1
|
Tennessen JB, Holt MM, Wright BM, Hanson MB, Emmons CK, Giles DA, Hogan JT, Thornton SJ, Deecke VB. Males miss and females forgo: Auditory masking from vessel noise impairs foraging efficiency and success in killer whales. GLOBAL CHANGE BIOLOGY 2024; 30:e17490. [PMID: 39254237 DOI: 10.1111/gcb.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 09/11/2024]
Abstract
Understanding how the environment mediates an organism's ability to meet basic survival requirements is a fundamental goal of ecology. Vessel noise is a global threat to marine ecosystems and is increasing in intensity and spatiotemporal extent due to growth in shipping coupled with physical changes to ocean soundscapes from ocean warming and acidification. Odontocetes rely on biosonar to forage, yet determining the consequences of vessel noise on foraging has been limited by the challenges of observing underwater foraging outcomes and measuring noise levels received by individuals. To address these challenges, we leveraged a unique acoustic and movement dataset from 25 animal-borne biologging tags temporarily attached to individuals from two populations of fish-eating killer whales (Orcinus orca) in highly transited coastal waters to (1) test for the effects of vessel noise on foraging behaviors-searching (slow-click echolocation), pursuit (buzzes), and capture and (2) investigate the mechanism of interference. For every 1 dB increase in maximum noise level, there was a 4% increase in the odds of searching for prey by both sexes, a 58% decrease in the odds of pursuit by females and a 12.5% decrease in the odds of prey capture by both sexes. Moreover, all but one deep (≥75 m) foraging attempt with noise ≥110 dB re 1 μPa (15-45 kHz band; n = 6 dives by n = 4 whales) resulted in failed prey capture. These responses are consistent with an auditory masking mechanism. Our findings demonstrate the effects of vessel noise across multiple phases of odontocete foraging, underscoring the importance of managing anthropogenic inputs into soundscapes to achieve conservation objectives for acoustically sensitive species. While the timescales for recovering depleted prey species may span decades, these findings suggest that complementary actions to reduce ocean noise in the short term offer a critical pathway for recovering odontocete foraging opportunities.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, Washington, USA
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Brianna M Wright
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | | | | | - Sheila J Thornton
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| | - Volker B Deecke
- Institute of Science and Environment, University of Cumbria, Ambleside, Cumbria, UK
| |
Collapse
|
2
|
Tennessen JB, Holt MM, Wright BM, Hanson MB, Emmons CK, Giles DA, Hogan JT, Thornton SJ, Deecke VB. Divergent foraging strategies between populations of sympatric matrilineal killer whales. Behav Ecol 2023; 34:373-386. [PMID: 37192928 PMCID: PMC10183210 DOI: 10.1093/beheco/arad002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
In cooperative species, human-induced rapid environmental change may threaten cost-benefit tradeoffs of group behavioral strategies that evolved in past environments. Capacity for behavioral flexibility can increase population viability in novel environments. Whether the partitioning of individual responsibilities within social groups is fixed or flexible across populations is poorly understood, despite its relevance for predicting responses to global change at the population and species levels and designing successful conservation programs. We leveraged bio-logging data from two populations of fish-eating killer whales (Orcinus orca) to quantify patterns of fine-scale foraging movements and their relationships with demography. We reveal striking interpopulation differences in patterns of individual foraging behavior. Females from the endangered Southern Resident (SRKW) population captured less prey and spent less time pursuing prey than SRKW males or Northern Resident (NRKW) females, whereas NRKW females captured more prey than NRKW males. The presence of a calf (≤3 years) reduced the number of prey captured by adult females from both populations, but disproportionately so for SRKW. SRKW adult males with a living mother captured more prey than those whose mother had died, whereas the opposite was true for NRKW adult males. Across populations, males foraged in deeper areas than females, and SRKW captured prey deeper than NRKW. These population-level differences in patterns of individual foraging behavior challenge the existing paradigm that females are the disproportionate foragers in gregarious resident killer whales, and demonstrate considerable variation in the foraging strategies across populations of an apex marine predator experiencing different environmental stressors.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
- Lynker Technologies LLC, Leesburg, VA 20175, USA
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brianna M Wright
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Deborah A Giles
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | | | - Sheila J Thornton
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
| | - Volker B Deecke
- Institute of Science and Environment, University of Cumbria, Ambleside, Cumbria LA22 9BB, UK
| |
Collapse
|
3
|
Lyamin OI, Nazarenko EA, Rozhnov VV. Evaluation of an Instrumental Method of Classification of Beluga (Delphinapterus leucas) Behaviors Based on the Parameters of Acceleration. DOKL BIOCHEM BIOPHYS 2022; 506:223-226. [DOI: 10.1134/s1607672922050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 11/07/2022]
|
4
|
McHuron EA, Adamczak S, Arnould JPY, Ashe E, Booth C, Bowen WD, Christiansen F, Chudzinska M, Costa DP, Fahlman A, Farmer NA, Fortune SME, Gallagher CA, Keen KA, Madsen PT, McMahon CR, Nabe-Nielsen J, Noren DP, Noren SR, Pirotta E, Rosen DAS, Speakman CN, Villegas-Amtmann S, Williams R. Key questions in marine mammal bioenergetics. CONSERVATION PHYSIOLOGY 2022; 10:coac055. [PMID: 35949259 PMCID: PMC9358695 DOI: 10.1093/conphys/coac055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as 'key' questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.
