adaptation in Gymnocypris eckloni: Ubiquitin-Mediated Proteolysis Is Pivotal for Adaptive Energy Metabolism. Front Genet 2022; 13:903995. [PMID: 35937996 PMCID: PMC9354851 DOI: 10.3389/fgene.2022.903995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to understand cold stress adaptations mechanism in fish. Thus, the transcriptional response to cold conditions in Gymnocypris eckloni was evaluated using RNA-seq and microRNA (miRNA)-seq analyses. Low-temperature (LT) group G. eckloni was cultivated outdoors in waters cooled to 2–4°C for 3 weeks, while individuals in the control temperature (CT) group were exposed to 14–16°C. Significantly different responses were observed in both mRNA and miRNA expression profiles, with more mRNAs (1,833 and 1,869 mRNAs were up- and downregulated, respectively) and fewer miRNAs (15 and 6 were up- and downregulated, respectively) observed in the LT group individuals relative to the CT group individuals. A miRNA-mRNA network involved in the regulation of G. eckloni responses to cold stress was constructed; this network included ubiquitin-mediated proteolysis, protein processing, and oxidative phosphorylation. These results provided new insights into mechanisms of cold tolerance by fish, including decreased metabolic activity in addition to proteolysis.
Collapse
Affiliation(s)
- Miaomiao Nie
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Weilin Ni
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Lihan Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Dan Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhenji Wang
- Fishery Environmental Monitoring Station of Qinghai Province, Xining, China
| | - Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- *Correspondence: Delin Qi,
| |
Collapse
|
8
|
Fraser KPP, Peck LS, Clark MS, Clarke A, Hill SL. Life in the freezer: protein metabolism in Antarctic fish. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211272. [PMID: 35291327 PMCID: PMC8905173 DOI: 10.1098/rsos.211272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/04/2022] [Indexed: 05/12/2023]
Abstract
Whole-animal, in vivo protein metabolism rates have been reported in temperate and tropical, but not Antarctic fish. Growth in Antarctic species is generally slower than lower latitude species. Protein metabolism data for Antarctic invertebrates show low rates of protein synthesis and unusually high rates of protein degradation. Additionally, in Antarctic fish, increasing evidence suggests a lower frequency of successful folding of nascent proteins and reduced protein stability. This study reports the first whole-animal protein metabolism data for an Antarctic fish. Groups of Antarctic, Harpagifer antarcticus, and temperate, Lipophrys pholis, fish were acclimatized to a range of overlapping water temperatures and food consumption, whole-animal growth and protein metabolism measured. The rates of protein synthesis and growth in Antarctic, but not temperate fish, were relatively insensitive to temperature and were significantly lower in H. antarcticus at 3°C than in L. pholis. Protein degradation was independent of temperature in H. antarcticus and not significantly different to L. pholis at 3°C, while protein synthesis retention efficiency was significantly higher in L. pholis than H. antarcticus at 3°C. These results suggest Antarctic fish degrade a significantly larger proportion of synthesized protein than temperate fish, with fundamental energetic implications for growth at low temperatures.
