1
|
Gao ZL, Cui YW. Static Magnetic Field Increases Polyhydroxyalkanoates Biosynthesis in Haloferax mediterranei: Parameter Optimization and Mechanistic Insights from Metabolomics. Polymers (Basel) 2025; 17:1190. [PMID: 40362974 PMCID: PMC12073411 DOI: 10.3390/polym17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Polyhydroxyalkanoates (PHAs), as biosynthetic and biodegradable polymers, serve as alternatives to petroleum-based plastics, yet face critical cost barriers in large-scale production. While magnetic field (MF) stimulation enhances microbial activity, the optimal MF parameters and metabolic mechanisms for PHA biosynthesis remain unexplored. This study optimized magnetic field parameters to increase PHA biosynthesis in Haloferax mediterranei. A custom-engineered electromagnetic system identified 110 mT of static magnetic field (SMF) as the optimal level for biosynthesis, reaching 77.97 mg/(L·h) PHA volumetric productivity. A pulsed magnetic field caused oxidative stress and impaired substrate uptake despite increasing PHA synthesis. Prolonged SMF exposure (72 h) maximized PHA productivity, while 48 h of exposure attained 90% efficiency. Metabolomics revealed that SMF-driven carbon flux redirection via regulated butanoate metabolism led to a 2.10-fold increase in (R)-3-hydroxybutanoyl-CoA), while downregulating acetoacetate (0.51-fold) and suppressing PHA degradation (0.15-fold). This study pioneers the first application of metabolomics in archaea to decode SMF-induced metabolic rewiring in Haloferax mediterranei. Our findings establish SMF as a scalable bioenhancement tool, offering sustainable solutions for the circular bioeconomy.
Collapse
Affiliation(s)
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China;
| |
Collapse
|
2
|
Lin Z, Liu T, Nie H, Ding J, Sun J, Niu D, Huo Z, Yan X. New insights into the role of solute carriers in response to salinity stress in the Manila clam (Ruditapes philippinarum). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101509. [PMID: 40233586 DOI: 10.1016/j.cbd.2025.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
In this study, we conducted a genome-wide identification of solute carrier genes in the Manila clam (RpSLCs) and identified a total of 307 expanded members. These RpSLC genes were further classified into five types (SLC5, SLC6, SLC16, SLC23, SLC46) based on their gene structure and subfamily relationships. RpSLC genes exhibited diverse protein lengths, molecular weights, and theoretical isoelectric points. According to the phylogenetic analysis, we categorized these members into 5 groups, within which the gene structure and motif compositions were conserved. The RNA-seq data analysis showed that RpSLC genes were differentially expressed in different developmental stages, tissues/organs, and osmotic stress. In addition, we conducted the assessment of the physiological levels of the Manila clam in response to salinity change, including assay of physiological indices in hemolymph, and ultrastructural observations of gill tissues. This study first systematically identified and analyze solute carrier gene family in response to osmotic stress in bivalve. The results provide insights into the molecular mechanisms of SLC-mediated transmembrane transport and its critical role in salinity tolerance in the Manila clam.
