1
|
Cross SRR, Marmol-Guijarro AC, Bates KT, Marrin JC, Tickle PG, Rose KA, Codd JR. Testing the form-function paradigm: body shape correlates with kinematics but not energetics in selectively-bred birds. Commun Biol 2024; 7:900. [PMID: 39048787 PMCID: PMC11269648 DOI: 10.1038/s42003-024-06592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
A central concept of evolutionary biology, supported by broad scale allometric analyses, asserts that changing morphology should induce downstream changes in locomotor kinematics and energetics, and by inference selective fitness. However, if these mechanistic relationships exist at local intraspecific scales, where they could provide substrate for fundamental microevolutionary processes, is unknown. Here, analyses of selectively-bred duck breeds demonstrate that distinct body shapes incur kinematic shifts during walking, but these do not translate into differences in energetics. A combination of modular relationships between anatomical regions, and a trade-off between limb flexion and trunk pitching, are shown to homogenise potential functional differences between the breeds, accounting for this discrepancy between form and function. This complex interplay between morphology, motion and physiology indicates that understanding evolutionary links between the avian body plan and locomotor diversity requires studying locomotion as an integrated whole and not key anatomical innovations in isolation.
Collapse
Affiliation(s)
- Samuel R R Cross
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Andres C Marmol-Guijarro
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- 3Diversity, Quito, Ecuador
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - John C Marrin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter G Tickle
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Kayleigh A Rose
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| | - Jonathan R Codd
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Abourachid A, Chevallereau C, Pelletan I, Wenger P. An upright life, the postural stability of birds: a tensegrity system. J R Soc Interface 2023; 20:20230433. [PMID: 37963555 PMCID: PMC10645509 DOI: 10.1098/rsif.2023.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Birds are so stable that they can rest and even sleep standing up. We propose that stable static balance is achieved by tensegrity. The rigid bones can be held together by tension in the tendons, allowing the system to stabilize under the action of gravity. We used the proportions of the bird's osteomuscular system to create a mathematical model. First, the extensor muscles and tendons of the leg are replaced by a single cable that follows the leg and is guided by joint pulleys. Analysis of the model shows that it can achieve balance. However, it does not match the biomechanical characteristics of the bird's body and is not stable. We then replaced the single cable with four cables, roughly corresponding to the extensor groups, and added a ligament loop at the knee. The model is then able to reach a stable equilibrium and the biomechanical characteristics are satisfied. Some of the anatomical features used in our model correspond to innovations unique to the avian lineage. We propose that tensegrity, which allows light and stable mechanical systems, is fundamental to the evolution of the avian body plan. It can also be used as an alternative model for bipedal robots.
Collapse
Affiliation(s)
- Anick Abourachid
- Muséum National d'Histoire Naturelle CNRS, Mecadev, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | | | - Idriss Pelletan
- Muséum National d'Histoire Naturelle CNRS, Mecadev, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Philippe Wenger
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes, France
| |
Collapse
|
3
|
Monsees A, Voit KM, Wallace DJ, Sawinski J, Charyasz E, Scheffler K, Macke JH, Kerr JND. Estimation of skeletal kinematics in freely moving rodents. Nat Methods 2022; 19:1500-1509. [PMID: 36253644 PMCID: PMC9636019 DOI: 10.1038/s41592-022-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
Forming a complete picture of the relationship between neural activity and skeletal kinematics requires quantification of skeletal joint biomechanics during free behavior; however, without detailed knowledge of the underlying skeletal motion, inferring limb kinematics using surface-tracking approaches is difficult, especially for animals where the relationship between the surface and underlying skeleton changes during motion. Here we developed a videography-based method enabling detailed three-dimensional kinematic quantification of an anatomically defined skeleton in untethered freely behaving rats and mice. This skeleton-based model was constrained using anatomical principles and joint motion limits and provided skeletal pose estimates for a range of body sizes, even when limbs were occluded. Model-inferred limb positions and joint kinematics during gait and gap-crossing behaviors were verified by direct measurement of either limb placement or limb kinematics using inertial measurement units. Together we show that complex decision-making behaviors can be accurately reconstructed at the level of skeletal kinematics using our anatomically constrained model.
