1
|
deHaan JL, Maretzki J, Skandalis A, Tattersall GJ, Richards MH. Costs and benefits of maternal nest choice: Trade-offs between brood survival and thermal stress in bees. Ecology 2025; 106:e4525. [PMID: 39844775 PMCID: PMC11755220 DOI: 10.1002/ecy.4525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 01/24/2025]
Abstract
Optimal nest site selection is crucial in animals whose offspring are completely dependent on the shelter of a nest. Parental decisions influencing nest thermal conditions are particularly important because temperature strongly influences juvenile activity, metabolism, growth, developmental rate, survival, and adult body size. In small ectotherms such as bees, maternal decisions to nest in sun-exposed or shady sites can lead to marked differences in thermal microenvironments inside nests. Small carpenter bees (Ceratina calcarata) strongly prefer to nest in sun but also prefer nesting substrates more frequently found in shade, suggesting that nest site selection is based on a trade-off between costs and benefits of warmer versus cooler nest sites. We investigated the consequences of sun and shade nesting for mothers and their offspring using a field experiment in which mothers and newly founded nests were placed in sunny or shady habitats. Maternal costs and benefits in each treatment were quantified by comparing maternal foraging effort, nest size, number of brood provisioned, and number and size of live offspring. These demographic measures allowed us to estimate fitness for mothers nesting in sun versus shade. For juvenile bees from sun and shade nests, we quantified two thermal traits, high-temperature tolerance (CTmax) and metabolic rate. Mothers in sun nests had significantly higher nesting success, with 59% of all nests producing brood, while mothers in shade nests experienced only 32% success. Successful sun nests actually contained fewer live brood (5.2 ± 3.0, mean ± SD) than shade nests (6.9 ± 3.3), but their higher success rates meant that maternal fitness was higher in sun than in shade. However, sun nesting entailed clear costs to brood, which were significantly smaller, less likely to survive to adulthood, and had significantly elevated CTmax, suggesting that thermal stress during development necessitated them to shunt resources from growth to thermoprotection. The maternal preferences for sun nesting optimize maternal fitness despite the evident costs to juveniles developing in sun-exposed nests.
Collapse
Affiliation(s)
- Jessie L. deHaan
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Jesse Maretzki
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Adonis Skandalis
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Glenn J. Tattersall
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Miriam H. Richards
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
2
|
Kogan HV, Macleod SG, Rondeau NC, Raup-Collado J, Cordero VA, Rovnyak D, Marshalleck CA, Mallapan M, Flores ME, Snow JW. Transcriptional control of a metabolic switch regulating cellular methylation reactions is part of a common response to stress in divergent bee species. J Exp Biol 2024; 227:jeb246894. [PMID: 38736357 DOI: 10.1242/jeb.246894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Recent global declines in bee health have elevated the need for a more complete understanding of the cellular stress mechanisms employed by diverse bee species. We recently uncovered the biomarker lethal (2) essential for life [l(2)efl] genes as part of a shared transcriptional program in response to a number of cell stressors in the western honey bee (Apis mellifera). Here, we describe another shared stress-responsive gene, glycine N-methyltransferase (Gnmt), which is known as a key metabolic switch controlling cellular methylation reactions. We observed Gnmt induction by both abiotic and biotic stressors. We also found increased levels of the GNMT reaction product sarcosine in the midgut after stress, linking metabolic changes with the observed changes in gene regulation. Prior to this study, Gnmt upregulation had not been associated with cellular stress responses in other organisms. To determine whether this novel stress-responsive gene would behave similarly in other bee species, we first characterized the cellular response to endoplasmic reticulum (ER) stress in lab-reared adults of the solitary alfalfa leafcutting bee (Megachile rotundata) and compared this with age-matched honey bees. The novel stress gene Gnmt was induced in addition to a number of canonical gene targets induced in both bee species upon unfolded protein response (UPR) activation, suggesting that stress-induced regulation of cellular methylation reactions is a common feature of bees. Therefore, this study suggests that the honey bee can serve as an important model for bee biology more broadly, although studies on diverse bee species will be required to fully understand global declines in bee populations.