Collapse
Affiliation(s)
- Elizabeth A McHuron
- Corresponding author: Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, WA, 98195, USA.
| | - Stephanie Adamczak
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Erin Ashe
- Oceans Initiative, Seattle, WA, 98102, USA
| | - Cormac Booth
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
| | - W Don Bowen
- Biology Department, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Center for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch, Murdoch University, WA 6150, Australia
| | - Magda Chudzinska
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 9XL, UK
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, 46005 Valencia, Spain
- Kolmården Wildlife Park, 618 92 Kolmården, Sweden
| | - Nicholas A Farmer
- NOAA/National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, FL, 33701, USA
| | - Sarah M E Fortune
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cara A Gallagher
- Plant Ecology and Nature Conservation, University of Potsdam, 14476 Potsdam, Germany
| | - Kelly A Keen
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Clive R McMahon
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
| | | | - Dawn P Noren
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Shawn R Noren
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews KY16 9LZ, UK
| | - David A S Rosen
- Institute for Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1ZA, Canada
| | - Cassie N Speakman
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Stella Villegas-Amtmann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | | |
Collapse
|
5
|
Parameterizing animal sounds and motion with animal-attached tags to study acoustic communication. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Stemming from the traditional use of field observers to score states and events, the study of animal behaviour often relies on analyses of discrete behavioural categories. Many studies of acoustic communication record sequences of animal sounds, classify vocalizations, and then examine how call categories are used relative to behavioural states and events. However, acoustic parameters can also convey information independent of call type, offering complementary study approaches to call classifications. Animal-attached tags can continuously sample high-resolution behavioural data on sounds and movements, which enables testing how acoustic parameters of signals relate to parameters of animal motion. Here, we present this approach through case studies on wild common bottlenose dolphins (Tursiops truncatus). Using data from sound-and-movement recording tags deployed in Sarasota (FL), we parameterized dolphin vocalizations and motion to investigate how senders and receivers modified movement parameters (including vectorial dynamic body acceleration, “VeDBA”, a proxy for activity intensity) as a function of signal parameters. We show that (1) VeDBA of one female during consortships had a negative relationship with centroid frequency of male calls, matching predictions about agonistic interactions based on motivation-structural rules; (2) VeDBA of four males had a positive relationship with modulation rate of their pulsed vocalizations, confirming predictions that click-repetition rate of these calls increases with agonism intensity. Tags offer opportunities to study animal behaviour through analyses of continuously sampled quantitative parameters, which can complement traditional methods and facilitate research replication. Our case studies illustrate the value of this approach to investigate communicative roles of acoustic parameter changes.
Significance statement
Studies of animal behaviour have traditionally relied on classification of behavioural patterns and analyses of discrete behavioural categories. Today, technologies such as animal-attached tags enable novel approaches, facilitating the use of quantitative metrics to characterize behaviour. In the field of acoustic communication, researchers typically classify vocalizations and examine usage of call categories. Through case studies of bottlenose dolphin social interactions, we present here a novel tag-based complementary approach. We used high-resolution tag data to parameterize dolphin sounds and motion, and we applied continuously sampled parameters to examine how individual dolphins responded to conspecifics’ signals and moved while producing sounds. Activity intensity of senders and receivers changed with specific call parameters, matching our predictions and illustrating the value of our approach to test communicative roles of acoustic parameter changes. Parametric approaches can complement traditional methods for animal behaviour and facilitate research replication.