Collapse
Affiliation(s)
- Arne Monsees
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
| | - Kay-Michael Voit
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Damian J Wallace
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Juergen Sawinski
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Edyta Charyasz
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jakob H Macke
- Machine Learning in Science, Eberhard Karls University of Tübingen, Tübingen, Germany
- Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Jason N D Kerr
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
| |
Collapse
|
4
|
Harnie J, Audet J, Mari S, Lecomte CG, Merlet AN, Genois G, Rybak IA, Prilutsky BI, Frigon A. State- and Condition-Dependent Modulation of the Hindlimb Locomotor Pattern in Intact and Spinal Cats Across Speeds. Front Syst Neurosci 2022; 16:814028. [PMID: 35221937 PMCID: PMC8863752 DOI: 10.3389/fnsys.2022.814028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Locomotion after complete spinal cord injury (spinal transection) in animal models is usually evaluated in a hindlimb-only condition with the forelimbs suspended or placed on a stationary platform and compared with quadrupedal locomotion in the intact state. However, because of the quadrupedal nature of movement in these animals, the forelimbs play an important role in modulating the hindlimb pattern. This raises the question: whether changes in the hindlimb pattern after spinal transection are due to the state of the system (intact versus spinal) or because the locomotion is hindlimb-only. We collected kinematic and electromyographic data during locomotion at seven treadmill speeds before and after spinal transection in nine adult cats during quadrupedal and hindlimb-only locomotion in the intact state and hindlimb-only locomotion in the spinal state. We attribute some changes in the hindlimb pattern to the spinal state, such as convergence in stance and swing durations at high speed, improper coordination of ankle and hip joints, a switch in the timing of knee flexor and hip flexor bursts, modulation of burst durations with speed, and incidence of bi-phasic bursts in some muscles. Alternatively, some changes relate to the hindlimb-only nature of the locomotion, such as paw placement relative to the hip at contact, magnitude of knee and ankle yield, burst durations of some muscles and their timing. Overall, we show greater similarity in spatiotemporal and EMG variables between the two hindlimb-only conditions, suggesting that the more appropriate pre-spinal control is hindlimb-only rather than quadrupedal locomotion.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
- *Correspondence: Alain Frigon,
| |
Collapse
|
5
|
Stover KK, Sleboda DA, Brainerd EL, Roberts TJ. Gastrocnemius Muscle Structural and Functional Changes Associated with Domestication in the Turkey. Animals (Basel) 2021; 11:1850. [PMID: 34206329 PMCID: PMC8300382 DOI: 10.3390/ani11071850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
Selection for increased muscle mass in domestic turkeys has resulted in muscles twice the size of those found in wild turkeys. This study characterizes muscle structural changes as well as functional differences in muscle performance associated with selection for increased muscle mass. We compared peak isometric force production, whole muscle and individual fiber cross-sectional area (CSA), connective tissue collagen concentration and structure of the lateral gastrocnemius (LG) muscle in wild and adult domestic turkeys. We also explored changes with age between juvenile and adult domestic turkeys. We found that the domestic turkey's LG muscle can produce the same force per cross-sectional area as a wild turkey; however, due to scaling, domestic adults produce less force per unit body mass. Domestic turkey muscle fibers were slightly smaller in CSA (3802 ± 2223 μm2) than those of the wild turkey (4014 ± 1831 μm2, p = 0.013), indicating that the absolutely larger domestic turkey muscles are a result of an increased number of smaller fibers. Collagen concentration in domestic turkey muscle (4.19 ± 1.58 μg hydroxyproline/mg muscle) was significantly lower than in the wild turkeys (6.23 ± 0.63 μg/mg, p = 0.0275), with visible differences in endomysium texture, observed via scanning electron microscopy. Selection for increased muscle mass has altered the structure of the LG muscle; however, scaling likely contributes more to hind limb functional differences observed in the domestic turkey.
Collapse
Affiliation(s)
- Kristin K. Stover
- The Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA; (D.A.S.); (E.L.B.); (T.J.R.)
- Department of Biomedical Science, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - David A. Sleboda
- The Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA; (D.A.S.); (E.L.B.); (T.J.R.)
| | - Elizabeth L. Brainerd
- The Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA; (D.A.S.); (E.L.B.); (T.J.R.)
| | - Thomas J. Roberts
- The Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA; (D.A.S.); (E.L.B.); (T.J.R.)