Collapse
Affiliation(s)
- Keiron P. P. Fraser
- Marine Station, University of Plymouth, Artillery Place, Coxside, Plymouth PL4 OLU, UK
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Andrew Clarke
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Simeon L. Hill
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
9
|
Martínez D, Moncada-Kopp C, Paschke K, Navarro JM, Vargas-Chacoff L. Warming and freshening activate the transcription of genes involved in the cellular stress response in Harpagifer antarcticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:533-546. [PMID: 33523350 DOI: 10.1007/s10695-021-00931-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Thermal and saline variations of the Southern Ocean are important signs of climate change which can alter the physiological responses of stenotic species residing at high latitudes. Our study aimed to evaluate the cellular stress response (CSR) of Harpagifer antarcticus subjected to increased ambient temperature and decreased salinity. The fish were distributed in different thermal (2, 5, 8, 11, and 14 °C) and saline (23, 28, and 33 psu) combinations for 10 days. We used qPCR analysis to evaluate the transcription of genes involved in the thermal shock response (HSP70, HSC70, HSP90, and GRP78), ubiquitination (E2, E3, ubiquitin, and CHIP), 26S proteasome complex (PSMA2, PSMB7, and PSMC1), and apoptosis (SMAC/Diablo and BAX) in the liver and gill. The expression profiles were tissue-specific and mainly dependent on temperature rather than salinity in the gill; meanwhile, in the liver, both conditions modulated the expression of these genes. Transcription of markers involved in the heat shock response was much higher in the liver than in the gill and was higher when salinity decreased and the temperature increased. Similarly, the genes involved in the ubiquitination pathway, 26S complex of the proteasome, and the apoptotic pathway showed the same pattern, being mainly induced in the liver rather than in the gill. This is the first study to show that this Antarctic fish can induce the cellular stress response in their tissues when subjected to these thermal/saline combinations.
Collapse
Affiliation(s)
- Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - Catalina Moncada-Kopp
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
10
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
11
|
Giordano D, Corti P, Coppola D, Altomonte G, Xue J, Russo R, di Prisco G, Verde C. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress. Mar Genomics 2020; 57:100831. [PMID: 33250437 DOI: 10.1016/j.margen.2020.100831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/27/2023]
Abstract
In the freezing waters of the Southern Ocean, Antarctic teleost fish, the Notothenioidei, have developed unique adaptations to cope with cold, including, at the extreme, the loss of hemoglobin in icefish. As a consequence, icefish are thought to be the most vulnerable of the Antarctic fish species to ongoing ocean warming. Some icefish also fail to express myoglobin but all appear to retain neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X. Despite the lack of the inducible heat shock response, Antarctic notothenioid fish are endowed with physiological plasticity to partially compensate for environmental changes, as shown by numerous physiological and genomic/transcriptomic studies over the last decade. However, the regulatory mechanisms that determine temperature/oxygen-induced changes in gene expression remain largely unexplored in these species. Proteins such as globins are susceptible to environmental changes in oxygen levels and temperature, thus playing important roles in mediating Antarctic fish adaptations. In this study, we sequenced the full-length transcripts of myoglobin, neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X from the Antarctic red-blooded notothenioid Trematomus bernacchii and the white-blooded icefish Chionodraco hamatus and evaluated transcripts levels after exposure to high temperature and low oxygen levels. Basal levels of globins are similar in the two species and both stressors affect the expression of Antarctic fish globins in brain, retina and gills. Temperature up-regulates globin expression more effectively in white-blooded than in red-blooded fish while hypoxia strongly up-regulates globins in red-blooded fish, particularly in the gills. These results suggest globins function as regulators of temperature and hypoxia tolerance. This study provides the first insights into globin transcriptional changes in Antarctic fish.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy.