Collapse
Affiliation(s)
- Helen V Kogan
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | | | | | | | - David Rovnyak
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | | | - Meghna Mallapan
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY 10027, USA
| |
Collapse
|
3
|
Torson AS, Bowman S, Doucet D, Roe AD, Sinclair BJ. Molecular signatures of diapause in the Asian longhorned beetle: Gene expression. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100054. [PMID: 37033896 PMCID: PMC10074507 DOI: 10.1016/j.cris.2023.100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 05/30/2023]
Abstract
Most previous studies on gene expression during insect diapause do not address among-tissue variation in physiological processes. We measured transcriptomic changes during larval diapause in the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). We conducted RNA-seq on fat body, the supraesophageal ganglion, midgut, hindgut, and Malpighian tubules during pre-diapause, diapause maintenance, post-diapause quiescence, and post-diapause development. We observed a small, but consistent, proportion of genes within each gene expression profile that were shared among tissues, lending support for a core set of diapause-associated genes whose expression is tissue-independent. We evaluated the overarching hypotheses that diapause would be associated with cell cycle arrest, developmental arrest, and increased stress tolerance and found evidence of repressed TOR and insulin signaling, reduced cell cycle activity and increased capacity of stress response via heat shock protein expression and remodeling of the cytoskeleton. However, these processes varied among tissues, with the brain and fat body appearing to maintain higher levels of cellular activity during diapause than the midgut or Malpighian tubules. We also observed temperature-dependent changes in gene expression during diapause maintenance, particularly in genes related to the heat shock response and MAPK, insulin, and TOR signaling pathways. Additionally, we provide evidence for epigenetic reorganization during the diapause/post-diapause quiescence transition and expression of genes involved in post-translational modification, highlighting the need for investigations of the protein activity of these candidate genes and processes. We conclude that diapause development is coordinated via diverse tissue-specific gene expression profiles and that canonical diapause phenotypes vary among tissues.
Collapse
Affiliation(s)
- Alex S. Torson
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
- Biosciences Research Laboratory, USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| | - Susan Bowman
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Daniel Doucet
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Amanda D. Roe
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Brent J. Sinclair
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
| |
Collapse
|
4
|
Huisamen EJ, Karsten M, Terblanche JS. Consequences of Thermal Variation during Development and Transport on Flight and Low-Temperature Performance in False Codling Moth (Thaumatotibia leucotreta): Fine-Tuning Protocols for Improved Field Performance in a Sterile Insect Programme. INSECTS 2022; 13:insects13040315. [PMID: 35447757 PMCID: PMC9030207 DOI: 10.3390/insects13040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Here we aimed to assess whether variation in (1) developmental temperature and (2) transport conditions influenced the low-temperature performance and flight ability of false codling moth (FCM) adults in an SIT programme. To achieve the first aim, larvae were exposed to either a (control) (constant 25 °C), a cold treatment (constant 15 °C) or a fluctuating thermal regime (FTR) (25 °C for 12 h to 15 °C for 12 h) for 5 days, whereafter larvae were returned to 25 °C to pupate and emerge. After adult emergence, critical thermal minimum, chill coma recovery time, life history traits and laboratory flight ability were scored. For the second aim, adult FCM were exposed to 4 or 25 °C with or without vibrations to simulate road transportation. After the pre-treatments, flight ability, spontaneous behaviour (i.e., muscle coordination by monitoring whether the moth moved out of a defined circle or not) and chill coma recovery time were determined. The first experiment showed that FTR led to enhanced cold tolerance, increased flight performance and high egg-laying capacity with minimal costs. The second experiment showed that transport conditions currently in use did not appear to adversely affect flight and low-temperature performance of FCM. These results are important for refining conditions prior to and during release for maximum field efficacy in an SIT programme for FCM.
Collapse
|
5
|
Kamioka T, Suzuki HC, Ugajin A, Yamaguchi Y, Nishimura M, Sasaki T, Ono M, Kawata M. Genes associated with hot defensive bee ball in the Japanese honeybee, Apis cerana japonica. BMC Ecol Evol 2022; 22:31. [PMID: 35296235 PMCID: PMC8925055 DOI: 10.1186/s12862-022-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Japanese honeybee, Apis cerana japonica, shows a specific defensive behavior, known as a “hot defensive bee ball,” used against the giant hornet, Vespa mandarinia. Hundreds of honeybee workers surround a hornet and make a “bee ball” during this behavior. They maintain the ball for around 30 min, and its core temperature can reach 46. Although various studies have been conducted on the characteristics of this behavior, its molecular mechanism has yet to be elucidated. Here, we performed a comprehensive transcriptomic analysis to detect candidate genes related to balling behavior. Results The expression levels of differentially expressed genes (DEGs) in the brain, flight muscle, and fat body were evaluated during ball formation and incubation at 46 °C. The DEGs detected during ball formation, but not in response to heat, were considered important for ball formation. The expression of genes related to rhodopsin signaling were increased in all tissues during ball formation. DEGs detected in one or two tissues during ball formation were also identified. Conclusions Given that rhodopsin is involved in temperature sensing in Drosophila, the rhodopsin-related DEGs in A. cerana japonica may be involved in temperature sensing specifically during ball formation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01989-9.
