1
|
Simmons AM, Warnecke M, Simmons JA. Microseconds-level coding of echo delay in the auditory brainstem of an FM-echolocating bat. J Neurophysiol 2024; 132:2012-2022. [PMID: 39570280 PMCID: PMC11687828 DOI: 10.1152/jn.00305.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
Echolocating big brown bats (Eptesicus fuscus) detect changes in ultrasonic echo delay with an acuity as sharp as 1 µs or less. How this perceptual feat is accomplished in the nervous system remains unresolved. Here, we examined the precision of latency registration (latency jitter) in neural population responses as a possible mechanism underlying the bat's hyperacuity. We recorded local field potentials in the cochlear nucleus and inferior colliculus of anesthetized big brown bats to sequences of sounds consisting of a simulated frequency-modulated broadcast followed, at various echo delays, by a four-echo cascade. Latencies of the first negative response peak to the broadcast and to the first echo in the cascade were shorter in the cochlear nucleus than in the inferior colliculus, but latency jitter of this peak was comparable in both brainstem nuclei. Mean latency jitter, averaged over all stimulus conditions, was 51 µs in the cochlear nucleus and 56 µs in the inferior colliculus. Latency jitter to the successive echoes in the echo cascades was larger, with means of 125 µs and 111 µs, respectively. These values are lower than values commonly reported for single-neuron latency variability in bats and other mammals, and they approach within an order of magnitude the big brown bat's psychophysical performance. Latency jitter for synchronized population responses on a scale of microseconds reduces the gap between neurophysiological and behavioral measures of acuity. Further systems-level analysis is necessary for understanding neural mechanisms of perception.NEW & NOTEWORTHY Echolocating big brown bats resolve time delays with a sharp precision of 1 µs or less. How this hyperacuity is accomplished in the auditory system is unknown. We now report that the precision of latency registration (latency jitter) in population activity from two brainstem nuclei in response to simulated echolocation sounds is in the range of tens of microseconds. These values are smaller than observed in single neuron responses and approach the bat's psychophysical acuity.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island, United States
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States
| | - Michaela Warnecke
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States
| | - James A Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
2
|
Capshaw G, Diebold CA, Sterbing SJ, Lauer AM, Moss CF. Echolocating bats show species-specific variation in susceptibility to acoustic forward masking. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:511-523. [PMID: 39013168 PMCID: PMC11254387 DOI: 10.1121/10.0026624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Echolocating bats rely on precise auditory temporal processing to detect echoes generated by calls that may be emitted at rates reaching 150-200 Hz. High call rates can introduce forward masking perceptual effects that interfere with echo detection; however, bats may have evolved specializations to prevent repetition suppression of auditory responses and facilitate detection of sounds separated by brief intervals. Recovery of the auditory brainstem response (ABR) was assessed in two species that differ in the temporal characteristics of their echolocation behaviors: Eptesicus fuscus, which uses high call rates to capture prey, and Carollia perspicillata, which uses lower call rates to avoid obstacles and forage for fruit. We observed significant species differences in the effects of forward masking on ABR wave 1, in which E. fuscus maintained comparable ABR wave 1 amplitudes when stimulated at intervals of <3 ms, whereas post-stimulus recovery in C. perspicillata required 12 ms. When the intensity of the second stimulus was reduced by 20-30 dB relative to the first, however, C. perspicillata showed greater recovery of wave 1 amplitudes. The results demonstrate that species differences in temporal resolution are established at early levels of the auditory pathway and that these differences reflect auditory processing requirements of species-specific echolocation behaviors.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Susanne J Sterbing
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
3
|
Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022; 16:899370. [PMID: 35664459 PMCID: PMC9157489 DOI: 10.3389/fncir.2022.899370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Echolocation behavior, a navigation strategy based on acoustic signals, allows scientists to explore neural processing of behaviorally relevant stimuli. For the purpose of orientation, bats broadcast echolocation calls and extract spatial information from the echoes. Because bats control call emission and thus the availability of spatial information, the behavioral relevance of these signals is undiscussable. While most neurophysiological studies, conducted in the past, used synthesized acoustic stimuli that mimic portions of the echolocation signals, recent progress has been made to understand how naturalistic echolocation signals are encoded in the bat brain. Here, we review how does stimulus history affect neural processing, how spatial information from multiple objects and how echolocation signals embedded in a naturalistic, noisy environment are processed in the bat brain. We end our review by discussing the huge potential that state-of-the-art recording techniques provide to gain a more complete picture on the neuroethology of echolocation behavior.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julio C. Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Rossborough J, Salles A, Stidsholt L, Madsen PT, Moss CF, Hoffman LF. Inflight head stabilization associated with wingbeat cycle and sonar emissions in the lingual echolocating Egyptian fruit bat, Rousettus aegyptiacus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:757-772. [PMID: 34716764 DOI: 10.1007/s00359-021-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
Sensory processing of environmental stimuli is challenged by head movements that perturb sensorimotor coordinate frames directing behaviors. In the case of visually guided behaviors, visual gaze stabilization results from the integrated activity of the vestibuloocular reflex and motor efference copy originating within circuits driving locomotor behavior. In the present investigation, it was hypothesized that head stabilization is broadly implemented in echolocating bats during sustained flight, and is temporally associated with emitted sonar signals which would optimize acoustic gaze. Predictions from these hypotheses were evaluated by measuring head and body kinematics with motion sensors attached to the head and body of free-flying Egyptian fruit bats. These devices were integrated with ultrasonic microphones to record sonar emissions and elucidate the temporal association with periods of head stabilization. Head accelerations in the Earth-vertical axis were asymmetric with respect to wing downstroke and upstroke relative to body accelerations. This indicated that inflight head and body accelerations were uncoupled, outcomes consistent with the mechanisms that limit vertical head acceleration during wing downstroke. Furthermore, sonar emissions during stable flight occurred most often during wing downstroke and head stabilization, supporting the conclusion that head stabilization behavior optimized sonar gaze and environmental interrogation via echolocation.
