1
|
Green L, Faust E, Hinchcliffe J, Brijs J, Holmes A, Englund Örn F, Svensson O, Roques JAC, Leder EH, Sandblom E, Kvarnemo C. Invader at the edge - Genomic origins and physiological differences of round gobies across a steep urban salinity gradient. Evol Appl 2023; 16:321-337. [PMID: 36793700 PMCID: PMC9923490 DOI: 10.1111/eva.13437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Species invasions are a global problem of increasing concern, especially in highly connected aquatic environments. Despite this, salinity conditions can pose physiological barriers to their spread, and understanding them is important for management. In Scandinavia's largest cargo port, the invasive round goby (Neogobius melanostomus) is established across a steep salinity gradient. We used 12,937 SNPs to identify the genetic origin and diversity of three sites along the salinity gradient and round goby from western, central and northern Baltic Sea, as well as north European rivers. Fish from two sites from the extreme ends of the gradient were also acclimated to freshwater and seawater, and tested for respiratory and osmoregulatory physiology. Fish from the high-salinity environment in the outer port showed higher genetic diversity, and closer relatedness to the other regions, compared to fish from lower salinity upstream the river. Fish from the high-salinity site also had higher maximum metabolic rate, fewer blood cells and lower blood Ca2+. Despite these genotypic and phenotypic differences, salinity acclimation affected fish from both sites in the same way: seawater increased the blood osmolality and Na+ levels, and freshwater increased the levels of the stress hormone cortisol. Our results show genotypic and phenotypic differences over short spatial scales across this steep salinity gradient. These patterns of the physiologically robust round goby are likely driven by multiple introductions into the high-salinity site, and a process of sorting, likely based on behaviour or selection, along the gradient. This euryhaline fish risks spreading from this area, and seascape genomics and phenotypic characterization can inform management strategies even within an area as small as a coastal harbour inlet.
Collapse
Affiliation(s)
- Leon Green
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
| | - Ellika Faust
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - James Hinchcliffe
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Jeroen Brijs
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Institute of Marine BiologyUniversity of Hawai'iKaneoheHawai'iUSA
| | - Andrew Holmes
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
| | - Felix Englund Örn
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
| | - Ola Svensson
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Department of Educational WorkUniversity of BoråsBoråsSweden
| | - Jonathan A. C. Roques
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Erica H. Leder
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Natural History MuseumUniversity of OsloOsloNorway
| | - Erik Sandblom
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Charlotta Kvarnemo
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
| |
Collapse
|
2
|
Andrews PLR, Ponte G, Rosas C. Methodological considerations in studying digestive system physiology in octopus: limitations, lacunae and lessons learnt. Front Physiol 2022; 13:928013. [PMID: 36160859 PMCID: PMC9501996 DOI: 10.3389/fphys.2022.928013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Current understanding of cephalopod digestive tract physiology is based on relatively “old” literature and a “mosaic of data” from multiple species. To provide a background to the discussion of methodologies for investigating physiology we first review the anatomy of the cephalopod digestive tract with a focus on Octopus vulgaris, highlighting structure-function relationships and species differences with potential functional consequences (e.g., absence of a crop in cuttlefish and squid; presence of a caecal sac in squid). We caution about extrapolation of data on the digestive system physiology from one cephalopod species to another because of the anatomical differences. The contribution of anatomical and histological techniques (e.g., digestive enzyme histochemistry and neurotransmitter immunohistochemistry) to understanding physiological processes is discussed. For each major digestive tract function we briefly review current knowledge, and then discuss techniques and their limitations for the following parameters: 1) Measuring motility in vitro (e.g., spatiotemporal mapping, tension and pressure), in vivo (labelled food, high resolution ultrasound) and aspects of pharmacology; 2) Measuring food ingestion and the time course of digestion with an emphasis on understanding enzyme function in each gut region with respect to time; 3) Assessing transepithelial transport of nutrients; 4) Measuring the energetic cost of food processing, impact of environmental temperature and metabolic rate (flow-through/intermittent respirometry); 4) Investigating neural (brain, gastric ganglion, enteric) and endocrine control processes with an emphasis on application of molecular techniques to identify receptors and their ligands. A number of major knowledge lacunae are identified where available techniques need to be applied to cephalopods, these include: 1) What is the physiological function of the caecal leaflets and intestinal typhlosoles in octopus? 2) What role does the transepithelial transport in the caecum and intestine play in ion, water and nutrient transport? 3) What information is signalled from the digestive tract to the brain regarding the food ingested and the progress of digestion? It is hoped that by combining discussion of the physiology of the cephalopod digestive system with an overview of techniques and identification of key knowledge gaps that this will encourage a more systematic approach to research in this area.