Collapse
Affiliation(s)
- Takahiro Kamioka
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiromu C Suzuki
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.,Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | | | - Yuta Yamaguchi
- Graduate School of Agriculture, Tamagawa University, Machida, Japan
| | | | - Tetsuhiko Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Japan.,Research Institute, Honeybee Science Research Center, Tamagawa University, Machida, Japan
| | - Masato Ono
- Graduate School of Agriculture, Tamagawa University, Machida, Japan.,Research Institute, Honeybee Science Research Center, Tamagawa University, Machida, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
6
|
Cambron-Kopco LD, Yocum GD, Yeater KM, Greenlee KJ. Timing of Diapause Initiation and Overwintering Conditions Alter Gene Expression Profiles in Megachile rotundata. Front Physiol 2022; 13:844820. [PMID: 35350686 PMCID: PMC8957994 DOI: 10.3389/fphys.2022.844820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Within the United States and Canada, the primary pollinator of alfalfa is the alfalfa leafcutting bee (ALCB), Megachile rotundata. Our previous findings showed that overwintering conditions impacted gene expression profile in ALCB prepupae that entered diapause early in the season. However, ALCB are a bivoltine species, which begs the question of whether bees entering diapause later in the season also show this trend. To better understand the effects of the timing of diapause initiation, we analyzed mRNA copy number of genes known to be involved in diapause regulation in early and late season diapausing ALCB that were overwintered in field conditions or using current agricultural management conditions. We hypothesized that overwintering conditions for late diapausing bees also affects gene expression profiles. Our results showed that expression profiles were altered by both overwintering condition and timing of diapause initiation, with bees that entered diapause earlier in the season showing different expression patterns than those that entered diapause later in the season. This trend was seen in expression of members of the cyclin family and several targets of the insulin signaling pathway, including forkhead box protein O (FOXO), which is known to be important for diapause regulation and stress responses. But, of the genes screened, the proto-oncogene, Myc, was the most impacted by the timing of diapause initiation. Under field conditions, there were significant differences in Myc expression between the early and late season samples in all months except for November and February. This same general trend in Myc expression was also seen in the laboratory-maintained bees with significant difference in expression in all months except for November, February, and May. These results support previous conclusions from our research showing that the molecular regulation of diapause development in ALCB is not a simple singular cascade of gene expression but a highly plastic response that varies between bees depending upon their environmental history.
Collapse
Affiliation(s)
- Lizzette D. Cambron-Kopco
- Greenlee Laboratory, Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
- *Correspondence: Lizzette D. Cambron-Kopco,
| | - George D. Yocum
- Insect Genetics and Biochemistry Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, ND, United States
| | - Kathleen M. Yeater
- Plains Area Office of The Area Director, USDA-ARS, Fort Collins, CO, United States
| | - Kendra J. Greenlee
- Greenlee Laboratory, Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
7
|
Yocum GD, Rajamohan A, Rinehart JP. Comparison of Fluctuating Thermal Regimes and Commercially Achievable Constant-Temperature Regimes for Short-Term Storage of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:530-537. [PMID: 33686393 DOI: 10.1093/jee/toab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Interrupting the spring incubation of Megachile rotundata (F.) with a period of low-temperature storage for synchronizing the bees' emergence with crop bloom is an essential part of M. rotundata management. Previously, we demonstrated that bees exposed to thermoperiods (TPs) during low-temperature storage have higher survival rates than bees exposed to constant temperatures. But changing the temperature in the large mass of bees commonly found in most commercial settings would place considerable stress on the chambers' refrigeration system. Reducing the difference between a TP's cryophase and thermophase would decrease the stress on the refrigeration system. Therefore, we investigated a range of TPs with cryophases (12 h) of 6, 12, or 15°C and thermophases (12 h) of 15 or 18°C and compared the survival rates of these bees against bees exposed to constant temperatures of 12, 15, or 18°C. For eye-pigmented pupae, the TP 6-18°C and the control fluctuating thermal regime (FTR; 6°C with a daily 1-h pulse at 20°C) had the highest survival rates for the 2 yr tested. For the constant-temperature storage protocols, constant 15 and 18°C were either equivalent or lower survival than the control FTR. For emergence-ready adults, the 6-18°C TP had the highest survival rates. The constant 15°C and the control FTR had equivalent survival rates. Under the current constraints imposed by a commercial chamber's refrigeration system, interrupting M. rotundata spring incubation by exposing the developing bees to constant temperatures of 15-18°C is currently the best option for commercial operations.