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy
| | - Giovanna Altomonte
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Jianmin Xue
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberta Russo
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
12
|
Díaz-Jaramillo M, Pinoni S, Matos B, Marcoval A, Diniz MS. Stress responses to warming in the mussel Brachidontes rodriguezii (d'Orbigny, 1842) from different environmental scenarios. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105647. [PMID: 33038724 DOI: 10.1016/j.aquatox.2020.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The intertidal mussel B. rodriguezii is a representative species from hard bottom substrates where both anthropogenic and natural stressors are present. Pre-exposure to these different stressors can modify the tolerance to additional stressors such as warming. Moreover, this tolerance can vary depending on intraspecific variables such as the organism's sex. The effects of warming and its intraspecific variability in representative coastal species are crucial to understanding the tolerance to future environmental scenarios. The mussels were collected in different environmental scenarios, including low (Control), chemical (Harbour) and natural stressed (Estuary) sites, and then exposed to different water temperatures (10-30 °C) for 14 days. Lethal and sublethal responses were evaluated in different mussel populations. Thus, cumulative death rate, air survival time, heat shock proteins (HSC70/HSP70), total ubiquitin, catalase (CAT), glutathione-s-transferase (GST) and lipid peroxidation (TBARS) were assessed in mussels from different areas and different sexes. The results revealed diminished air survival time and high cumulative mortality rate in mussels collected at the harbour and those exposed to higher temperatures, respectively. The sublethal responses of the field animals showed different patterns according to the different areas investigated. Besides, the results revealed that these differences were also observed between sexes. Regarding the sublethal responses in mussels exposed to warming, the interactive effects of temperature and sites showed a strong influence on all biochemical parameters analyzed (p < 0.001). Therefore, harbour mussels showed a distinct pattern compared to other locations and reflecting the most damaging effects of warming. The influence of sex and its interactions with warming were also crucial in most of the sublethal responses (p < 0.05). Multivariate analysis was performed with all sublethal responses, and the different warming scenarios showed different groups according to the sites. In the predicted warming scenarios, males showed no differences between sites. In contrast to males, females showed differences between sites in the predicted and the worse-case warming scenarios. Our results highlight the importance of compensatory mechanisms in the mussel warming tolerance like HSP70. The influence of sex is also crucial in understanding warming tolerance in mussels chronically exposed to pollutants in their natural environment. Also, lethal endpoints are essential for understanding the non-reversibility signature of the observed biochemical responses.
Collapse
Affiliation(s)
- M Díaz-Jaramillo
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMdP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, 7600, Argentina.
| | - S Pinoni
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMdP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, 7600, Argentina
| | - B Matos
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa. 2829-516, Caparica, Portugal
| | - A Marcoval
- IIMyC, Laboratorio de Acuicultura, FCEyN, UNMdP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, 7600, Argentina
| | - M S Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa. 2829-516, Caparica, Portugal
| |
Collapse
|
13
|
Fé-Gonçalves LM, Araújo JDA, Santos CHDAD, Val AL, Almeida-Val VMFD. How will farmed populations of freshwater fish deal with the extreme climate scenario in 2100? Transcriptional responses of Colossoma macropomum from two Brazilian climate regions. J Therm Biol 2020; 89:102487. [PMID: 32364997 DOI: 10.1016/j.jtherbio.2019.102487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/29/2019] [Accepted: 12/22/2019] [Indexed: 12/27/2022]
Abstract
Tambaqui (Colossoma macropomum Cuvier, 1818) is an endemic fish of the Amazon and Orinoco basins, and it is the most economically important native species in Brazil being raised in five climatically distinct regions. In the face of current global warming, environmental variations in farm ponds represent additional challenges that may drive new adaptive regional genetic variations among broodstocks of tambaqui. In an experimental context based on the high-emission scenario of the 5th Intergovernmental Panel on Climate Change (IPCC) report, we used two farmed tambaqui populations to test this hypothesis. RNA-seq transcriptome analysis was performed in the liver of juvenile tambaqui from northern (Balbina Experimental Station, Balbina, AM) and southeastern (Brumado Fish Farming, Mogi Mirim, SP) Brazilian regions kept for 30 days in artificial environmental rooms mimicking the current and extreme climate scenarios. Three Illumina MiSeq runs produced close to 120 million 500 bp paired-end reads; 191,139 contigs were assembled with N50 = 1595. 355 genes were differentially expressed for both populations in response to the extreme scenario. After enrichment analysis, each population presented a core set of genes to cope with climate change. Northern fish induced genes related to the cellular response to stress, activation of MAPK activity, response to unfolded protein, protein metabolism and cellular response to DNA damage stimuli. Genes biologically involved in regulating cell proliferation, protein stabilisation and protein ubiquitination for degradation through the ubiquitin-proteasome system were downregulated. Genes associated with biological processes, including the cellular response to stress, MAPK cascade activation, homeostatic processes and positive regulation of immune responses were upregulated in southeastern fish. The downregulated genes were related to cytoskeleton organisation, energy metabolism, and the regulation of transcription and biological rhythms. Our findings reveal the signatures of promising candidate genes involved in the regional plasticity of each population of tambaqui in dealing with upcoming climate changes.