Collapse
Affiliation(s)
- Jackson Rossborough
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA
| | - Angeles Salles
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Peter T Madsen
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Larry F Hoffman
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA.
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Warnecke M, Simmons JA, Simmons AM. Population registration of echo flow in the big brown bat's auditory midbrain. J Neurophysiol 2021; 126:1314-1325. [PMID: 34495767 DOI: 10.1152/jn.00013.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echolocating big brown bats (Eptesicus fuscus) perceive their surroundings by broadcasting frequency-modulated (FM) ultrasonic pulses and processing returning echoes. Bats echolocate in acoustically cluttered environments containing multiple objects, where each broadcast is followed by multiple echoes at varying time delays. The bat must decipher this complex echo cascade to form a coherent picture of the entire acoustic scene. Neurons in the bat's inferior colliculus (IC) are selective for specific acoustic features of echoes and time delays between broadcasts and echoes. Because of this selectivity, different subpopulations of neurons are activated as the bat flies through its environment, while the physical scene itself remains unchanging. We asked how a neural representation based on variable single-neuron responses could underlie a cohesive perceptual representation of a complex scene. We recorded local field potentials from the IC of big brown bats to examine population coding of echo cascades similar to what the bat might encounter when flying alongside vegetation. We found that the temporal patterning of a simulated broadcast followed by an echo cascade is faithfully reproduced in the population response at multiple stimulus amplitudes and echo delays. Local field potentials to broadcasts and echo cascades undergo amplitude-latency trading consistent with single-neuron data but rarely show paradoxical latency shifts. Population responses to the entire echo cascade move as a unit coherently in time as broadcast-echo cascade delay changes, suggesting that these responses serve as an index for the formation of a cohesive perceptual representation of an acoustic scene.NEW & NOTEWORTHY Echolocating bats navigate through cluttered environments that return cascades of echoes in response to the bat's broadcasts. We show that local field potentials from the big brown bat's auditory midbrain have consistent responses to a simulated echo cascade varying across echo delays and stimulus amplitudes, despite different underlying individual neuronal selectivities. These results suggest that population activity in the midbrain can build a cohesive percept of an auditory scene by aggregating activity over neuronal subpopulations.
Collapse
Affiliation(s)
| | - James A Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Andrea Megela Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Carney Institute for Brain Science, Brown University, Providence, Rhode Island.,Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
6
|
Jones TK, Moss CF. Visual cues enhance obstacle avoidance in echolocating bats. J Exp Biol 2021; 224:261726. [PMID: 33942102 DOI: 10.1242/jeb.241968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022]
Abstract
Studies have shown that bats are capable of using visual information for a variety of purposes, including navigation and foraging, but the relative contributions of visual and auditory modalities in obstacle avoidance has yet to be fully investigated, particularly in laryngeal echolocating bats. A first step requires the characterization of behavioral responses to different combinations of sensory cues. Here, we quantified the behavioral responses of the insectivorous big brown bat, Eptesicus fuscus, in an obstacle avoidance task offering different combinations of auditory and visual cues. To do so, we utilized a new method that eliminates the confounds typically associated with testing bat vision and precludes auditory cues. We found that the presence of visual and auditory cues together enhances bats' avoidance response to obstacles compared with cues requiring either vision or audition alone. Analyses of flight and echolocation behaviors, such as speed and call rate, did not vary significantly under different obstacle conditions, and thus are not informative indicators of a bat's response to obstacle stimulus type. These findings advance the understanding of the relative importance of visual and auditory sensory modalities in guiding obstacle avoidance behaviors.