Collapse
Affiliation(s)
- George D Yocum
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Arun Rajamohan
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Joseph P Rinehart
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| |
Collapse
|
8
|
Torson AS, Dong YW, Sinclair BJ. Help, there are ‘omics’ in my comparative physiology! J Exp Biol 2020; 223:223/24/jeb191262. [DOI: 10.1242/jeb.191262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
‘Omics’ methods, such as transcriptomics, proteomics, lipidomics or metabolomics, yield simultaneous measurements of many related molecules in a sample. These approaches have opened new opportunities to generate and test hypotheses about the mechanisms underlying biochemical and physiological phenotypes. In this Commentary, we discuss general approaches and considerations for successfully integrating omics into comparative physiology. The choice of omics approach will be guided by the availability of existing resources and the time scale of the process being studied. We discuss the use of whole-organism extracts (common in omics experiments on small invertebrates) because such an approach may mask underlying physiological mechanisms, and we consider the advantages and disadvantages of pooling samples within biological replicates. These methods can bring analytical challenges, so we describe the most easily analyzed omics experimental designs. We address the propensity of omics studies to digress into ‘fishing expeditions’ and show how omics can be used within the hypothetico-deductive framework. With this Commentary, we hope to provide a roadmap that will help newcomers approach omics in comparative physiology while avoiding some of the potential pitfalls, which include ambiguous experiments, long lists of candidate molecules and vague conclusions.
Collapse
Affiliation(s)
- Alex S. Torson
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Yun-wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Brent J. Sinclair
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
9
|
Enriquez T, Ruel D, Charrier M, Colinet H. Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii). INSECT SCIENCE 2020; 27:317-335. [PMID: 30381878 DOI: 10.1111/1744-7917.12649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/12/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Drosophila suzukii is an invasive pest causing severe damages to a large panel of cultivated crops. To facilitate its biocontrol with strategies such as sterile or incompatible insect techniques, D. suzukii must be mass-produced and then stored and transported under low temperature. Prolonged cold exposure induces chill injuries that can be mitigated if the cold period is interrupted with short warming intervals, referred to as fluctuating thermal regimes (FTR). In this study, we tested how to optimally use FTR to extend the shelf life of D. suzukii under cold storage. Several FTR parameters were assessed: temperature (15, 20, 25 °C), duration (0.5, 1, 2, 3 h), and frequency (every 12, 24, 36, 48 h) of warming intervals, in two wild-type lines and in two developmental stages (pupae and adults). Generally, FTR improved cold storage tolerance with respect to constant low temperatures (CLT). Cold mortality was lower when recovery temperature was 20 °C or higher, when duration was 2 h per day or longer, and when warming interruptions occurred frequently (every 12 or 24 h). Applying an optimized FTR protocol to adults greatly reduced cold mortality over long-term storage (up to 130 d). Consequences of FTR on fitness-related traits were also investigated. For adults, poststorage survival was unaffected by FTR, as was the case for female fecundity and male mating capacity. On the other hand, when cold storage occurred at pupal stage, poststorage survival and male mating capacity were altered under CLT, but not under FTR. After storage of pupae, female fecundity was lower under FTR compared to CLT, suggesting an energy trade-off between repair of chill damages and egg production. This study provides detailed information on the application and optimization of an FTR-based protocol for cold storage of D. suzukii that could be useful for the biocontrol of this pest.