Collapse
Affiliation(s)
- Luciana Mara Fé-Gonçalves
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, André Araújo Avenue, 2936, 69067-375, Petrópolis, Manaus, AM, Brazil.
| | - José Deney Alves Araújo
- Computational Systems Biology Laboratory, University of São Paulo, Professor Lúcio Martins Rodrigues Avenue, 370, 05508020, Butantã, São Paulo, SP, Brazil
| | - Carlos Henrique Dos Anjos Dos Santos
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, André Araújo Avenue, 2936, 69067-375, Petrópolis, Manaus, AM, Brazil
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, André Araújo Avenue, 2936, 69067-375, Petrópolis, Manaus, AM, Brazil
| | - Vera Maria Fonseca de Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, André Araújo Avenue, 2936, 69067-375, Petrópolis, Manaus, AM, Brazil
| |
Collapse
|
14
|
do Amaral MCF, Frisbie J, Crum RJ, Goldstein DL, Krane CM. Hepatic transcriptome of the freeze-tolerant Cope's gray treefrog, Dryophytes chrysoscelis: responses to cold acclimation and freezing. BMC Genomics 2020; 21:226. [PMID: 32164545 PMCID: PMC7069055 DOI: 10.1186/s12864-020-6602-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cope’s gray treefrog, Dryophytes chrysoscelis, withstands the physiological challenges of corporeal freezing, partly by accumulating cryoprotective compounds of hepatic origin, including glycerol, urea, and glucose. We hypothesized that expression of genes related to cryoprotectant mobilization and stress tolerance would be differentially regulated in response to cold. Using high-throughput RNA sequencing (RNA-Seq), a hepatic transcriptome was generated for D. chrysoscelis, and gene expression was compared among frogs that were warm-acclimated, cold-acclimated, and frozen. Results A total of 159,556 transcripts were generated; 39% showed homology with known transcripts, and 34% of all transcripts were annotated. Gene-level analyses identified 34,936 genes, 85% of which were annotated. Cold acclimation induced differential expression both of genes and non-coding transcripts; freezing induced few additional changes. Transcript-level analysis followed by gene-level aggregation revealed 3582 differentially expressed genes, whereas analysis at the gene level revealed 1324 differentially regulated genes. Approximately 3.6% of differentially expressed sequences were non-coding and of no identifiable homology. Expression of several genes associated with cryoprotectant accumulation was altered during cold acclimation. Of note, glycerol kinase expression decreased with cold exposure, possibly promoting accumulation of glycerol, whereas glucose export was transcriptionally promoted by upregulation of glucose-6-phosphatase and downregulation of genes of various glycolytic enzymes. Several genes related to heat shock protein response, DNA repair, and the ubiquitin proteasome pathway were upregulated in cold and frozen frogs, whereas genes involved in responses to oxidative stress and anoxia, both potential sources of cellular damage during freezing, were downregulated or unchanged. Conclusion Our study is the first to report transcriptomic responses to low temperature exposure in a freeze-tolerant vertebrate. The hepatic transcriptome of Dryophytes chrysoscelis is responsive to cold and freezing. Transcriptomic regulation of genes related to particular pathways, such as glycerol biosynthesis, were not all regulated in parallel. The physiological demands associated with cold and freezing, as well as the transcriptomic responses observed in this study, are shared with several organisms that face similar ecophysiological challenges, suggesting common regulatory mechanisms. The role of transcriptional regulation relative to other cellular processes, and of non-coding transcripts as elements of those responses, deserve further study.