Collapse
Affiliation(s)
- Zihan Lin
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Jianfeng Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Jingxian Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
3
|
Wang M, Yan Y, Liu W, Fan J, Li E, Chen L, Wang X. Proline metabolism is essential for alkaline adaptation of Nile tilapia (Oreochromis niloticus). J Anim Sci Biotechnol 2024; 15:142. [PMID: 39397002 PMCID: PMC11472467 DOI: 10.1186/s40104-024-01100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Saline-alkaline water aquaculture has become a key way to mitigate the reduction of freshwater aquaculture space and meet the increasing global demand for aquatic products. To enhance the comprehensive utilization capability of saline-alkaline water, it is necessary to understand the regulatory mechanisms of aquatic animals coping with saline-alkaline water. In this study, our objective was to elucidate the function of proline metabolism in the alkaline adaptation of Nile tilapia (Oreochromis niloticus). RESULTS Expose Nile tilapia to alkaline water of different alkalinity for 2 weeks to observe changes in its growth performance and proline metabolism. Meanwhile, to further clarify the role of proline metabolism, RNA interference experiments were conducted to disrupt the normal operation of proline metabolic axis by knocking down pycr (pyrroline-5-carboxylate reductases), the final rate-limiting enzyme in proline synthesis. The results showed that both the synthesis and degradation of proline were enhanced under carbonate alkalinity stress, and the environmental alkalinity impaired the growth performance of tilapia, and the higher the alkalinity, the greater the impairment. Moreover, environmental alkalinity caused oxidative stress in tilapia, enhanced ion transport, ammonia metabolism, and altered the intensity and form of energy metabolism in tilapia. When the expression level of the pycr gene decreased, the proline metabolism could not operate normally, and the ion transport, antioxidant defense system, and energy metabolism were severely damaged, ultimately leading to liver damage and a decreased survival rate of tilapia under alkalinity stress. CONCLUSIONS The results indicated that proline metabolism plays an important role in the alkaline adaptation of Nile tilapia and is a key regulatory process in various biochemical and physiological processes.
Collapse
Affiliation(s)
- Minxu Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxi Yan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinquan Fan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Fuchs LIR, Knobloch J, Wiesenthal AA, Fuss J, Franzenburg S, Torres Oliva M, Müller C, Wheat CW, Hildebrandt JP. A draft genome of the neritid snail Theodoxus fluviatilis. G3 (BETHESDA, MD.) 2024; 14:jkad282. [PMID: 38069680 PMCID: PMC10917513 DOI: 10.1093/g3journal/jkad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 03/08/2024]
Abstract
The neritid snail Theodoxus fluviatilis is found across habitats differing in salinity, from shallow waters along the coast of the Baltic Sea to lakes throughout Europe. Living close to the water surface makes this species vulnerable to changes in salinity in their natural habitat, and the lack of a free-swimming larval stage limits this species' dispersal. Together, these factors have resulted in a patchy distribution of quite isolated populations differing in their salinity tolerances. In preparation for investigating the mechanisms underlying the physiological differences in osmoregulation between populations that cannot be explained solely by phenotypic plasticity, we present here an annotated draft genome assembly for T. fluviatilis, generated using PacBio long reads, Illumina short reads, and transcriptomic data. While the total assembly size (1045 kb) is similar to those of related species, it remains highly fragmented (N scaffolds = 35,695; N50 = 74 kb) though moderately high in complete gene content (BUSCO single copy complete: 74.3%, duplicate: 2.6%, fragmented: 10.6%, missing: 12.5% using metazoa n = 954). Nevertheless, we were able to generate gene annotations of 21,220 protein-coding genes (BUSCO single copy complete: 65.1%, duplicate: 16.7%, fragmented: 9.1%, missing: 9.1% using metazoa n = 954). Not only will this genome facilitate comparative evolutionary studies across Gastropoda, as this is the first genome assembly for the basal snail family Neritidae, it will also greatly facilitate the study of salinity tolerance in this species. Additionally, we discuss the challenges of working with a species where high molecular weight DNA isolation is very difficult.