Collapse
Affiliation(s)
| | - David Ruel
- CNRS, ECOBIO-UMR 6553, Université de Rennes, Rennes, France
| | | | - Hervé Colinet
- CNRS, ECOBIO-UMR 6553, Université de Rennes, Rennes, France
| |
Collapse
|
10
|
Grozinger CM, Zayed A. Improving bee health through genomics. Nat Rev Genet 2020; 21:277-291. [DOI: 10.1038/s41576-020-0216-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
|
11
|
Ma W, Li X, Shen J, Du Y, Xu K, Jiang Y. Transcriptomic analysis reveals Apis mellifera adaptations to high temperature and high humidity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109599. [PMID: 31494308 DOI: 10.1016/j.ecoenv.2019.109599] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Temperature and humidity are the most important factors affecting the growth, reproduction, and survival of bees. Apis mellifera are important pollinating bees that are widely used in agricultural systems. However, the higher temperatures and humidity in greenhouses are not conducive to the survival of bees. Although previous research has revealed the behavioral responses and physiological mechanisms of honeybees to adapt to high temperature and humidity, there are few data on the exact molecular mechanisms involved. In our study, we investigated gene expression in A. mellifera under different temperature and humidity treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes. Based on the transcriptomic results, we selected several genes with significant differences in expression, and detected the expression patterns of these genes at different temperatures or humidity or different treatment times by q-RT PCR. In the high temperature treatments, 434 DEGs were identified; in the high humidity treatments, 86 DEGs were identified; in the combined high temperature and humidity treatments, 266 DEGs were identified. Analysis results showed that DEGs were enriched in pathways related to amino acid and fatty acid biosynthesis and metabolism under each treatment. In addition, heat shock proteins, zinc finger proteins, serine/threonine-protein kinases, and antioxidase were differentially expressed between the different treatments. The results of the q-RT PCR showed that the expression levels of these genes increased with increasing temperature and over treatment time. Our findings provide a general expression profile of the adaptive expression of heat-resistance genes responding to high temperature and high humidity in A. mellifera, including the expression patterns of several DEGs. Our data provide a basis for future research on the mechanisms underlying the adaptation of insects to high temperature and humidity.
Collapse
Affiliation(s)
- Weihua Ma
- Horticulture Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xinyu Li
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinshan Shen
- Horticulture Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Yali Du
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Kai Xu
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, China
| | - Yusuo Jiang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
12
|
Torson AS, Yocum GD, Rinehart JP, Nash SA, Bowsher JH. Fluctuating thermal regimes prevent chill injury but do not change patterns of oxidative stress in the alfalfa leafcutting bee, Megachile rotundata. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103935. [PMID: 31472123 DOI: 10.1016/j.jinsphys.2019.103935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
In insects, prolonged exposure to unseasonably low temperatures can lead to detrimental physiological effects known as chill injury. Changes to active and passive transport across epithelia during chilling likely drive the collapse of ion gradients, metabolic imbalance and potentially oxidative stress. In the alfalfa leafcutting bee, Megachile rotundata transcriptomic evidence provides support for these responses at the level of gene expression, but variable expression profiles between life stages in M. rotundata indicate that different mechanisms could be responsible for repairing and protecting against chill injuries across development. Herein, we test the hypotheses that 1) chill injury leads to oxidative stress and damage in insects and 2) exposure to a fluctuating thermal regime (FTR) promotes an increased oxidative stress response leading to a decrease in damage by reactive oxygen species. We measured the expression of transcripts with products known to have antioxidant properties in overwintering prepupae as well as total antioxidant capacity and lipid peroxidation during both extended overwintering in prepupae and low temperature stress during pupal development. We observed differential gene expression for the antioxidant glutathione peroxidase and several transcripts with putative antioxidant properties including vitellogenin, apolipoprotein D, glutathione S-transferase, and nuclear protein 1. However, the expression of transcripts coding for other enzymatic antioxidants did not change between treatments. Neither life stage varied in their capacity to cope with an induced oxidative stress after FTR exposure and we did not observe evidence of lipid peroxidation in chill injured (STR) prepupae. These results did not support our initial hypotheses and indicate that oxidative-stress-induced damage is neither a causal factor or symptom of chill injury.