Collapse
|
6
|
Rhodes LD, Emmons CK, Wisswaesser G, Wells AH, Hanson MB. Bacterial microbiomes from mucus and breath of southern resident killer whales ( Orcinus orca). CONSERVATION PHYSIOLOGY 2022; 10:coac014. [PMID: 35492424 PMCID: PMC9041426 DOI: 10.1093/conphys/coac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/07/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Opportunities to assess odontocete health are restricted due to their limited time at the surface, relatively quick movements and large geographic ranges. For endangered populations such as the southern resident killer whales (SKRWs) of the northeast Pacific Ocean, taking advantage of non-invasive samples such as expelled mucus and exhaled breath is appealing. Over the past 12 years, such samples were collected, providing a chance to analyse and assess their bacterial microbiomes using amplicon sequencing. Based on operational taxonomic units, microbiome communities from SRKW and transient killer whales showed little overlap between mucus, breath and seawater from SRKW habitats and six bacterial phyla were prominent in expelled mucus but not in seawater. Mollicutes and Fusobacteria were common and abundant in mucus, but not in breath or seawater, suggesting these bacterial classes may be normal constituents of the SRKW microbiome. Out of 134 bacterial families detected, 24 were unique to breath and mucus, including higher abundances of Burkholderiaceae, Moraxellaceae and Chitinophagaceae. Although there were multiple bacterial genera in breath or mucus that include pathogenic species (e.g. Campylobacter, Hemophilus, Treponema), the presence of these bacteria is not necessarily evidence of disease or infection. Future emphasis on genotyping mucus samples to the individual animal will allow further assessment in the context of that animal's history, including body condition index and prior contaminants burden. This study is the first to examine expelled mucus from cetaceans for microbiomes and demonstrates the value of analysing these types of non-invasive samples.
Collapse
Affiliation(s)
- Linda D Rhodes
- Corresponding author: Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112, USA.
| | - Candice K Emmons
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - GabrielS Wisswaesser
- Lynker Technologies, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Abigail H Wells
- Lynker Technologies, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - M Bradley Hanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| |
Collapse
|
7
|
Ratsimbazafindranahaka MN, Huetz C, Andrianarimisa A, Reidenberg JS, Saloma A, Adam O, Charrier I. Characterizing the suckling behavior by video and 3D-accelerometry in humpback whale calves on a breeding ground. PeerJ 2022; 10:e12945. [PMID: 35194528 PMCID: PMC8858581 DOI: 10.7717/peerj.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/25/2022] [Indexed: 01/11/2023] Open
Abstract
Getting maternal milk through nursing is vital for all newborn mammals. Despite its importance, nursing has been poorly documented in humpback whales (Megaptera novaeangliae). Nursing is difficult to observe underwater without disturbing the whales and is usually impossible to observe from a ship. We attempted to observe nursing from the calf's perspective by placing CATS cam tags on three humpback whale calves in the Sainte Marie channel, Madagascar, Indian Ocean, during the breeding seasons. CATS cam tags are animal-borne multi-sensor tags equipped with a video camera, a hydrophone, and several auxiliary sensors (including a 3-axis accelerometer, a 3-axis magnetometer, and a depth sensor). The use of multi-sensor tags minimized potential disturbance from human presence. A total of 10.52 h of video recordings were collected with the corresponding auxiliary data. Video recordings were manually analyzed and correlated with the auxiliary data, allowing us to extract different kinematic features including the depth rate, speed, Fluke Stroke Rate (FSR), Overall Body Dynamic Acceleration (ODBA), pitch, roll, and roll rate. We found that suckling events lasted 18.8 ± 8.8 s on average (N = 34) and were performed mostly during dives. Suckling events represented 1.7% of the total observation time. During suckling, the calves were visually estimated to be at a 30-45° pitch angle relative to the midline of their mother's body and were always observed rolling either to the right or to the left. In our auxiliary dataset, we confirmed that suckling behavior was primarily characterized by a high average absolute roll and additionally we also found that it was likely characterized by a high average FSR and a low average speed. Kinematic features were used for supervised machine learning in order to subsequently detect suckling behavior automatically. Our study is a proof of method on which future investigations can build upon. It opens new opportunities for further investigation of suckling behavior in humpback whales and the baleen whale species.