Collapse
Affiliation(s)
- Laura Iris Regina Fuchs
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D - 17489 Greifswald, Germany
| | - Jan Knobloch
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D - 17489 Greifswald, Germany
| | - Amanda Alice Wiesenthal
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D - 17489 Greifswald, Germany
- Marine Biology, University of Rostock, Albert-Einstein-Straße 3, D - 18059 Rostock, Germany
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Kiel University (CAU), University Hospital Schleswig Holstein, Rosalind-Franklin-Strasse 12, D - 24105 Kiel, Germany
| | - Soeren Franzenburg
- Institute of Clinical Molecular Biology, Kiel University (CAU), University Hospital Schleswig Holstein, Rosalind-Franklin-Strasse 12, D - 24105 Kiel, Germany
| | - Montserrat Torres Oliva
- Institute of Clinical Molecular Biology, Kiel University (CAU), University Hospital Schleswig Holstein, Rosalind-Franklin-Strasse 12, D - 24105 Kiel, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D - 17489 Greifswald, Germany
| | - Christopher W Wheat
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, S-10691 Stockholm, Sweden
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D - 17489 Greifswald, Germany
| |
Collapse
|
5
|
Xie LY, Xu YB, Ding XQ, Liang S, Li DL, Fu AK, Zhan XA. Itaconic acid and dimethyl itaconate exert antibacterial activity in carbon-enriched environments through the TCA cycle. Biomed Pharmacother 2023; 167:115487. [PMID: 37713987 DOI: 10.1016/j.biopha.2023.115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Itaconic acid (IA), a metabolite generated by the tricarboxylic acid (TCA) cycle in eukaryotic immune cells, and its derivative dimethyl itaconate (DI) exert antibacterial functions in intracellular environments. Previous studies suggested that IA and DI only inhibit bacterial growth in carbon-limited environments; however, whether IA and DI maintain antibacterial activity in carbon-enriched environments remains unknown. Here, IA and DI inhibited the bacteria with minimum inhibitory concentrations of 24.02 mM and 39.52 mM, respectively, in a carbon-enriched environment. The reduced bacterial pathogenicity was reflected in cell membrane integrity, motility, biofilm formation, AI-2/luxS, and virulence. Mechanistically, succinate dehydrogenase (SDH) activity and fumaric acid levels decreased in the IA and DI treatments, while isocitrate lyase (ICL) activity was upregulated. Inhibited TCA circulation was also observed through untargeted metabolomics. In addition, energy-related aspartate metabolism and lysine degradation were suppressed. In summary, these results indicated that IA and DI reduced bacterial pathogenicity while exerting antibacterial functions by inhibiting TCA circulation. This study enriches knowledge on the inhibition of bacteria by IA and DI in a carbon-mixed environment, suggesting an alternative method for treating bacterial infections by immune metabolites.
Collapse
Affiliation(s)
- L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Wang Y, Chen Z, Zhao F, Yang H. Metabolome shifts triggered by chlorine sanitisation induce Escherichia coli on fresh produce into the viable but nonculturable state. Food Res Int 2023; 171:113084. [PMID: 37330837 DOI: 10.1016/j.foodres.2023.113084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Facing the increasing occurrence of "big six" Escherichia coli outbreaks linked to fresh produce, chlorine-based sanitisers are widely used for fresh produce decontamination in recent years. However, latest finding that chlorine may induce E. coli cells into a viable not nonculturable (VBNC) state is bringing a new challenge to the fresh produce industry. VBNC cells are undetectable by the plate count test, and yet they retain pathogenicity and are more antibiotic-resistant than culturable cells. As a result, their eradication is critical to ensure the safety of fresh produce. Understanding VBNC cells at the metabolic level may provide a breakthrough for their eradication. Therefore, this study was carried out to collect the VBNC pathogenic E. coli (O26:H11, O121:H19, and O157:H7) cells from chlorine-treated pea sprouts and characterise them using NMR-based metabolomics. From the globally increased metabolite contents detected in the VBNC E. coli cells as compared to the culturable cells, mechanisms underlying E. coli's VBNC induction were elucidated. These include rendering the energy generation scheme to become more compatible with the lowered energy needs, disaggregating protein aggregates to release amino acids for osmoprotection and later resuscitation, as well as increasing cAMP content to downregulate RpoS. These identified metabolic characteristics can inspire future development of targeted measures for VBNC E. coli cell inhibition. Our methods can also be applied to other pathogens to help lower the risk of overall foodborne diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore.