Collapse
Affiliation(s)
- Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- *Correspondence: Paul L. R. Andrews,
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| |
Collapse
|
3
|
Morgenroth D, McArley T, Ekström A, Gräns A, Axelsson M, Sandblom E. Continuous gastric saline perfusion elicits cardiovascular responses in freshwater rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2021; 192:95-106. [PMID: 34618204 PMCID: PMC8816557 DOI: 10.1007/s00360-021-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
When in seawater, rainbow trout (Oncorhynchus mykiss) drink to avoid dehydration and display stroke volume (SV) mediated elevations in cardiac output (CO) and an increased proportion of CO is diverted to the gastrointestinal tract as compared to when in freshwater. These cardiovascular alterations are associated with distinct reductions in systemic and gastrointestinal vascular resistance (RSys and RGI, respectively). Although increased gastrointestinal blood flow (GBF) is likely essential for osmoregulation in seawater, the sensory functions and mechanisms driving the vascular resistance changes and other associated cardiovascular changes in euryhaline fishes remain poorly understood. Here, we examined whether internal gastrointestinal mechanisms responsive to osmotic changes mediate the cardiovascular changes typically observed in seawater, by comparing the cardiovascular responses of freshwater-acclimated rainbow trout receiving continuous (for 4 days) gastric perfusion with half-strength seawater (½ SW, ~ 17 ppt) to control fish (i.e., no perfusion). We show that perfusion with ½ SW causes significantly larger increases in CO, SV and GBF, as well as reductions in RSys and RGI, compared with the control, whilst there were no significant differences in blood composition between treatments. Taken together, our data suggest that increased gastrointestinal luminal osmolality is sensed directly in the gut, and at least partly, mediates cardiovascular responses previously observed in SW acclimated rainbow trout. Even though a potential role of mechano-receptor stimulation from gastrointestinal volume loading in eliciting these cardiovascular responses cannot be excluded, our study indicates the presence of internal gastrointestinal milieu-sensing mechanisms that affect cardiovascular responses when environmental salinity changes.
Collapse
Affiliation(s)
- Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden.
| | - Tristan McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23, Skara, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden
| |
Collapse
|
4
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
5
|
Ge J, Zhou Y, Huang M, Gao Q, Dong Y, Dong S. Effects of constant and diel cyclic temperatures on the liver and intestinal phospholipid fatty acid composition in rainbow trout Oncorhynchus mykiss during seawater acclimation. BMC ZOOL 2021; 6:21. [PMID: 37170384 PMCID: PMC10127026 DOI: 10.1186/s40850-021-00086-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Rainbow trout is an economically important fish in aquaculture and is a model species in environmental physiology. Despite earlier research on the seawater adaptability of rainbow trout at different temperature regimes, the influence on the liver and intestine in this species is still unknown. Two trials were conducted to investigate the effects of constant and diel cyclic temperatures on phospholipid fatty acid (PLFA) composition in the liver and intestine of rainbow trout during seawater acclimation.
Results
At the end of growth trial 1, fish at 9 and 12.5 °C showed significantly higher ratios of unsaturated to saturated (U/S) and unsaturation index (UI) than those at 16 °C in liver and intestine phospholipids. After day 1 of seawater acclimation, the U/S, UI, and average chain length (ACL) of liver and intestinal phospholipids in fish at 16 °C significantly increased. Two weeks after seawater acclimation, the liver and intestinal PLFA composition adapted to salinity changes. In trial 2, significantly higher U/S, UI, and ACL were found in intestinal phospholipids at 13 ± 2 °C. On the first day after seawater acclimation, UI and ACL in liver phospholipids significantly increased at 13 °C, while fish at 13 ± 2 °C showed significantly decreased U/S, UI, and ACL in the intestine. At the end of growth trial 2, liver PLFA compositions were stable, whereas intestinal PLFA at 13 and 13 ± 1 °C showed significantly decreased U/S, UI, and ACL. A two-way analysis of variance and principal component analysis revealed significant effects of different constant temperatures, seawater acclimation, and their interaction on the liver and intestinal phospholipids, a significant effect of diel cyclic temperature on intestinal phospholipids, and the effects of seawater acclimation and its interaction with diel cyclic temperature on liver phospholipids.