Collapse
Affiliation(s)
- Maevatiana N. Ratsimbazafindranahaka
- Association Cétamada, Barachois Sainte Marie, Madagascar,Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France,Département de Zoologie et Biodiversité Animale, Université d’Antananarivo, Antananarivo, Madagascar
| | - Chloé Huetz
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Aristide Andrianarimisa
- Département de Zoologie et Biodiversité Animale, Université d’Antananarivo, Antananarivo, Madagascar
| | - Joy S. Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Anjara Saloma
- Association Cétamada, Barachois Sainte Marie, Madagascar
| | - Olivier Adam
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France,Institut Jean Le Rond d’Alembert, Sorbonne Université, Paris, France
| | - Isabelle Charrier
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| |
Collapse
|
8
|
Sidrow E, Heckman N, Fortune SME, Trites AW, Murphy I, Auger‐Méthé M. Modelling multi‐scale, state‐switching functional data with hidden Markov models. CAN J STAT 2021. [DOI: 10.1002/cjs.11673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Evan Sidrow
- Department of Statistics University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Nancy Heckman
- Department of Statistics University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Sarah M. E. Fortune
- Marine Mammal Research Unit University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Andrew W. Trites
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
- Institute for the Oceans and Fisheries University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Ian Murphy
- Department of Biostatistics University of Florida Gainesville 32611 FL U.S.A
| | - Marie Auger‐Méthé
- Department of Statistics University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
- Institute for the Oceans and Fisheries University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| |
Collapse
|
9
|
Castellote M, Mooney A, Andrews R, Deruiter S, Lee WJ, Ferguson M, Wade P. Beluga whale (Delphinapterus leucas) acoustic foraging behavior and applications for long term monitoring. PLoS One 2021; 16:e0260485. [PMID: 34847192 PMCID: PMC8631677 DOI: 10.1371/journal.pone.0260485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/10/2021] [Indexed: 12/05/2022] Open
Abstract
Cook Inlet, Alaska, is home to an endangered and declining population of 279 belugas (Delphinapterus leucas). Recovery efforts highlight a paucity of basic ecological knowledge, impeding the correct assessment of threats and the development of recovery actions. In particular, information on diet and foraging habitat is very limited for this population. Passive acoustic monitoring has proven to be an efficient approach to monitor beluga distribution and seasonal occurrence. Identifying acoustic foraging behavior could help address the current gap in information on diet and foraging habitat. To address this conservation challenge, eight belugas from a comparative, healthy population in Bristol Bay, Alaska, were instrumented with a multi-sensor tag (DTAG), a satellite tag, and a stomach temperature transmitter in August 2014 and May 2016. DTAG deployments provided 129.6 hours of data including foraging and social behavioral states. A total of 68 echolocation click trains ending in terminal buzzes were identified during successful prey chasing and capture, as well as during social interactions. Of these, 37 click trains were successfully processed to measure inter-click intervals (ICI) and ICI trend in their buzzing section. Terminal buzzes with short ICI (minimum ICI <8.98 ms) and consistently decreasing ICI trend (ICI increment range <1.49 ms) were exclusively associated with feeding behavior. This dual metric was applied to acoustic data from one acoustic mooring within the Cook Inlet beluga critical habitat as an example of the application of detecting feeding in long-term passive acoustic monitoring data. This approach allowed description of the relationship between beluga presence, feeding occurrence, and the timing of spawning runs by different species of anadromous fish. Results reflected a clear preference for the Susitna River delta during eulachon (Thaleichthys pacificus), Chinook (Oncorhynchus tshawytscha), pink (Oncorhynchus gorbuscha), and coho (Oncorhynchus kisutch) salmon spawning run periods, with increased feeding occurrence at the peak of the Chinook and pink salmon runs.