| | - Zihui Chen
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Fengnian Zhao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang, 312000, China.
| |
Collapse
|
7
|
Sun YX, Hu LS, Dong YW. Microhabitat-specific diurnal metabolomic responses of the intertidal limpet Cellana toreuma to winter low temperature. iScience 2023; 26:106128. [PMID: 36852273 PMCID: PMC9958412 DOI: 10.1016/j.isci.2023.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
High-throughput determination of circadian rhythms in metabolic response and their divergent patterns in various microhabitats are crucial for understanding how organisms respond to environmental stresses. A mid-intertidal limpet Cellana toreuma was collected at various time points across both daytime and nighttime in winter during low tide for investigating the diurnal metabolomic responses to cold stress and elucidating the divergent metabolic responses to temperature variations across microhabitats. Temperatures of emergent rock microhabitats were lower than the tidal pool and even aggravated at night. A series of metabolomic responses exhibited coordinated diurnal changes in winter. Metabolic responses which were associated with cellular stress responses and energy metabolism of emergent rock microhabitat individuals were highly induced compared to the tidal pool ones. This study shed light on the diurnal patterns of metabolomic responses of intertidal molluscs in the field and emphasized the variations in metabolic responses between microhabitats.
Collapse
Affiliation(s)
- Yong-Xu Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Li-Sha Hu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
8
|
Chen L, Li X, Lou X, Shu W, Hai Y, Wen X, Yang H. NMR-based metabolomics reveals the antibacterial effect of electrolysed water combined with citric acid on Aeromonas spp. in barramundi (Lates calcarifer) fillets. Food Res Int 2022; 162:112046. [DOI: 10.1016/j.foodres.2022.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
|
9
|
Wang Y, Yang H. Metabolomics elucidating the effect of water activity on the thermal resistance of Salmonella in wheat flour. Food Res Int 2022; 162:112203. [DOI: 10.1016/j.foodres.2022.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
10
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
11
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Yadav J, Singh AK, Tiwari PK, Srivatava AK, Chakdar H, Kashyap PL, Saxena AK. Transcriptome Analysis to Understand Salt Stress Regulation Mechanism of Chromohalobacter salexigens ANJ207. Front Microbiol 2022; 13:909276. [PMID: 35847097 PMCID: PMC9279137 DOI: 10.3389/fmicb.2022.909276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Soil salinity is one of the major global issues affecting soil quality and agricultural productivity. The plant growth-promoting halophilic bacteria that can thrive in regions of high salt (NaCl) concentration have the ability to promote the growth of plants in salty environments. In this study, attempts have been made to understand the salinity adaptation of plant growth-promoting moderately halophilic bacteria Chromohalobacter salexigens ANJ207 at the genetic level through transcriptome analysis. In order to identify the stress-responsive genes, the transcriptome sequencing of C. salexigens ANJ207 under different salt concentrations was carried out. Among the 8,936 transcripts obtained, 93 were upregulated while 1,149 were downregulated when the NaCl concentration was increased from 5 to 10%. At 10% NaCl concentration, genes coding for lactate dehydrogenase, catalase, and OsmC-like protein were upregulated. On the other hand, when salinity was increased from 10 to 25%, 1,954 genes were upregulated, while 1,287 were downregulated. At 25% NaCl, genes coding for PNPase, potassium transporter, aconitase, excinuclease subunit ABC, and transposase were found to be upregulated. The quantitative real-time PCR analysis showed an increase in the transcript of genes related to the biosynthesis of glycine betaine coline genes (gbcA, gbcB, and L-pro) and in the transcript of genes related to the uptake of glycine betaine (OpuAC, OpuAA, and OpuAB). The transcription of the genes involved in the biosynthesis of L-hydroxyproline (proD and proS) and one stress response proteolysis gene for periplasmic membrane stress sensing (serP) were also found to be increased. The presence of genes for various compatible solutes and their increase in expression at the high salt concentration indicated that a coordinated contribution by various compatible solutes might be responsible for salinity adaptation in ANJ207. The investigation provides new insights into the functional roles of various genes involved in salt stress tolerance and oxidative stress tolerance produced by high salt concentration in ANJ207 and further support the notion regarding the utilization of bacterium and their gene(s) in ameliorating salinity problem in agriculture.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India.,Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Jagriti Yadav