Collapse
Affiliation(s)
- M Clara F do Amaral
- Department of Biology, Mount St. Joseph University, 5701 Delhi Ave, Cincinnati, OH, 45233, USA
| | - James Frisbie
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Raphael J Crum
- Department of Biology, University of Dayton, 300 College Park Ave, Dayton, OH, 45469, USA
| | - David L Goldstein
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Carissa M Krane
- Department of Biology, University of Dayton, 300 College Park Ave, Dayton, OH, 45469, USA.
| |
Collapse
|
15
|
Giordano D, Boubeta FM, di Prisco G, Estrin DA, Smulevich G, Viappiani C, Verde C. Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxid Redox Signal 2020; 32:396-411. [PMID: 31578873 DOI: 10.1089/ars.2019.7887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fernando Martín Boubeta
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
16
|
Kültz D. Evolution of cellular stress response mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:359-378. [PMID: 31970941 DOI: 10.1002/jez.2347] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
The cellular stress response (CSR) is pervasive to all domains of life. It has shaped the interaction between organisms and their environment since the origin of the first cell. Although the CSR has been subject to a myriad of nuanced modifications in the various branches of life present today, its core features remain preserved. The scientific literature covering the CSR is enormous and the broad scope of this brief overview was challenging. However, it is critical to conceptually understand how cells respond to stress in a holistic sense and to point out how fundamental aspects of the CSR framework are integrated. It was necessary to be extremely selective and not feasible to even mention many interesting and important developments in this expansive field. The purpose of this overview is to sketch out general and emerging CSR concepts with an emphasis on the initial cellular strain resulting from stress (macromolecular damage) and the evolutionarily most highly conserved elements of the CSR. Examples emphasize fish and aquatic invertebrates to highlight what is known in organisms beyond mammals, yeast, and other common models. Nonetheless, select pioneering studies using canonical models are also considered and the concepts discussed are applicable to all cells. More detail on important aspects of the CSR in aquatic animals is provided in the accompanying articles of this special issue.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California
| |
Collapse
|
17
|
Martínez D, Vargas-Lagos C, Saravia J, Oyarzún R, Loncoman C, Pontigo JP, Vargas-Chacoff L. Cellular stress responses of Eleginops maclovinus fish injected with Piscirickettsia salmonis and submitted to thermal stress. Cell Stress Chaperones 2020; 25:93-104. [PMID: 31834618 PMCID: PMC6985426 DOI: 10.1007/s12192-019-01051-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Fluctuations in ambient temperature along with the presence of pathogenic microorganisms can induce important cellular changes that alter the homeostasis of ectothermic fish. The aim of this study was to evaluate how sudden or gradual changes in environmental temperature together with the administration of Piscirickettsia salmonis modulate the transcription of genes involved in cellular stress response in the liver of Eleginops maclovinus. Fish were subjected to the following experimental conditions in duplicate: C- 12 °C: Injection only with culture medium, C+ 12 °C: Injection with P. salmonis, AM 18 °C: Injection only with culture medium under acclimation at 18 °C, AB 18 °C: Injection with P. salmonis under acclimation at 18 °C, SM 18 °C: Injection only with culture medium and thermal shock at 18 °C and SB 18 °C: Injection with P. salmonis and thermal shock at 18 °C and sampling at 4-, 8-, 12-, 16- and 20-day post injection (dpi). The genes implied in the heat shock response (HSP70, HSC70, HSP90, and GRP78), apoptosis pathway (BAX and SMAC/Diablo), ubiquitination (E2, E3, ubiquitin, and CHIP), and 26 proteasome complex (PSMB7, PSMC1, and PSMA2) showed expression profiles dependent on time and type of injection applied. All the genes greatly increased their expression levels at day 16 and showed moderate increases at day 20, except for PSMA2 which showed a higher increase between 4- and 12-day post challenges. Our results suggest that the changes observed at the final days of the experiment are due to temperature more than P. salmonis.
Collapse
Affiliation(s)
- D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile.
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile.
