1
|
de Oliveira PRC, Trevizan-Baú P, de Souza RBB, Klein W. Lung mechanics in juvenile and adult Chelonoidis carbonarius. J Exp Biol 2024; 227:jeb247852. [PMID: 39264243 PMCID: PMC11491806 DOI: 10.1242/jeb.247852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Testudines possess a rigid shell that influences the mechanics of the respiratory system. We studied respiratory mechanics in the terrestrial red-footed tortoise Chelonoidis carbonarius (Cryptodira), comparing juvenile individuals with a less ossified and more flexible carapace with adults with a well-ossified rigid shell. Combined with these ontogenetic differences, we analyzed respiratory system mechanics with animals in a supine and a prone position, as well as in the isolated lungs, to evaluate the impact of the viscera on breathing mechanics. To do so, we used established protocols to measure pulmonary volume (i.e. resting, VLr; and maximum, VLm), static (Cstat) and dynamic (Cdyn) compliance, and the work of breathing (W). We observed that isolated lungs displayed increased VLr, VLm, Cstat and Cdyn and decreased W. Additionally, pulmonary volume, compliance and W were affected by evaluated position, such as a smaller VLr in a supine position. Cdyn and W showed a volume dependency while frequency had less influence on these variables. At similar levels of ventilation, juveniles showed a lower W than adults when standardized by body mass, but similar W when standardized by VLr. Clear ontogenetic changes could be observed in breathing mechanics between juvenile and adult C. carbonarius. While these differences might largely be explained by variation in shell ossification, other explanations such as differences in visceral proportions or developmental degree of the post-pulmonary septum should also be taken into account.
Collapse
Affiliation(s)
- Paulo Roberto Custodio de Oliveira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
- Instituto Federal do Paraná, Campus Avançado Goioerê, Goioerê, PR, 87360-000, Brazil
| | - Pedro Trevizan-Baú
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Ray Brasil Bueno de Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Wilfried Klein
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Marini A, da Silva RF, de Souza RBB, Klein W. The influence of the post-hepatic septum and abdominal volume on breathing mechanics in the lizard Salvator merianae (Squamata: Teiidae). J Exp Biol 2024; 227:jeb247241. [PMID: 38426596 DOI: 10.1242/jeb.247241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Teiid lizards possess an incomplete post-hepatic septum (PHS) separating the lungs and liver from the remaining viscera, and within this group, Salvator merianae has the most complete PHS. In this study, we explored the combined effects of the presence of the PHS and alterations in abdominal volume on the mechanics of the respiratory system. The PHS is believed to act as a mechanical barrier, mitigating the impact of the viscera on the lungs. Using established protocols, we determined static (Cstat) and dynamic (Cdyn) compliance, lung volume and work of breathing for the respiratory system in tegu lizards with intact (PHS+) or removed (PHS-) PHS, combined with (balloon+) or without (balloon-) increased abdominal volume. The removal of the PHS significantly reduced resting lung volume and Cdyn, as well as significantly increasing the work of breathing. An increase in abdominal volume significantly reduced Cstat, Cdyn, and resting and maximum lung volume. However, the work of breathing increased less in the PHS+/balloon+ treatment than in the PHS- treatments. These results highlight the barrier function of the PHS within the tegu lizard's body cavity. The septum effectively reduces the impact of the viscera on the respiratory system, enabling the lungs to be ventilated at a low work level, even when abdominal volume is increased. The presence of the PHS in teiid lizards underscores how extrapulmonary structures, such as septal divisions of the body cavity, can profoundly affect pulmonary breathing mechanics.