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anchal Kumar Srivatava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| |
Collapse
|
12
|
Knobloch J, Müller C, Hildebrandt JP. Expression levels and activities of energy-yielding ATPases in the oligohaline neritid snail Theodoxus fluviatilis under changing environmental salinities. Biol Open 2022; 11:274356. [PMID: 35147181 PMCID: PMC8844442 DOI: 10.1242/bio.059190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
The aquatic gastropod Theodoxus fluviatilis occurs in Europe and adjacent areas of Asia. The snail species has formed two genetically closely related subgroups, the freshwater ecotype (FW) and the brackish water ecotype (BW). Other than individuals of the FW ecotype, those of the BW ecotype survive in salinities of up to 28‰. Coastal aquatic ecosystems may be affected by climate change due to salinization. Thus, we investigated how the two Theodoxus ecotypes adjust to changes in environmental salinity, focusing on the question whether Na+/K+-ATPase or V-ATPase are regulated on the transcriptional, the translational or at the activity level under changing external salinities. Animals were gradually adjusted to extreme salinities in containers under long-day conditions and constant temperature. Whole body RNA- or protein extracts were prepared. Semi-quantitative PCR- and western blot-analyses did not reveal major changes in transcript or protein abundances for the two transporters under low or high salinity conditions. No significant changes in ATPase activities in whole body extracts of animals adjusted to high or low salinity conditions were detected. We conclude that constitutive expression of ATPases is sufficient to support osmotic and ion regulation in this species under changing salinities given the high level of tolerance with respect to changes in body fluid volume.
Collapse
Affiliation(s)
- Jan Knobloch
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| |
Collapse
|
13
|
Comparison of the metabolic responses of eight Escherichia coli strains including the “big six” in pea sprouts to low concentration electrolysed water by NMR spectroscopy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Alfaro AC, Nguyen TV, Venter L, Ericson JA, Sharma S, Ragg NLC, Mundy C. The Effects of Live Transport on Metabolism and Stress Responses of Abalone ( Haliotis iris). Metabolites 2021; 11:748. [PMID: 34822406 PMCID: PMC8623598 DOI: 10.3390/metabo11110748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
The New Zealand abalone industry relies mostly on the export of processed products to distant Asian markets, notably China. Over the past five years, live export of high quality abalone from New Zealand has proven successful. However, transport of live animals is associated with multiple stressors that affect survival and meat quality at the end of the transport phase. Better understanding of transport-derived stress is needed to improve transport conditions and recovery at destination to ensure high product quality and safety throughout the supply chain. To this end, we applied an untargeted GC-MS-based metabolomics approach to examine the changes in metabolite profiles of abalone after a 2-day transport event and subsequent water re-immersion for 2 days. The results revealed alterations of many metabolites in the haemolymph and muscle of post-transported abalone. Decreased concentrations of many amino acids suggest high energy demands for metabolism and stress responses of transported abalone, while increases of other amino acids may indicate active osmoregulation and/or protein degradation due to oxidative stress and apoptosis. The accumulation of citric acid cycle intermediates and anaerobic end-products are suggestive of hypoxia stress and a shift from aerobic to anaerobic metabolism (resulting from aerial exposure). Interestingly, some features in the metabolite profile of reimmersed abalone resembled those of pre-transported individuals, suggesting progressive recovery after reimmersion in water. Evidence of recovery was observed in the reduction of some stress biomarkers (e.g., lactic acid, succinic acid) following reimmersion. This study revealed insights into the metabolic responses to transport stress in abalone and highlights the importance of reimmersion practices in the supply chain of live animal exports.