Collapse
Affiliation(s)
- Alex S Torson
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA.
| | - George D Yocum
- Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102-2765, USA
| | - Joseph P Rinehart
- Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102-2765, USA
| | - Sean A Nash
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
13
|
Yocum GD, Rinehart JP, Rajamohan A, Bowsher JH, Yeater KM, Greenlee KJ. Thermoprofile Parameters Affect Survival of Megachile rotundata During Exposure to Low-Temperatures. Integr Comp Biol 2019; 59:1089-1102. [PMID: 31270534 DOI: 10.1093/icb/icz126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insects exposed to low temperature stress can experience chill injury, but incorporating fluctuating thermoprofiles increases survival and blocks the development of sub-lethal effects. The specific parameters required for a protective thermoprofile are poorly understood, because most studies test a limited range of thermoprofiles. For example, thermoprofiles with a wave profile may perform better than a square profile, but these two profiles are rarely compared. In this study, two developmental stages of the alfalfa leafcutting bee, Megachile rotundata, eye-pigmented pupae, and emergence-ready adults, were exposed to one of eight thermoprofiles for up to 8 weeks. All the thermoprofiles had a base of 6°C and a peak temperature of either 12°C or 18°C. The duration at peak temperature varied depending on the shape of the thermoprofile, either square or wave form. Two other treatments acted as controls, a constant 6°C and a fluctuating thermal regime (FTR) with a base temperature of 6°C that was interrupted daily by a single, 1-h pulse at 20°C. Compared with constant 6°C, all the test thermoprofiles significantly improved survival. Compared with the FTR control, the thermoprofiles with a peak temperature of 18°C outperformed the 12°C profiles. Bees in the eye-pigmented stage exposed to the 18°C profiles separated into two groups based on the shape of the profile, with higher survival in the square profiles compared with the wave profiles. Bees in the emergence-ready stage exposed to 18°C profiles all had significantly higher survival than bees in the FTR controls. Counter to expectations, the least ecologically relevant thermoprofiles (square) had the highest survival rates and blocked the development of sub-lethal effects (delayed emergence).
Collapse
Affiliation(s)
- George D Yocum
- United States Department of Agriculture, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
| | - Joseph P Rinehart
- United States Department of Agriculture, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
| | - Arun Rajamohan
- United States Department of Agriculture, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
| | - Julia H Bowsher
- Department of Biological Sciences, Stevens Hall, P.O. Box 6050, North Dakota State University, Fargo, ND 58108, USA
| | - Kathleen M Yeater
- USDA-ARS-PA-NRRC, Office of the Director, 2150 Centre Avenue, Building D, Suite 300, Fort Collins, CO 80526, USA
| | - Kendra J Greenlee
- United States Department of Agriculture, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102-2765, USA.,Department of Biological Sciences, Stevens Hall, P.O. Box 6050, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
14
|
Melicher D, Torson AS, Anderson TJ, Yocum GD, Rinehart JP, Bowsher JH. Immediate Transcriptional Response to a Temperature Pulse under a Fluctuating Thermal Regime. Integr Comp Biol 2019; 59:320-337. [PMID: 31173075 PMCID: PMC6703998 DOI: 10.1093/icb/icz096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The response of ectotherms to temperature stress is complex, non-linear, and is influenced by life stage and previous thermal exposure. Mortality is higher under constant low temperatures than under a fluctuating thermal regime (FTR) that maintains the same low temperature but adds a brief, daily pulse of increased temperature. Long term exposure to FTR has been shown to increase transcription of genes involved in oxidative stress, immune function, and metabolic pathways, which may aid in recovery from chill injury and oxidative damage. Previous research suggests the transcriptional response that protects against sub-lethal damage occurs rapidly under exposure to fluctuating temperatures. However, existing studies have only examined gene expression after a week or over many months. Here we characterize gene expression during a single temperature cycle under FTR. Development of pupating alfalfa leafcutting bees (Megachile rotundata) was interrupted at the red-eye stage and were transferred to 6°C with a 1-h pulse to 20°C and returned to 6°C. RNA was collected before, during, and after the temperature pulse and compared to pupae maintained at a static 6°C. The warm pulse is sufficient to cause expression of transcripts that repair cell membrane damage, modify membrane composition, produce antifreeze proteins, restore ion homeostasis, and respond to oxidative stress. This pattern of expression indicates that even brief exposure to warm temperatures has significant protective effects on insects exposed to stressful cold temperatures that persist beyond the warm pulse. Megachile rotundata's sensitivity to temperature fluctuations indicates that short exposures to temperature changes affect development and physiology. Genes associated with developmental patterning are expressed after the warm pulse, suggesting that 1 h at 20°C was enough to resume development in the pupae. The greatest difference in gene expression occurred between pupae collected after the warm pulse and at constant low temperatures. Although both were collected at the same time and temperature, the transcriptional response to one FTR cycle included multiple transcripts previously identified under long-term FTR exposure associated with recovery from chill injury, indicating that the effects of FTR occur rapidly and are persistent.