Collapse
Affiliation(s)
- Te K Jones
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Tuninetti A, Ming C, Hom KN, Simmons JA, Simmons AM. Spatiotemporal patterning of acoustic gaze in echolocating bats navigating gaps in clutter. iScience 2021; 24:102353. [PMID: 33870143 PMCID: PMC8047172 DOI: 10.1016/j.isci.2021.102353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/15/2022] Open
Abstract
We challenged four big brown bats to maneuver through abrupt turns in narrow corridors surrounded by dense acoustic clutter. We quantified bats' performance, sonar beam focus, and sensory acquisition rate. Performance was excellent in straight corridors, with sonar beam aim deviating less than 5° from the corridor midline. Bats anticipated an upcoming abrupt turn to the right or left by slowing flight speed and shifting beam aim to "look" proactively into one side of the corridor to identify the new flightpath. All bats mastered the right turn, but two bats consistently failed the left turn. Bats increased their sensory acquisition rate when confronting abrupt turns in both successful and failed flights. Limitations on biosonar performance reflected failures to switch beam aim and to modify a learned spatial map, rather than failures to update acquisition rate.
Collapse
Affiliation(s)
- Amaro Tuninetti
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Chen Ming
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Kelsey N. Hom
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - James A. Simmons
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Andrea Megela Simmons
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI 02912, USA
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Yamada Y, Mibe Y, Yamamoto Y, Ito K, Heim O, Hiryu S. Modulation of acoustic navigation behaviour by spatial learning in the echolocating bat Rhinolophus ferrumequinum nippon. Sci Rep 2020; 10:10751. [PMID: 32612132 PMCID: PMC7329871 DOI: 10.1038/s41598-020-67470-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/05/2020] [Indexed: 11/30/2022] Open
Abstract
Using echolocation, bats receive acoustic information on their surroundings, which is assumed to help them sophisticatedly navigate complex environments. In this study, to understand spatial learning and acoustic sensing in bats, we investigated how flight and echolocation control changed in Rhinolophus ferrumequinum nippon as they learnt about their surroundings in an obstacle course that they flew through repeatedly. In these experiments, two testing environments (acoustically permeable and acoustically reflective) were prepared using chains and acrylic boards as obstacles to evaluate the interactive effects of spatial learning and flight environments. We found that bats reduced the meandering width of their flights and pulse emissions, and also seemed to reduce their shifts in pulse direction as they learnt more about their environments in both conditions. Throughout all our experiments, the bats with slower flight speeds tended to emit more pulses, which suggests that the number of pulse emissions reflects the echolocation tactics of each bat. The maximum flight speed was especially increased in the acoustically permeable condition, with frequent emissions of multiple pulses (≧triplets) in the early stages of flight, suggesting that bats adjust their flight plan based on how much of their surroundings they are able to sense in advance.
Collapse
Affiliation(s)
- Yasufumi Yamada
- Program of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Yurina Mibe
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0321, Japan
| | - Yuya Yamamoto
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0321, Japan
| | - Kentaro Ito
- Department of Frontier Bioscience, Hosei University, Koganei, 184-8584, Japan
| | - Olga Heim
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0321, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0321, Japan
| |
Collapse
|
9
|
Segregating signal from noise through movement in echolocating bats. Sci Rep 2020; 10:382. [PMID: 31942008 PMCID: PMC6962340 DOI: 10.1038/s41598-019-57346-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022] Open
Abstract
Segregating signal from noise is one of the most fundamental problems shared by all biological and human-engineered sensory systems. In echolocating bats that search for small objects such as tiny insects in the presence of large obstacles (e.g., vegetation), this task can pose serious challenges as the echoes reflected from the background might be several times louder than the desired signal. Bats’ ability to adjust their sensing, specifically their echolocation signal and sequence design has been deeply studied. In this study, we show that in addition to adjusting their sensing, bats also use movement in order to segregate desired echoes from background noise. Bats responded to an acoustically echoic background by adjusting their angle of attack. Specifically, the bats in our experiment used movement and not adaptation of sensory acquisition in order to overcome a sensory challenge. They approached the target at a smaller angle of attack, which results in weaker echoes from the background as was also confirmed by measuring the echoes of the setup from the bat’s point of view. Our study demonstrates the importance of movement in active sensing.