Collapse
Affiliation(s)
- Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (T.V.N.); (L.V.); (S.S.)
| | - Thao V. Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (T.V.N.); (L.V.); (S.S.)
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (T.V.N.); (L.V.); (S.S.)
| | - Jessica A. Ericson
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.A.E.); (N.L.C.R.)
| | - Shaneel Sharma
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (T.V.N.); (L.V.); (S.S.)
| | - Norman L. C. Ragg
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.A.E.); (N.L.C.R.)
| | - Craig Mundy
- IMAS Fisheries and Aquaculture Centre, College of Science and Engineering, University of Tasmania, Taroona, Hobart 7001, Australia;
| |
Collapse
|
15
|
Hydration and aggregation in aqueous xylitol solutions in the wide temperature range. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Patriarca EJ, Cermola F, D’Aniello C, Fico A, Guardiola O, De Cesare D, Minchiotti G. The Multifaceted Roles of Proline in Cell Behavior. Front Cell Dev Biol 2021; 9:728576. [PMID: 34458276 PMCID: PMC8397452 DOI: 10.3389/fcell.2021.728576] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
17
|
Heinemann B, Künzler P, Eubel H, Braun HP, Hildebrandt TM. Estimating the number of protein molecules in a plant cell: protein and amino acid homeostasis during drought. PLANT PHYSIOLOGY 2021; 185:385-404. [PMID: 33721903 PMCID: PMC8133651 DOI: 10.1093/plphys/kiaa050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/17/2020] [Indexed: 05/21/2023]
Abstract
During drought stress, cellular proteostasis on the one hand and amino acid homeostasis on the other hand are severely challenged, because the decrease in photosynthesis induces massive proteolysis, leading to drastic changes in both the proteome and the free amino acid pool. Thus, we selected progressive drought stress in Arabidopsis (Arabidopsis thaliana) as a model to investigate on a quantitative level the balance between protein and free amino acid homeostasis. We analyzed the mass composition of the leaf proteome based on proteomics datasets, and estimated how many protein molecules are present in a plant cell and its subcellular compartments. In addition, we calculated stress-induced changes in the distribution of individual amino acids between the free and protein-bound pools. Under control conditions, an average Arabidopsis mesophyll cell contains about 25 billion protein molecules, of which 80% are localized in chloroplasts. Severe water deficiency leads to degradation of more than 40% of the leaf protein mass, and thus causes a drastic shift in distribution toward the free amino acid pool. Stress-induced proteolysis of just half of the 340 million RubisCO hexadecamers present in the chloroplasts of a single mesophyll cell doubles the cellular content of free amino acids. A major fraction of the amino acids released from proteins is channeled into synthesis of proline, which is a compatible osmolyte. Complete oxidation of the remaining fraction as an alternative respiratory substrate can fully compensate for the lack of photosynthesis-derived carbohydrates for several hours.
Collapse
Affiliation(s)
- Björn Heinemann
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Patrick Künzler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Address for communication:
| |
Collapse
|
18
|
Chen YQ, Wang J, Liao ML, Li XX, Dong YW. Temperature adaptations of the thermophilic snail Echinolittorina malaccana: insights from metabolomic analysis. J Exp Biol 2021; 224:jeb.238659. [PMID: 33536302 DOI: 10.1242/jeb.238659] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
The periwinkle snail Echinolittorina malaccana, for which the upper lethal temperature is near 55°C, is one of the most heat-tolerant eukaryotes known. We conducted a multi-level investigation - including cardiac physiology, enzyme activity, and targeted and untargeted metabolomic analyses - that elucidated a spectrum of adaptations to extreme heat in this organism. All systems examined showed heat intensity-dependent responses. Under moderate heat stress (37-45°C), the snail depressed cardiac activity and entered a state of metabolic depression. The global metabolomic and enzymatic analyses revealed production of metabolites characteristic of oxygen-independent pathways of ATP generation (lactate and succinate) in the depressed metabolic state, which suggests that anaerobic metabolism was the main energy supply pathway under heat stress (37-52°C). The metabolomic analyses also revealed alterations in glycerophospholipid metabolism under extreme heat stress (52°C), which likely reflected adaptive changes to maintain membrane structure. Small-molecular-mass organic osmolytes (glycine betaine, choline and carnitine) showed complex changes in concentration that were consistent with a role of these protein-stabilizing solutes in protection of the proteome under heat stress. This thermophilic species can thus deploy a wide array of adaptive strategies to acclimatize to extremely high temperatures.