| |
Collapse
|
6
|
Shen QK, Peng MS, Adeola AC, Kui L, Duan S, Miao YW, Eltayeb NM, Lichoti JK, Otecko NO, Strillacci MG, Gorla E, Bagnato A, Charles OS, Sanke OJ, Dawuda PM, Okeyoyin AO, Musina J, Njoroge P, Agwanda B, Kusza S, Nanaei HA, Pedar R, Xu MM, Du Y, Nneji LM, Murphy RW, Wang MS, Esmailizadeh A, Dong Y, Ommeh SC, Zhang YP. Genomic Analyses of Unveil Helmeted Guinea Fowl (Numida meleagris) Domestication in West Africa. Genome Biol Evol 2021; 13:6261762. [PMID: 34009300 PMCID: PMC8214406 DOI: 10.1093/gbe/evab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Domestication of the helmeted guinea fowl (HGF; Numida meleagris) in Africa remains elusive. Here we report a high-quality de novo genome assembly for domestic HGF generated by long- and short-reads sequencing together with optical and chromatin interaction mapping. Using this assembly as the reference, we performed population genomic analyses for newly sequenced whole-genomes for 129 birds from Africa, Asia, and Europe, including domestic animals (n = 89), wild progenitors (n = 34), and their closely related wild species (n = 6). Our results reveal domestication of HGF in West Africa around 1,300-5,500 years ago. Scanning for selective signals characterized the functional genes in behavior and locomotion changes involved in domestication of HGF. The pleiotropy and linkage in genes affecting plumage color and fertility were revealed in the recent breeding of Italian domestic HGF. In addition to presenting a missing piece to the jigsaw puzzle of domestication in poultry, our study provides valuable genetic resources for researchers and breeders to improve production in this species.
Collapse
Affiliation(s)
- Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Ling Kui
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yong-Wang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Nada M Eltayeb
- Department of Animal breeding and Reproduction Technology, College of Animal Production, University of Bahri, Khartoum, Sudan
| | - Jacqueline K Lichoti
- State Department of Livestock, Ministry of Agriculture Livestock Fisheries and Irrigation, Nairobi, Kenya
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | | | - Erica Gorla
- Department of Veterinary Medicine, Università degli Studi di Milano, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Italy
| | | | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | - Philip M Dawuda
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture, Makurdi, Nigeria
| | - Agboola O Okeyoyin
- National Park Service Headquarter, Federal Capital Territory, Abuja, Nigeria
| | - John Musina
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Peter Njoroge
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Bernard Agwanda
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary
| | | | - Rana Pedar
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Iran
| | - Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yuan Du
- Nowbio Biotechnology Company, Kunming, China
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya
| | - Robert W Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, California, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, USA
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Iran
| | - Yang Dong
- College of Biological Big Data, Yunnan Agriculture University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Sheila C Ommeh
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya.,Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Kremer JA, Robison CI, Karcher DM. Growth Dependent Changes in Pressure Sensing Walkway Data for Turkeys. Front Vet Sci 2018; 5:241. [PMID: 30356777 PMCID: PMC6189478 DOI: 10.3389/fvets.2018.00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic selection for rapidly growing turkeys has created an unfavorable consequence impacting the skeletal system resulting in long bone distortions. These distortions have resulted in locomotor problems, gait abnormalities, leg weakness, or lameness issues. These effects raise welfare concerns along with animal agriculture inefficiency in the form of lost product. The purpose was to determine baseline gait and force distribution in visibly unimpaired growing turkey hens. Hendrix commercial turkey hen poults (n = 100) were placed on pine wood shavings providing 0.78 m2 per bird with ad libitum access to feed and water at the MSU Poultry Farm. Fifty hens were randomly selected at 5 weeks and identified with a leg band to ensure longitudinal data collection. The turkeys were walked across a pressure-sensing walkway (PSW, Tekscan, Boston, MA) and weighed at 5, 6, 8, and 10 weeks of age. PSW collected data on gait length, gait time, step force and step length, and the statistics were analyzed with SAS. Both temporospatial data, including step time and step length, and kinetic data, including peak downward force, and vertical impulse, were recorded. Body weight increased linearly with age (P < 0.001), demonstrating a typical growth pattern. Gait cycle time and peak vertical force (PVF) all displayed no difference between right and left sides, indicating that the hens had no detectable gait abnormalities. Gait velocity increased with age (P = 0.02) suggesting hens' growth impacted their gait velocity. The gait cycle time (P < 0.01) did not correspond with age. PVF increased linearly with age (P < 0.01) from 6 weeks (2.23 kg) to 10 weeks of age (5.91 kg). PVF/kg body weight (P < 0.01) increased from 6 weeks of age (96.9% BW) to 8 weeks of age (106%BW). Overall, the birds were not lame and some data was influenced by the hen's adjustment to the materials or stage of growth; in contrast, some temporospatial data did not coincide with age. The PSW could be used to detect locomotor issues in commercially produced turkey hens providing another tool for assessing well-being.
Collapse
Affiliation(s)
- Jody A Kremer
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Cara I Robison
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Darrin M Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|