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile.
| | - C Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
- Escuela de Graduados, Programa de Magister en Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - J Saravia
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
| | - C Loncoman
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile.
| |
Collapse
|
18
|
Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi. J Therm Biol 2019; 86:102434. [DOI: 10.1016/j.jtherbio.2019.102434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/11/2019] [Accepted: 10/06/2019] [Indexed: 01/07/2023]
|
19
|
Alderman SL, Crossley DA, Elsey RM, Gillis TE. Hypoxia-induced reprogramming of the cardiac phenotype in American alligators (Alligator mississippiensis) revealed by quantitative proteomics. Sci Rep 2019; 9:8592. [PMID: 31197188 PMCID: PMC6565670 DOI: 10.1038/s41598-019-45023-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Hypoxic exposure during development can have a profound influence on offspring physiology, including cardiac dysfunction, yet many reptile embryos naturally experience periods of hypoxia in buried nests. American alligators experimentally exposed to developmental hypoxia demonstrate morphological and functional changes to the heart that persist into later life stages; however, the molecular bases of these changes remain unknown. We tested if targeted and persistent changes in steady-state protein expression underlie this hypoxic heart phenotype, using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Alligator eggs were reared under normoxia or 10% hypoxia, then either sampled (embryo) or returned to normoxia for 2 years (juvenile). Three salient findings emerge from the integrated analysis of the 145 differentially expressed proteins in hypoxia-reared animals: (1) significant protein-protein interaction networks were identified only in up-regulated proteins, indicating that the effects of developmental hypoxia are stimulatory and directed; (2) the up-regulated proteins substantially enriched processes related to protein turnover, cellular organization, and metabolic pathways, supporting increased resource allocation towards building and maintaining a higher functioning heart; and (3) the juvenile cardiac proteome retained many of the signature changes observed in embryonic hearts, supporting long-term reprogramming of cardiac myocytes induced by hypoxia during critical periods of development.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Dane A Crossley
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas, 76203-5017, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana, 70643, USA
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
20
|
Berthelot C, Clarke J, Desvignes T, William Detrich H, Flicek P, Peck LS, Peters M, Postlethwait JH, Clark MS. Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine? Genome Biol Evol 2019; 11:220-231. [PMID: 30496401 PMCID: PMC6336007 DOI: 10.1093/gbe/evy262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
The evolution of antifreeze glycoproteins has enabled notothenioid fish to flourish in the freezing waters of the Southern Ocean. Whereas successful at the biodiversity level to life in the cold, paradoxically at the cellular level these stenothermal animals have problems producing, folding, and degrading proteins at their ambient temperatures of -1.86 °C. In this first multi-species transcriptome comparison of the amino acid composition of notothenioid proteins with temperate teleost proteins, we show that, unlike psychrophilic bacteria, Antarctic fish provide little evidence for the mass alteration of protein amino acid composition to enhance protein folding and reduce protein denaturation in the cold. The exception was the significant overrepresentation of positions where leucine in temperate fish proteins was replaced by methionine in the notothenioid orthologues. We hypothesize that these extra methionines have been preferentially assimilated into the genome to act as redox sensors in the highly oxygenated waters of the Southern Ocean. This redox hypothesis is supported by analyses of notothenioids showing enrichment of genes associated with responses to environmental stress, particularly reactive oxygen species. So overall, although notothenioid fish show cold-associated problems with protein homeostasis, they may have modified only a selected number of biochemical pathways to work efficiently below 0 °C. Even a slight warming of the Southern Ocean might disrupt the critical functions of this handful of key pathways with considerable impacts for the functioning of this ecosystem in the future.