Collapse
Affiliation(s)
- Manuel Castellote
- Cooperative Institute for Climate, Ocean and Ecosystem Studies, University of Washington, Seattle, WA, United States of America
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA, National Marine Fisheries Service, Seattle, WA, United States of America
- * E-mail:
| | - Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Russel Andrews
- Alaska SeaLife Center, Seward, AK, United States of America
- College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Alaska, United States of America
| | - Stacy Deruiter
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- Department of Mathematics and Statistics, Calvin University, Grand Rapids, MI, United States of America
| | - Wu-Jung Lee
- Applied Physics laboratory, University of Washington, Seattle, WA, United States of America
| | - Megan Ferguson
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA, National Marine Fisheries Service, Seattle, WA, United States of America
| | - Paul Wade
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA, National Marine Fisheries Service, Seattle, WA, United States of America
| |
Collapse
|
10
|
Wright BM, Deecke VB, Ellis GM, Trites AW, Ford JKB. Behavioral context of echolocation and prey-handling sounds produced by killer whales ( Orcinus orca) during pursuit and capture of Pacific salmon ( Oncorhynchus spp.). MARINE MAMMAL SCIENCE 2021; 37:1428-1453. [PMID: 34690418 PMCID: PMC8519075 DOI: 10.1111/mms.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.
Collapse
Affiliation(s)
- Brianna M. Wright
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Volker B. Deecke
- Institute of Science, Natural Resources and Outdoor StudiesUniversity of CumbriaAmblesideCumbriaUnited Kingdom
| | - Graeme M. Ellis
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
| | - Andrew W. Trites
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - John K. B. Ford
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
11
|
Variability in Anthropogenic Underwater Noise Due to Bathymetry and Sound Speed Characteristics. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9101047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oceanic acoustic environments are dynamic, shaped by the spatiotemporal variability in transmission losses and sound propagation pathways of natural and human-derived noise sources. Here we used recordings of an experimental noise source combined with transmission loss modeling to investigate changes in the received levels of vessel noise over space and time as a result of natural water column variability. Recordings were made in the Juan de Fuca Strait, on the west coast of Vancouver Island, a biologically productive coastal region that hosts several cetacean species. Significant variability in noise levels was observed due to changing water masses, tied to seasonal temperature variation and, on a finer scale, tidal movements. Comparisons of interpreted received noise levels through the water column indicated that vessel noise recorded by bottom-stationed monitoring devices might not accurately represent those received by whales in near-surface waters. Vertical and temporal differences of 3–5 dB were commonly observed in both the recorded and modeled data. This has implications in estimating the success of noise mitigation measures, and our understanding of the change in sound fields experienced by target species for conservation.
Collapse
|
12
|
Holt MM, Tennessen JB, Hanson MB, Emmons CK, Giles DA, Hogan JT, Ford MJ. Vessels and their sounds reduce prey capture effort by endangered killer whales (Orcinus orca). MARINE ENVIRONMENTAL RESEARCH 2021; 170:105429. [PMID: 34333339 DOI: 10.1016/j.marenvres.2021.105429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Vessel traffic is prevalent throughout marine environments. However, we often have a limited understanding of vessel impacts on marine wildlife, particularly cetaceans, due to challenges of studying fully-aquatic species. To investigate vessel and acoustic effects on cetacean foraging behavior, we attached suction-cup sound and movement tags to endangered Southern Resident killer whales in their summer habitat while collecting geo-referenced proximate vessel data. We identified prey capture dives using whale kinematic signatures and found that the probability of capturing prey increased as salmon abundance increased, but decreased as vessel speed increased. When vessels emitted navigational sonar, whales made longer dives to capture prey and descended more slowly when they initiated these dives. Finally, whales descended more quickly when noise levels were higher and vessel approaches were closer. These findings advance a growing understanding of vessel and sound impacts on marine wildlife and inform efforts to manage vessel impacts on endangered populations.
Collapse
Affiliation(s)
- Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Jennifer B Tennessen
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA; Lynker Technologies, Leesburg, VA, USA
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Deborah A Giles
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA; Present address: University of Washington, Friday Harbor Laboratories, Friday Harbor, WA, USA
| | | | - Michael J Ford
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
13
|
Weiss MN, Franks DW, Giles DA, Youngstrom S, Wasser SK, Balcomb KC, Ellifrit DK, Domenici P, Cant MA, Ellis S, Nielsen MLK, Grimes C, Croft DP. Age and sex influence social interactions, but not associations, within a killer whale pod. Proc Biol Sci 2021; 288:20210617. [PMID: 34130498 DOI: 10.1098/rspb.2021.0617] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Social structure is a fundamental aspect of animal populations. In order to understand the function and evolution of animal societies, it is important to quantify how individual attributes, such as age and sex, shape social relationships. Detecting these influences in wild populations under natural conditions can be challenging, especially when social interactions are difficult to observe and broad-scale measures of association are used as a proxy. In this study, we use unoccupied aerial systems to observe association, synchronous surfacing, and physical contact within a pod of southern resident killer whales (Orcinus orca). We show that interactions do not occur randomly between associated individuals, and that interaction types are not interchangeable. While age and sex did not detectably influence association network structure, both interaction networks showed significant social homophily by age and sex, and centrality within the contact network was higher among females and young individuals. These results suggest killer whales exhibit interesting parallels in social bond formation and social life histories with primates and other terrestrial social mammals, and demonstrate how important patterns can be missed when using associations as a proxy for interactions in animal social network studies.