Collapse
Affiliation(s)
- Dacotah Melicher
- U.S. Department of Agriculture/Agricultural Research Service, Bioscience Research Laboratory, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, USA
| | - Alex S Torson
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND 58102, USA
| | - Tanner J Anderson
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Anthropology, University of Oregon, 1585 E 13th Ave., Eugene, OR 97403, USA
| | - George D Yocum
- U.S. Department of Agriculture/Agricultural Research Service, Bioscience Research Laboratory, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, USA
| | - Joseph P Rinehart
- U.S. Department of Agriculture/Agricultural Research Service, Bioscience Research Laboratory, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND 58102, USA
| |
Collapse
|
15
|
Tolerance and response of two honeybee species Apis cerana and Apis mellifera to high temperature and relative humidity. PLoS One 2019; 14:e0217921. [PMID: 31170259 PMCID: PMC6553758 DOI: 10.1371/journal.pone.0217921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
The ambient temperature and relative humidity affect the metabolic and physiological responses of bees, thus affecting their life activities. However, the physiological changes in bee due to high temperature and high humidity remain poorly understood. In this study, we explored the effects of higher temperature and humidity on the epiphysiology of bees by evaluating the survival, tolerance and body water loss in two bee species (Apis cerana and Apis mellifera). We also evaluated the changes in the activity of antioxidant and detoxification enzymes in their body. We observed that under higher temperature and humidity conditions, the survival rate of A. mellifera was higher than that of A. cerana. On the other hand, a comparison of water loss between the two species revealed that A. mellifera lost more water. However, under extremely high temperature conditions, A. cerana was more tolerant than A. mellifera. Moreover, under higher temperature and humidity conditions, the activity of antioxidant and detoxification enzymes in bees was significantly increased. Overall, these results suggest that high temperatures can adversely affect bees. They not only affect the survival and water loss, but also stimulate oxidative stress in bees. However, unlike our previous understanding, high humidity can also adversely affect bees, although its effects are lower than that of temperature.
Collapse
|
16
|
Lubawy J, Daburon V, Chowański S, Słocińska M, Colinet H. Thermal stress causes DNA damage and mortality in a tropical insect. J Exp Biol 2019; 222:jeb.213744. [DOI: 10.1242/jeb.213744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
Abstract
Cold tolerance is considered an important factor determining geographic distribution of insects. We've previously shown that despite tropical origin, cockroach Gromphadorinha coquereliana is capable of surviving exposures to cold. However, freezing tolerance of this species had not yet been examined. Low temperature is known to alter membranes integrity in insects but whether chilling or freezing compromises DNA integrity remains a matter of speculation. In the present study, we subjected the G. coquereliana adults to freezing to determine their supercooling point (SCP) and evaluated whether the cockroaches were capable of surviving partial and complete freezing. Next, we conducted single cell gel electrophoresis assay (SCGE) to determine whether heat, cold and freezing altered haemocytes DNA integrity. The SCP of this species was high and around -4.76°C, which is within typical range of freezing-tolerant species. Most cockroaches survived one day after partial ice formation (20% mortality), but died progressively in the next few days after cold stress (70% mortality after 4 days). One day after complete freezing, most insects died (70% mortality), and after 4 days, 90% of them had succumbed. The SCGE assays showed substantial level of DNA damage in haemocytes. When cockroaches were heat-stressed, the level of DNA damage was similar to that observed in the freezing treatment; though all heat-stressed insects survived. The study shows that G. coquereliana can surprisingly be considered as moderately freezing-tolerant species, and for first time that extreme low temperature stress can affect DNA integrity, suggesting that this cockroach may possess an efficient DNA repair system.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | | | - Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Hervé Colinet
- ECOBIO – UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| |
Collapse
|
17
|
Helm BR, Payne S, Rinehart JP, Yocum GD, Bowsher JH, Greenlee KJ. Micro-computed tomography of pupal metamorphosis in the solitary bee Megachile rotundata. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:521-528. [PMID: 29909080 DOI: 10.1016/j.asd.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Insect metamorphosis involves a complex change in form and function. In this study, we examined the development of the solitary bee, Megachile rotundata, using micro-computed tomography (μCT) and volume analysis. We describe volumetric changes of brain, tracheae, flight muscles, gut, and fat bodies in prepupal, pupal, and adult M. rotundata. We observed that individual organ systems have distinct patterns of developmental progression, which vary in their timing and duration. This has important implications for commercial management of this agriculturally relevant pollinator.