Collapse
Affiliation(s)
- Alan Marini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Renan Festuccia da Silva
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Ray Brasil Bueno de Souza
- Programa de Pós-graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Wilfried Klein
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Schachner ER, Diaz RE, Coke R, Echols S, Osborn ML, Hedrick BP. Architecture of the bronchial tree in Cuvier's dwarf caiman (Paleosuchus palpebrosus). Anat Rec (Hoboken) 2022; 305:3037-3054. [PMID: 35377558 DOI: 10.1002/ar.24919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 01/16/2023]
Abstract
We imaged the lungs of five Cuvier's dwarf caiman (Paleosuchus palpebrosus) via computed tomography (CT) and micro-computed tomography (μCT) and compared these data to the lungs of the American alligator (Alligator mississippiensis). These data demonstrate anatomical commonalities between the lungs of P. palpebrosus and A. mississippiensis, and a few notable differences. The structural similarities are (a) a proximally narrow, distally widened, hook-shaped primary bronchus; (b) a cervical ventral bronchus that branches of the primary bronchus and immediately makes a hairpin turn toward the apex of the lung; (c) a sequential series of dorsobronchi arising from the primary bronchus caudal to the cervical ventral bronchus; (d) intraspecifically highly variable medial sequence of secondary airways; (e) sac-like laterobronchi; and (f) grossly dead-ended caudal group bronchi in the caudal and ventral aspects of the lung. The primary differences between the two taxa are in the overall number of large bronchi (fewer in P. palpebrosus), and the number of branches that contribute to the cardiac regions. Imaging data of both a live and deceased specimen under varying states (postprandial, fasting, total lung capacity, open to atmosphere) indicate that the caudal margin and position of the lungs shift craniocaudally relative to the vertebral column. These imaging data suggest that the smooth thoracic ceiling may be correlated to visceral movement during ventilation, but this hypothesis warrants validation. These results provide the scaffolding for future comparisons between crocodilians, for generating preliminary reconstructions of the ancestral crocodilian bronchial tree, and establishing new hypotheses of bronchial homology across Archosauria.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Raul E Diaz
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - Rob Coke
- San Antonio Zoo, San Antonio, Texas, USA
| | - Scott Echols
- The Medical Center for Birds, Oakley, California, USA
| | - Michelle L Osborn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Brandon P Hedrick
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
de Souza RBB, Klein W. The influence of the post-pulmonary septum and submersion on the pulmonary mechanics of Trachemys scripta (Cryptodira: Emydidae). J Exp Biol 2021; 224:269040. [DOI: 10.1242/jeb.242386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/28/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The respiratory system of chelonians needs to function within a mostly solid carapace, with ventilation depending on movements of the flanks. When submerged, inspiration has to work against hydrostatic pressure. We examined breathing mechanics in Trachemys scripta while underwater. Additionally, as the respiratory system of T. scripta possesses a well-developed post-pulmonary septum (PPS), we investigated its role by analyzing the breathing mechanics of lungs with and without their PPS attached. Static compliance was significantly increased in submerged animals and in animals with and without their PPS, while removal of the PPS did not result in a significantly different static compliance. Dynamic compliance was significantly affected by changes in volume and frequency in every treatment, with submergence significantly decreasing dynamic compliance. The presence of the PPS significantly increased dynamic compliance. Submersion did not significantly alter work per ventilation, but caused minute work of breathing to be much greater at any frequency and ventilation level analyzed. Lungs with or without their PPS did not show significantly different work per ventilation when compared with the intact animal. Our results demonstrate that submersion results in significantly altered breathing mechanics, increasing minute work of breathing greatly. The PPS was shown to maintain a constant volume within the animal's body cavity, wherein the lungs can be ventilated more easily, highlighting the importance of this coelomic subdivision in the chelonian body cavity.
Collapse
Affiliation(s)
- Ray Brasil Bueno de Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Wilfried Klein
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Cramberg M, Greer S, Young BA. The functional morphology of the postpulmonary septum of the American alligator (Alligator mississippiensis). Anat Rec (Hoboken) 2021; 305:3055-3074. [PMID: 34128345 DOI: 10.1002/ar.24692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 04/03/2021] [Indexed: 11/08/2022]
Abstract
The American alligator (Alligator mississippiensis) has a postpulmonary septum (PPS) that partitions the intracoelomic cavity. The PPS adheres to the capsule of the liver caudally and to the visceral pleura of the lung cranially; the ventrolateral portions of the PPS are invested with smooth muscle, the remainder is tendinous. Differential pressure transducers were used to record the intrathoracic (ITP) and intraperitoneal (IPP) pressures, and determine the transdiaphragmatic pressure (TDP). Each ventilatory pulse resulted in a pulse in ITP and a significantly lower pulse in IPP; meaning that a TDP was established, and that the pleural and peritoneal cavities were functionally isolated. The anesthetized alligators were tilted 30° head-up or head-down in order to displace the liver. Head-up rotations caused a significant increase in IPP, and a significant decrease in ITP (which became negative); head-down rotations produced the opposite effect. During these rotations, the PPS maintained opposite pressures (positive or negative) in the pleural and peritoneal cavities, and established TDPs greater than have been reported for some mammals. Two types of "breaths" were recorded during these experiments. The first was interpreted as a contraction of the diaphragmaticus muscle, which displaces the liver caudally; these breaths had the same effect as the head-up rotations. The second type of breath was interpreted as constriction of the thoracic and abdominal body walls; this type of breath produced pronounced, long-duration, roughly parallel, increases in ITP and IPP. The smooth muscle within the PPS is suggestive of higher-order adjustment or tuning of the PPS's tensile state.