Conclusion
Temperatures of 9 and 12.5 °C could elevate membrane fluidity and thickness in the liver and intestine of rainbow trout in freshwater, whereas no significant effects were found with diel temperature variations. After seawater acclimation, constant and diel cyclic temperatures significantly influenced the membrane fluidity and thickness of the liver and intestine. Compared with constant temperature, diel temperature variation (13 ± 2 °C) can enhance the adaptability of rainbow trout during seawater acclimation.
Collapse
|
6
|
Jones BS, Keightley LJ, Harris JO, Wiklendt L, Spencer NJ, Dinning PG. Identification of neurogenic intestinal motility patterns in silver perch (Bidyanus bidyanus) that persist over wide temperature ranges. Neurogastroenterol Motil 2021; 33:e14037. [PMID: 33340207 DOI: 10.1111/nmo.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fish are increasingly being utilized as a model species for genetic manipulation studies related to gastrointestinal (GI) motility. Our aim was to identify whether patterns of GI motility in fish and the mechanisms underlying their generation are similar to those recorded from mammals (including humans). METHODS The entire intestine was removed from euthanized adult Silver Perch (n = 11) and lesioned at the midway point to obtain two equal lengths. Proximal and distal segments were studied separately in organ baths with oxygenated Krebs solution, maintained at either 15°C (n = 5) or 25°C (n = 6). Motility was analyzed during rest, after oral infusion of Krebs solution, and after application of hexamethonium (100 µM) and tetrodotoxin (TTX) (0.6 µM). KEY RESULTS Antegrade and retrograde propagating contractions (PC) were recorded in all preparations. In the proximal intestine, at 15 and 25°C, retrograde PCs occurred at 2.7 [1.7-4.5] and 3.1 [1.6-6.5] times the frequency of antegrade PCs, respectively. Colder temperatures did not inhibit PC frequency. Hexamethonium did not inhibit PC, and however, TTX abolished all contractile activity. CONCLUSIONS AND INFERENCES Both neurogenic antegrade and retrograde propagating contractions occur throughout the intestine of Silver Perch. However, unlike the mammalian colon, these motor patterns do not require enteric nicotinic transmission and they are not inhibited by cold temperatures (15°C). Therefore, while the GI motility patterns in Silver Perch resemble those recorded from the colon of mammals, there may be differences in the mechanisms that underlying their generation.
Collapse
Affiliation(s)
- Bradley S Jones
- College of Science & Engineering, Flinders University, Adelaide, SA, Australia
| | - Lauren J Keightley
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - James O Harris
- College of Science & Engineering, Flinders University, Adelaide, SA, Australia
| | - Lukasz Wiklendt
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J Spencer
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Phil G Dinning
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia.,Department of Surgery and Gastroenterology, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
7
|
Ge J, Huang M, Zhou Y, Deng Q, Liu R, Gao Q, Dong Y, Dong S. Effects of seawater acclimation at constant and diel cyclic temperatures on growth, osmoregulation and branchial phospholipid fatty acid composition in rainbow trout Oncorhynchus mykiss. J Comp Physiol B 2021; 191:313-325. [PMID: 33575866 DOI: 10.1007/s00360-020-01330-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
The study investigated the effects of seawater acclimation at constant and diel temperatures on the growth, osmoregulation, and branchial phospholipid fatty acid (PLFA) composition in rainbow trout (Oncorhynchus mykiss). The fish (initial weight, 62.28 ± 0.41 g) were reared at a constant 13.0 °C (CT) or with a diel cycle of either 13.0 ± 1.0 °C (VT2) or 13.0 ± 2.0 °C (VT4) for 6 weeks, and subsequently subjected to seawater acclimation. Diel temperature variations (of up to 4 °C) did not affect the growth rate of rainbow trout maintained in freshwater, but alleviated the impairment on the growth after seawater challenge. Under all temperature conditions, rainbow trout were well prepared to seawater acclimation. The diel cyclic temperature resulted in fish with reduced fluctuations in plasma electrolyte levels, branchial Na+-K+ ATPase activity, and plasma osmolality. In freshwater, the sum of the monounsaturated fatty acids was significantly higher in the VT4 relative to CT and VT2 treatment. Conversely, the sum of polyunsaturated fatty acids was significantly lower in the VT4 fish. After seawater transfer, the branchial PLFA profiles of the fish significantly changed, but those in CT and VT2 did not recover afterwards (the degree of unsaturation was downregulated). The PLFA composition of fish in the VT4 treatment appeared to be steadier under seawater acclimation. This study suggests that a diel cyclic temperature (13.0 ± 2.0 °C) can alleviate the impairment of growth, enhance osmoregulation capability, and improve the stability of the branchial PLFA composition in rainbow trout after seawater acclimation.