Collapse
Affiliation(s)
- Michael N Weiss
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK.,Center for Whale Research, Friday Harbour, WA, USA
| | - Daniel W Franks
- Department of Biology and Department of Computer Science, University of York, York, UK
| | - Deborah A Giles
- Center for Conservation Biology, Department of Biology, University of Washington, Seattle, WA, USA
| | - Sadie Youngstrom
- Center for Conservation Biology, Department of Biology, University of Washington, Seattle, WA, USA
| | - Samuel K Wasser
- Center for Conservation Biology, Department of Biology, University of Washington, Seattle, WA, USA
| | | | | | | | - Michael A Cant
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Samuel Ellis
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Mia L K Nielsen
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Charli Grimes
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Darren P Croft
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Lefort K, Matthews C, Higdon J, Petersen S, Westdal K, Garroway C, Ferguson S. A review of Canadian Arctic killer whale (Orcinus orca) ecology. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The killer whale (Orcinus orca (Linnaeus, 1758)) is a widely distributed marine predator with a broad ecological niche at the species level with evidence of specialization and narrow ecological niches among populations. Their occurrence in Canadian Arctic waters is limited by sea ice and it has been suggested that climate warming, which has caused increases in the area of ice-free water and duration of the ice-free season, has led to an increased killer whale presence during the open-water period. In this review, we summarize our knowledge of Canadian Arctic killer whale demographics and ecology, synthesizing published and previously unpublished information in a single document. More specifically, we summarize our knowledge of killer whale population size and trends, distribution and seasonality (including results from recent satellite-tracking studies), feeding ecology, and threats, and identify research priorities in the Canadian Arctic. Despite increased research efforts during the past decade, our demographic and ecological knowledge remains incomplete. An improved ecological understanding is necessary for effective management of killer whales and their prey, species of ecological, economic, and cultural importance to Canadian Inuit and the marine ecosystem. This knowledge will allow us to better understand the ecological consequences of a changing Arctic climate.
Collapse
Affiliation(s)
- K.J. Lefort
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - C.J.D. Matthews
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - J.W. Higdon
- Higdon Wildlife Consulting, Winnipeg, MB R2M 0L3, Canada
| | - S.D. Petersen
- Conservation and Research Department, Assiniboine Park Zoo, Winnipeg, MB R3P 2N7, Canada
| | | | - C.J. Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - S.H. Ferguson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
15
|
Goldbogen JA, Cade DE, Wisniewska DM, Potvin J, Segre PS, Savoca MS, Hazen EL, Czapanskiy MF, Kahane-Rapport SR, DeRuiter SL, Gero S, Tønnesen P, Gough WT, Hanson MB, Holt MM, Jensen FH, Simon M, Stimpert AK, Arranz P, Johnston DW, Nowacek DP, Parks SE, Visser F, Friedlaender AS, Tyack PL, Madsen PT, Pyenson ND. Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants. Science 2020; 366:1367-1372. [PMID: 31831666 DOI: 10.1126/science.aax9044] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022]
Abstract
The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.
Collapse
Affiliation(s)
- J A Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.