Collapse
Affiliation(s)
- Michael Cramberg
- Department of Anatomy, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, Missouri, USA
| | - Skye Greer
- Department of Anatomy, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, Missouri, USA
| | - Bruce A Young
- Department of Anatomy, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, Missouri, USA
| |
Collapse
|
6
|
Larramendi A, Paul GS, Hsu SY. A review and reappraisal of the specific gravities of present and past multicellular organisms, with an emphasis on tetrapods. Anat Rec (Hoboken) 2020; 304:1833-1888. [PMID: 33258532 DOI: 10.1002/ar.24574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022]
Abstract
The density, or specific gravity (SG), of organisms has numerous important implications for their form, function, ecology, and other facets of beings living and dead, and it is especially necessary to apply SG values that are as accurate as practical when estimating their masses which is itself a critical aspect of living things. Yet a comprehensive review and analysis of this notable subject of anatomy has never been conducted and published. This is such an effort, being as extensive as possible with the data on hand, bolstered by some additional observations, and new work focusing on extinct animals who densities are least unknown: pterosaurs and dinosaurs with extensive pneumatic complexes, including the most sophisticated effort to date for a sauropod. Often difficult to determine even via direct observation, techniques for obtaining the best possible SG data are explained and utilized, including observations of floating animals. Neutral specific gravity (NSG) is proposed as the most important value for tetrapods with respiratory tracts of fluctuating volume. SGs of organisms range from 0.08 to 2.6, plant tissues from 0.08 to 1.39, and vertebrates from about 0.75 (some giant pterosaurs) to 1.2 (those with heavy armor and/or skeletons). Tetrapod NSGs tend to be somewhat higher than widely thought, especially those theropod and sauropod dinosaurs and pterosaurs with air-sacs because respiratory system volume is usually measured at maximum inhalation in birds. Also discussed is evidence that the ratio of the mass of skeletons relative to total body mass has not been properly assayed in the past.
Collapse
Affiliation(s)
- Asier Larramendi
- Eofauna Scientific Research, Errondo 6, 10c, Donostia, Basque Country, 20010, Spain
| | | | - Shu-Yu Hsu
- Eofauna Scientific Research, Errondo 6, 10c, Donostia, Basque Country, 20010, Spain
| |
Collapse
|
7
|
Brocklehurst RJ, Schachner ER, Codd JR, Sellers WI. Respiratory evolution in archosaurs. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190140. [PMID: 31928195 PMCID: PMC7017431 DOI: 10.1098/rstb.2019.0140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Archosauria are a highly successful group of vertebrates, and their evolution is marked by the appearance of diverse respiratory and metabolic strategies. This review examines respiratory function in living and fossil archosaurs, focusing on the anatomy and biomechanics of the respiratory system, and their physiological consequences. The first archosaurs shared a heterogeneously partitioned parabronchial lung with unidirectional air flow; from this common ancestral lung morphology, we trace the diverging respiratory designs of bird- and crocodilian-line archosaurs. We review the latest evidence of osteological correlates for lung structure and the presence and distribution of accessory air sacs, with a focus on the evolution of the avian lung-air sac system and the functional separation of gas exchange and ventilation. In addition, we discuss the evolution of ventilation mechanics across archosaurs, citing new biomechanical data from extant taxa and how this informs our reconstructions of fossils. This improved understanding of respiratory form and function should help to reconstruct key physiological parameters in fossil taxa. We highlight key events in archosaur evolution where respiratory physiology likely played a major role, such as their radiation at a time of relative hypoxia following the Permo-Triassic mass extinction, and their evolution of elevated metabolic rates. This article is part of the theme issue ‘Vertebrate palaeophysiology’.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jonathan R Codd
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|