Collapse
Affiliation(s)
- Ya-Qi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Jie Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Xiao-Xu Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China .,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
19
|
Yokomizo T, Takahashi Y. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail. Sci Rep 2020; 10:16049. [PMID: 32994494 PMCID: PMC7524832 DOI: 10.1038/s41598-020-73000-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Studying the mechanisms of the establishment of a population in a novel environment allows us to examine the process of local adaptations and subsequent range expansion. In a river system, detecting genetic or phenotypic differences between a freshwater and brackish water population could contribute to our understanding of the initial process of brackish water adaptation. Here, we investigated behavioural and gene expression responses to salt water in a freshwater and brackish water population of the freshwater snail, Semisulcospira reiniana. Although the individuals in brackish water exhibited significantly higher activity in saltwater than freshwater individuals just after sampling, the activity of freshwater individuals had increased in the second observation after rearing, suggesting that their salinity tolerance was plastic rather than genetic. We found 476 and 1002 differentially expressed genes across salinity conditions in the freshwater and brackish water populations, respectively. The major biological process involved in the salinity response of the freshwater population was the biosynthesis and metabolic processing of nitrogen-containing compounds, but that of the brackish water population was influenced by the chitin metabolic process. These results suggest that phenotypic plasticity induces adaptation to brackish water in the freshwater snail by modifying its physiological response to salinity.
Collapse
Affiliation(s)
- Takumi Yokomizo
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan.
| |
Collapse
|
20
|
Kivistik C, Knobloch J, Käiro K, Tammert H, Kisand V, Hildebrandt JP, Herlemann DPR. Impact of Salinity on the Gastrointestinal Bacterial Community of Theodoxus fluviatilis. Front Microbiol 2020; 11:683. [PMID: 32457702 PMCID: PMC7225522 DOI: 10.3389/fmicb.2020.00683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Differences in salinity are boundaries that act as barriers for the dispersal of most aquatic organisms. This creates distinctive biota in freshwater and brackish water (mesohaline) environments. To test how saline boundaries influence the diversity and composition of host-associated microbiota, we analyzed the microbiome within the digestive tract of Theodoxus fluviatilis, an organism able to cross the freshwater and mesohaline boundary. Alpha-diversity measures of the microbiome in freshwater and brackish water were not significantly different. However, the composition of the bacterial community within freshwater T. fluviatilis differed significantly compared with mesohaline T. fluviatilis and typical bacteria could be determined for the freshwater and the mesohaline digestive tract microbiome. An artificial increase in salinity surrounding these freshwater snails resulted in a strong change in the bacterial community and typical marine bacteria became more pronounced in the digestive tract microbiome of freshwater T. fluviatilis. However, the composition of the digestive tract microbiome in freshwater snails did not converge to that found within mesohaline snails. Within mesohaline snails, no cardinal change was found after either an increase or decrease in salinity. In all samples, Pseudomonas, Pirellula, Flavobacterium, Limnohabitans, and Acinetobacter were among the most abundant bacteria. These bacterial genera were largely unaffected by changes in environmental conditions. As permanent residents in T. fluviatilis, they may support the digestion of the algal food in the digestive tract. Our results show that freshwater and mesohaline water host-associated microbiomes respond differently to changes in salinity. Therefore, the salinization of coastal freshwater environments due to a rise in sea level can influence the gut microbiome and its functions with currently unknown consequences for, e.g., nutritional physiology of the host.