| | - D E Cade
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - D M Wisniewska
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - J Potvin
- Department of Physics, Saint Louis University, St. Louis, MO, USA
| | - P S Segre
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - M S Savoca
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - E L Hazen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.,Environmental Research Division, National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, Monterey, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - M F Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - S R Kahane-Rapport
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - S L DeRuiter
- Mathematics and Statistics Department, Calvin University, Grand Rapids, MI, USA
| | - S Gero
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - P Tønnesen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - W T Gough
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - M B Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - M M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - F H Jensen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - M Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - A K Stimpert
- Moss Landing Marine Laboratories, Moss Landing, CA, USA
| | - P Arranz
- Biodiversity, Marine Ecology and Conservation Group, Department of Animal Biology, University of La Laguna, La Laguna, Spain
| | - D W Johnston
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - D P Nowacek
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - S E Parks
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - F Visser
- Department of Freshwater and Marine Ecology, IBED, University of Amsterdam, Amsterdam, Netherlands.,Department of Coastal Systems, NIOZ and Utrecht University, Utrecht, Netherlands.,Kelp Marine Research, Hoorn, Netherlands
| | - A S Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - P L Tyack
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - P T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - N D Pyenson
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.,Department of Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA, USA
| |
Collapse
|
16
|
Holt MM, Hanson MB, Emmons CK, Haas DK, Giles DA, Hogan JT. Sounds associated with foraging and prey capture in individual fish-eating killer whales, Orcinus orca. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3475. [PMID: 31795684 DOI: 10.1121/1.5133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Foraging behavior in odontocetes is fundamentally tied to the use of sound. Resident-type killer whales use echolocation to locate and capture elusive salmonid prey. In this investigation, acoustic recording tags were suction cup-attached to endangered Southern Resident killer whales to describe their acoustic behavior during different phases of foraging that, along with detections of prey handling sounds (e.g., crunches) and observed predation events, allow confirmation of prey capture. Echolocation click trains were categorized based on the inter-click interval (ICI) according to hypothesized foraging function. Whales produced slow click trains (ICI >100 ms) at shallowest depths but over the largest change of depth, fast click trains (10 ms < ICI ≤100 ms) at intermediate depths, and buzz trains (ICI ≤10 ms) at deepest depths over the smallest depth change. These results align with hypotheses regarding biosonar use to search, pursue and capture prey. Males exhibited a higher probability of producing slow click trains, buzzes and prey handling sounds, indicating higher levels of prey searching and capture to support the energy requirement of their larger body size. These findings identify relevant acoustic indicators of subsurface foraging behaviors of killer whales, enabling investigations of human impacts on sound use and foraging.
Collapse
Affiliation(s)
- Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
| | - David K Haas
- Marine Science and Conservation Division, Duke University Marine Lab, 135 Duke Marine Lab Road, Beaufort, North Carolina 28516, USA
| | - Deborah A Giles
- Wildlife, Fish, & Conservation Biology, 1088 Academic Surge, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Jeffrey T Hogan
- Cascadia Research Collective, 218 ½ 4th Avenue West, Olympia, Washington 98501, USA
| |
Collapse
|
17
|
Tennessen JB, Holt MM, Ward EJ, Hanson MB, Emmons CK, Giles DA, Hogan JT. Hidden Markov models reveal temporal patterns and sex differences in killer whale behavior. Sci Rep 2019; 9:14951. [PMID: 31628371 PMCID: PMC6802385 DOI: 10.1038/s41598-019-50942-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 11/09/2022] Open
Abstract
Behavioral data can be important for effective management of endangered marine predators, but can be challenging to obtain. We utilized suction cup-attached biologging tags equipped with stereo hydrophones, triaxial accelerometers, triaxial magnetometers, pressure and temperature sensors, to characterize the subsurface behavior of an endangered population of killer whales (Orcinus orca). Tags recorded depth, acoustic and movement behavior on fish-eating killer whales in the Salish Sea between 2010-2014. We tested the hypotheses that (a) distinct behavioral states can be characterized by integrating movement and acoustic variables, (b) subsurface foraging occurs in bouts, with distinct periods of searching and capture temporally separated from travel, and (c) the probabilities of transitioning between behavioral states differ by sex. Using Hidden Markov modeling of two acoustic and four movement variables, we identified five temporally distinct behavioral states. Persistence in the same state on a subsequent dive had the greatest likelihood, with the exception of deep prey pursuit, indicating that behavior was clustered in time. Additionally, females spent more time at the surface than males, and engaged in less foraging behavior. These results reveal significant complexity and sex differences in subsurface foraging behavior, and underscore the importance of incorporating behavior into the design of conservation strategies.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA. .,Lynker Technologies, Leesburg, VA, USA.
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Eric J Ward
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Deborah A Giles
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA.,University of Washington, Friday Harbor Laboratories, Friday Harbor, WA, USA
| | | |
Collapse
|
18
|
Knight K. Male killer whales unexpectedly hunt more than females. J Exp Biol 2019. [DOI: 10.1242/jeb.197798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|