Collapse
Affiliation(s)
- Jian Ge
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong Province, China
| | - Ming Huang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong Province, China
| | - Yangen Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong Province, China.
| | - Qianlong Deng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong Province, China
| | - Rongxin Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong Province, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong Province, China
| | - Yunwei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong Province, China
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong Province, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong Province, China
| |
Collapse
|
8
|
Physical and nutrient stimuli differentially modulate gut motility patterns, gut transit rate, and transcriptome in an agastric fish, the ballan wrasse. PLoS One 2021; 16:e0247076. [PMID: 33571240 PMCID: PMC7877642 DOI: 10.1371/journal.pone.0247076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of nutrient and mechanical sensing on gut motility and intestinal metabolism in lower vertebrates remains largely unknown. Here we present the transcriptome response to luminal stimulation by nutrients and an inert bolus on nutrient response pathways and also the response on gut motility in a stomachless fish with a short digestive tract; the ballan wrasse (Labrus berggylta). Using an in vitro model, we differentiate how signals initiated by physical stretch (cellulose and plastic beads) and nutrients (lipid and protein) modulate the gut evacuation rate, motility patterns and the transcriptome. Intestinal stretch generated by inert cellulose initiated a faster evacuation of digesta out of the anterior intestine compared to digestible protein and lipid. Stretch on the intestine upregulated genes associated with increased muscle activity, whereas nutrients stimulated increased expression of several neuropeptides and receptors which are directly involved in gut motility regulation. Although administration of protein and lipid resulted in similar bulbous evacuation times, differences in intestinal motility, transit between the segments and gene expression between the two were observed. Lipid induced increased frequency of ripples and standing contraction in the middle section of the intestine compared to the protein group. We suggest that this difference in motility was modulated by factors [prepronociceptin (pnoca), prodynorphin (pdyn) and neuromedin U (nmu), opioid neurotransmitters and peptides] that are known to inhibit gastrointestinal motility and were upregulated by protein and not lipid. Our findings show that physical pressure in the intestine initiate contractions propelling the bolus distally, directly towards the exit, whereas the stimuli from nutrients modulates the motility to prolong the residence time of digesta in the digestive tract for optimal digestion.
Collapse
|
9
|
Le HTMD, Lie KK, Giroud-Argoud J, Rønnestad I, Sæle Ø. Effects of Cholecystokinin (CCK) on Gut Motility in the Stomachless Fish Ballan Wrasse ( Labrus bergylta). Front Neurosci 2019; 13:553. [PMID: 31231179 PMCID: PMC6568239 DOI: 10.3389/fnins.2019.00553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/14/2019] [Indexed: 02/01/2023] Open
Abstract
Cholecystokinin (CCK) is well-known as a key hormone that inhibits stomach emptying and stimulates midgut motility in gastric species. However, the function of CCK related to gut motility in agastric fish, especially in fish with a short digestive tract such as ballan wrasse, remains unknown. Here we present a detailed description of the spatio-temporal quantification of intestinal motility activity in vitro comprising the complete intestinal tract in ballan wrasse. We show that CCK modulates intestinal motility, having multiple effects on motility patterns depending on location in the gut and types of contractions. CCK reduced propagating contractions in the foregut, but it increased both non-propagating and propagating contractions in the hindgut. CCK also altered the direction of propagating contractions, as it reduced anterograde ripples and slow propagating contractions. The velocity of propagating contractions was slowed down by CCK. CCK also reduced the amplitude of standing contractions and ripples, but it did not alter the amplitude of slow propagating contractions. The presence of CCKA receptor antagonist modulated the motility responses of ballan wrasse intestines when exposed to CCK. We also showed that CCK reduced the intestinal length and stimulated motility to empty the gallbladder. Based on our findings we hypothesize that CCK, mainly through the CCKA receptor, modulates non-propagating and propagating contractions to optimize digestion and absorption and regulate the intestinal evacuation in ballan wrasse. We also found evidence that the modulation of intestinal motility by CCK is different in agastric fish from that in gastric vertebrates. We suggest that this is an evolutionary adaptation to optimize digestion without a stomach.
Collapse
Affiliation(s)
- Hoang T M D Le
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway.,Department of Biological Sciences (BIO), University of Bergen, Bergen, Norway
| | - Kai K Lie
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway
| | | | - Ivar Rønnestad
- Department of Biological Sciences (BIO), University of Bergen, Bergen, Norway
| | - Øystein Sæle
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway
| |
Collapse
|