Collapse
Affiliation(s)
- Carmen Kivistik
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Jan Knobloch
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Kairi Käiro
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Helen Tammert
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Veljo Kisand
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
21
|
Attri P, Razzokov J, Yusupov M, Koga K, Shiratani M, Bogaerts A. Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study. Int J Biol Macromol 2020; 148:657-665. [DOI: 10.1016/j.ijbiomac.2020.01.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
|
22
|
Ng HM, Ho JCH, Nong W, Hui JHL, Lai KP, Wong CKC. Genome-wide analysis of MicroRNA-messenger RNA interactome in ex-vivo gill filaments, Anguilla japonica. BMC Genomics 2020; 21:208. [PMID: 32131732 PMCID: PMC7057501 DOI: 10.1186/s12864-020-6630-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background Gills of euryhaline fishes possess great physiological and structural plasticity to adapt to large changes in external osmolality and to participate in ion uptake/excretion, which is essential for the re-establishment of fluid and electrolyte homeostasis. The osmoregulatory plasticity of gills provides an excellent model to study the role of microRNAs (miRs) in adaptive osmotic responses. The present study is to characterize an ex-vivo gill filament culture and using omics approach, to decipher the interaction between tonicity-responsive miRs and gene targets, in orchestrating the osmotic stress-induced responses. Results Ex-vivo gill filament culture was exposed to Leibovitz’s L-15 medium (300 mOsmol l− 1) or the medium with an adjusted osmolality of 600 mOsmol l− 1 for 4, 8 and 24 h. Hypertonic responsive genes, including osmotic stress transcriptional factor, Na+/Cl−-taurine transporter, Na+/H+ exchange regulatory cofactor, cystic fibrosis transmembrane regulator, inward rectifying K+ channel, Na+/K+-ATPase, and calcium-transporting ATPase were significantly upregulated, while the hypo-osmotic gene, V-type proton ATPase was downregulated. The data illustrated that the ex-vivo gill filament culture exhibited distinctive responses to hyperosmotic challenge. In the hyperosmotic treatment, four key factors (i.e. drosha RNase III endonuclease, exportin-5, dicer ribonuclease III and argonaute-2) involved in miR biogenesis were dysregulated (P < 0.05). Transcriptome and miR-sequencing of gill filament samples at 4 and 8 h were conducted and two downregulated miRs, miR-29b-3p and miR-200b-3p were identified. An inhibition of miR-29b-3p and miR-200b-3p in primary gill cell culture led to an upregulation of 100 and 93 gene transcripts, respectively. Commonly upregulated gene transcripts from the hyperosmotic experiments and miR-inhibition studies, were overlaid, in which two miR-29b-3p target-genes [Krueppel-like factor 4 (klf4), Homeobox protein Meis2] and one miR-200b-3p target-gene (slc17a5) were identified. Integrated miR-mRNA-omics analysis revealed the specific binding of miR-29b-3p on Klf4 and miR-200b-3p on slc17a5. The target-genes are known to regulate differentiation of gill ionocytes and cellular osmolality. Conclusions In this study, we have characterized the hypo-osmoregulatory responses and unraveled the modulation of miR-biogenesis factors/the dysregulation of miRs, using ex-vivo gill filament culture. MicroRNA-messenger RNA interactome analysis of miR-29b-3p and miR-200b-3p revealed the gene targets are essential for osmotic stress responses.
Collapse
Affiliation(s)
- Hoi Man Ng
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| | - Jeff Cheuk Hin Ho
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, HKSAR, Hong Kong
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, HKSAR, Hong Kong
| | - Keng Po Lai
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, People's Republic of China.
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong.
| |
Collapse
|