Collapse
|
10
|
Bou Mansour C, Koreman E, Steckel J, Peremans H, Vanderelst D. Avoidance of non-localizable obstacles in echolocating bats: A robotic model. PLoS Comput Biol 2019; 15:e1007550. [PMID: 31856162 PMCID: PMC6941896 DOI: 10.1371/journal.pcbi.1007550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/03/2020] [Accepted: 11/17/2019] [Indexed: 12/02/2022] Open
Abstract
Most objects and vegetation making up the habitats of echolocating bats return a multitude of overlapping echoes. Recent evidence suggests that the limited temporal and spatial resolution of bio-sonar prevents bats from separately perceiving the objects giving rise to these overlapping echoes. Therefore, bats often operate under conditions where their ability to localize obstacles is severely limited. Nevertheless, bats excel at avoiding complex obstacles. In this paper, we present a robotic model of bat obstacle avoidance using interaural level differences and distance to the nearest obstacle as the minimal set of cues. In contrast to previous robotic models of bats, the current robot does not attempt to localize obstacles. We evaluate two obstacle avoidance strategies. First, the Fixed Head Strategy keeps the acoustic gaze direction aligned with the direction of flight. Second, the Delayed Linear Adaptive Law (DLAL) Strategy uses acoustic gaze scanning, as observed in hunting bats. Acoustic gaze scanning has been suggested to aid the bat in hunting for prey. Here, we evaluate its adaptive value for obstacle avoidance when obstacles can not be localized. The robot's obstacle avoidance performance is assessed in two environments mimicking (highly cluttered) experimental setups commonly used in behavioral experiments: a rectangular arena containing multiple complex cylindrical reflecting surfaces and a corridor lined with complex reflecting surfaces. The results indicate that distance to the nearest object and interaural level differences allows steering the robot clear of obstacles in environments that return non-localizable echoes. Furthermore, we found that using acoustic gaze scanning reduced performance, suggesting that gaze scanning might not be beneficial under conditions where the animal has limited access to angular information, which is in line with behavioral evidence.
Collapse
Affiliation(s)
- Carl Bou Mansour
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Elijah Koreman
- Department of Computer Science, Cornell University, Ithaca, New York, United States of America
| | - Jan Steckel
- Constrained Systems Lab, University of Antwerp, Antwerp, Belgium
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Dieter Vanderelst
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
11
|
Beetz MJ, Kössl M, Hechavarría JC. Adaptations in the call emission pattern of frugivorous bats when orienting under challenging conditions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:457-467. [PMID: 30997534 DOI: 10.1007/s00359-019-01337-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Echolocating bats emit biosonar calls and use echoes arising from call reflections, for orientation. They often pattern their calls into groups which increases the rate of sensory feedback. Insectivorous bats emit call groups at a higher rate when orienting in cluttered compared to uncluttered environments. Frugivorous bats increase the rate of call group emission when they echolocate in noisy environments. In frugivorous bats, it remains unclear if call group emission represents an exclusive adaptation to avoid acoustic interference by signals of conspecifics or if it represents an adaptation that allows to orient under demanding environmental conditions. Here, we compared the emission pattern of the frugivorous bat Carolliaperspicillata when the bats were flying in narrow versus wide or cluttered versus non-cluttered corridors. The bats emitted larger call groups and they increased the call rate within call groups when navigating in narrow or cluttered environments. These adaptations resemble the ones shown when the bats navigate in noisy environments. Thus, call group emission represents an adaptive behavior when the bats orient in complex environments.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany. .,Zoology II Emmy-Noether Animal Navigation Group, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany.
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| |
Collapse
|
12
|
Kugler K, Luksch H, Peremans H, Vanderelst D, Wiegrebe L, Firzlaff U. Echo-acoustic and optic flow interact in bats. J Exp Biol 2019; 222:jeb.195404. [DOI: 10.1242/jeb.195404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
Echolocating bats are known to fly and forage in complete darkness using the echoes of their actively emitted calls to navigate and to detect prey. However, under dim light conditions many bats can also rely on vision. Many flying animals have been shown to navigate by optic flow information, and recently, bats were shown to exploit echo-acoustic flow to navigate through dark habitats. Here we show for the bat Phyllostomus discolor that in lighted habitats where self-motion induced optic flow is strong, optic and echo-acoustic flow interact in their efficiency to guide navigation. Echo-acoustic flow showed a surprisingly strong effect compared to optic flow. We thus demonstrate multimodal interaction between two far-ranging spatial senses, vision and echolocation, available in this combination almost exclusively for bats and toothed whales. Our results highlight the importance of merging information from different sensory systems in a sensory-specialist animal to successfully navigate and hunt under difficult conditions.
Collapse
Affiliation(s)
- Kathrin Kugler
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, Munich, Germany
| | - Harald Luksch
- Chair of Zoology, Department of Animal Sciences, TU Munich, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Dieter Vanderelst
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati OH, USA
| | - Lutz Wiegrebe
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Chair of Zoology, Department of Animal Sciences, TU Munich, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| |
Collapse
|