Collapse
Affiliation(s)
- Camille Berthelot
- Laboratoire Dynamique et Organisation des Génomes (Dyogen), Institut de Biologie de l'Ecole Normale Supérieure – UMR 8197, INSERM U1024, Paris Cedex 05, France
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, United Kingdom
| | | | - H William Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Michael Peters
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University
| | | | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| |
Collapse
|
21
|
Wittmann AC, Benrabaa SAM, López-Cerón DA, Chang ES, Mykles DL. Effects of temperature on survival, moulting, and expression of neuropeptide and mTOR signalling genes in juvenile Dungeness crab ( Metacarcinus magister). ACTA ACUST UNITED AC 2018; 221:jeb.187492. [PMID: 30171095 DOI: 10.1242/jeb.187492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023]
Abstract
Mechanistic target of rapamymcin (mTOR) is a highly conserved protein kinase that controls cellular protein synthesis and energy homeostasis. We hypothesize that mTOR integrates intrinsic signals (moulting hormones) and extrinsic signals (thermal stress) to regulate moulting and growth in decapod crustaceans. The effects of temperature on survival, moulting and mRNA levels of mTOR signalling genes (Mm-Rheb, Mm-mTOR, Mm-AMPKα, Mm-S6K and Mm-AKT) and neuropeptides (Mm-CHH and Mm-MIH) were quantified in juvenile Metacarcinus magister Crabs at different moult stages (12, 19 or 26 days postmoult) were transferred from ambient temperature (∼15°C) to temperatures between 5 and 30°C for up to 14 days. Survival was 97-100% from 5 to 20°C, but none survived at 25 or 30°C. Moult stage progression accelerated from 5 to 15°C, but did not accelerate further at 20°C. In eyestalk ganglia, Mm-Rheb, Mm-AMPKα and Mm-AKT mRNA levels decreased with increasing temperatures. Mm-MIH and Mm-CHH mRNA levels were lowest in the eyestalk ganglia of mid-premoult animals at 20°C. In the Y-organ, Mm-Rheb mRNA levels decreased with increasing temperature and increased during premoult, and were positively correlated with haemolymph ecdysteroid titre. In the heart, moult stage had no effect on mTOR signalling gene mRNA levels; only Mm-Rheb, Mm-S6K and Mm-mTOR mRNA levels were higher in intermoult animals at 10°C. These data suggest that temperature compensation of neuropeptide and mTOR signalling gene expression in the eyestalk ganglia and Y-organ contributes to regulate moulting in the 10 to 20°C range. The limited warm compensation in the heart may contribute to mortality at temperatures above 20°C.
Collapse
Affiliation(s)
- Astrid C Wittmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | | | | | - Ernest S Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | | |
Collapse
|
22
|
Sun Y, Liang X, Chen J, Tang R, Li L, Li D. Change in Ubiquitin Proteasome System of Grass Carp Ctenopharyngodon idellus Reared in the Different Stocking Densities. Front Physiol 2018; 9:837. [PMID: 30026700 PMCID: PMC6041693 DOI: 10.3389/fphys.2018.00837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is a highly regulated mechanism of intracellular protein degradation and turnover. To evaluate the effect of crowding stress on the UPS in fish, grass carp (Ctenopharyngodon idellus) were randomly reared at low stocking density (LSD, 0.9 kg m−2) or high stocking density (HSD, 5.9 kg m−2) for 70 days. The expression of the genes regulating UPS, stress-related parameters, and profiles of amino acid in white muscle as well as growth rate of fish reared at two stocking densities were investigated. Fish exhibited significantly higher growth rate in the LSD group compared to the HSD group. Serum concentrations of cortisol, total protein, and glucose did not vary significantly in fish between two groups. There was no significant difference in the mRNA levels of nrf2, keap1, and hsp90 in white muscle of fish stocked at two densities at the endpoint of the experiment. In the UPS pathway, the expressions of ub, chip, psmc1 in the LSD group were significantly higher than those in the HSD group (P < 0.05). Ubiquitinated protein level and the content of 3-Methylhistidine elevated significantly in the LSD group (P < 0.05). The mRNA levels of mafbx, murf1, and s6k1 in the LSD group were significantly higher than those in HSD group (P < 0.05). These results illustrate that the fish cultured in lower stocking density would exhibit a greater growth rate and a fast protein turnover in muscle.
Collapse
Affiliation(s)
- Yiqing Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiao Liang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Rong Tang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Dapeng Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|