Collapse
Affiliation(s)
- Bryan R Helm
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Scott Payne
- Electron Microscopy Center, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Joseph P Rinehart
- Agricultural Research Service, Insect Genetics and Biochemistry, United States Department of Agriculture, Fargo, ND 58102-2765, USA
| | - George D Yocum
- Agricultural Research Service, Insect Genetics and Biochemistry, United States Department of Agriculture, Fargo, ND 58102-2765, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
18
|
Colinet H, Rinehart JP, Yocum GD, Greenlee KJ. Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance. J Exp Biol 2018; 221:221/14/jeb164806. [DOI: 10.1242/jeb.164806] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ABSTRACT
Insects exposed to low temperature often have high mortality or exhibit sublethal effects. A growing number of recent studies have shown beneficial effects of exposing insects to recurrent brief warm pulses during low-temperature stress (fluctuating thermal regime, FTR). The physiological underpinnings of the beneficial effects of FTR on cold survival have been extensively studied over the past few years. Profiling with various ‘-omics’ techniques has provided supporting evidence for different physiological responses between insects exposed to FTR and constant low temperature. Evidence from transcriptomic, metabolomic and lipidomic studies points to a system-wide loss of homeostasis at low temperature that can be counterbalanced by repair mechanisms under FTR. Although there has been considerable progress in understanding the physiological mechanisms underlying the beneficial effects of FTR, here we discuss how many areas still lack clarity, such as the precise role(s) of heat shock proteins, compatible solutes or the identification of regulators and key players involved in the observed homeostatic responses. FTR can be particularly beneficial in applied settings, such as for model insects used in research, integrated pest management and pollination services. We also explain how the application of FTR techniques in large-scale facilities may require overcoming some logistical and technical constraints. FTR definitively enhances survival at low temperature in insects, but before it can be widely used, we suggest that the possible fitness and energy costs of FTR must be explored more thoroughly. Although FTR is not ecologically relevant, similar processes may operate in settings where temperatures fluctuate naturally.
Collapse
Affiliation(s)
- Hervé Colinet
- Univ Rennes, CNRS, ECOBIO-UMR 6553, 263 Ave du Général Leclerc, 35042 Rennes, France
| | - Joseph P. Rinehart
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - George D. Yocum
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Kendra J. Greenlee
- Department of Biological Sciences, PO Box 6050, Dept 2715, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
19
|
Branstetter MG, Childers AK, Cox-Foster D, Hopper KR, Kapheim KM, Toth AL, Worley KC. Genomes of the Hymenoptera. CURRENT OPINION IN INSECT SCIENCE 2018; 25:65-75. [PMID: 29602364 PMCID: PMC5993429 DOI: 10.1016/j.cois.2017.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/16/2017] [Indexed: 05/06/2023]
Abstract
Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. A more comprehensive catalog of hymenopteran genomes is needed for research into the evolutionary processes underlying the expansive diversity in terms of ecology, behavior, and physiological traits within this group. Additional sequencing is needed to generate an assembly for even 0.05% of the estimated 1 million hymenopteran species, and we recommend premier level assemblies for at least 0.1% of the >150,000 named species dispersed across the order. Given the haplodiploid sex determination in Hymenoptera, haploid male sequencing will help minimize genome assembly issues to enable higher quality genome assemblies.
Collapse
Affiliation(s)
- Michael G Branstetter
- Pollinating Insect-biology, Management, Systematics Research Unit, USDA-ARS, Logan, UT 84322, United States
| | - Anna K Childers
- Bee Research Laboratory, USDA-ARS, Beltsville, MD 20705, United States
| | - Diana Cox-Foster
- Pollinating Insect-biology, Management, Systematics Research Unit, USDA-ARS, Logan, UT 84322, United States
| | - Keith R Hopper
- Beneficial Insects Introduction Research Unit, USDA-ARS, Newark, DE 19713, United States
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, United States
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, United States
| | - Kim C Worley
- Human Genome Sequencing Center, and Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|