1
|
Kim S, Badhiwala KN, Duret G, Robinson JT. Phototaxis is a satiety-dependent behavioral sequence in Hydra vulgaris. J Exp Biol 2024; 227:jeb247503. [PMID: 39155640 PMCID: PMC11449437 DOI: 10.1242/jeb.247503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not. By modeling this behavior as a set of three sequences of head orientation, jump distance and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | | | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Weger AA, Rittschof CC. The diverse roles of insulin signaling in insect behavior. FRONTIERS IN INSECT SCIENCE 2024; 4:1360320. [PMID: 38638680 PMCID: PMC11024295 DOI: 10.3389/finsc.2024.1360320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.
Collapse
Affiliation(s)
| | - Clare C. Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Robert T, Tarapata K, Nityananda V. Learning modifies attention during bumblebee visual search. Behav Ecol Sociobiol 2024; 78:22. [PMID: 38333735 PMCID: PMC10847365 DOI: 10.1007/s00265-024-03432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024]
Abstract
Abstract The role of visual search during bee foraging is relatively understudied compared to the choices made by bees. As bees learn about rewards, we predicted that visual search would be modified to prioritise rewarding flowers. To test this, we ran an experiment testing how bee search differs in the initial and later part of training as they learn about flowers with either higher- or lower-quality rewards. We then ran an experiment to see how this prior training with reward influences their search on a subsequent task with different flowers. We used the time spent inspecting flowers as a measure of attention and found that learning increased attention to rewards and away from unrewarding flowers. Higher quality rewards led to decreased attention to non-flower regions, but lower quality rewards did not. Prior experience of lower rewards also led to more attention to higher rewards compared to unrewarding flowers and non-flower regions. Our results suggest that flowers would elicit differences in bee search behaviour depending on the sugar content of their nectar. They also demonstrate the utility of studying visual search and have important implications for understanding the pollination ecology of flowers with different qualities of reward. Significance statement Studies investigating how foraging bees learn about reward typically focus on the choices made by the bees. How bees deploy attention and visual search during foraging is less well studied. We analysed flight videos to characterise visual search as bees learn which flowers are rewarding. We found that learning increases the focus of bees on flower regions. We also found that the quality of the reward a flower offers influences how much bees search in non-flower areas. This means that a flower with lower reward attracts less focussed foraging compared to one with a higher reward. Since flowers do differ in floral reward, this has important implications for how focussed pollinators will be on different flowers. Our approach of looking at search behaviour and attention thus advances our understanding of the cognitive ecology of pollination. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-024-03432-z.
Collapse
Affiliation(s)
- Théo Robert
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH UK
| | - Karolina Tarapata
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH UK
| | - Vivek Nityananda
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH UK
| |
Collapse
|
4
|
Henríquez-Piskulich P, Stuart-Fox D, Elgar M, Marusic I, Franklin AM. Dazzled by shine: gloss as an antipredator strategy in fast moving prey. Behav Ecol 2023; 34:862-871. [PMID: 37744168 PMCID: PMC10516678 DOI: 10.1093/beheco/arad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 09/26/2023] Open
Abstract
Previous studies on stationary prey have found mixed results for the role of a glossy appearance in predator avoidance-some have found that glossiness can act as warning coloration or improve camouflage, whereas others detected no survival benefit. An alternative untested hypothesis is that glossiness could provide protection in the form of dynamic dazzle. Fast moving animals that are glossy produce flashes of light that increase in frequency at higher speeds, which could make it harder for predators to track and accurately locate prey. We tested this hypothesis by presenting praying mantids with glossy or matte targets moving at slow and fast speed. Mantids were less likely to strike glossy targets, independently of speed. Additionally, mantids were less likely to track glossy targets and more likely to hit the target with one out of the two legs that struck rather than both raptorial legs, but only when targets were moving fast. These results support the hypothesis that a glossy appearance may have a function as an antipredator strategy by reducing the ability of predators to track and accurately target fast moving prey.
Collapse
Affiliation(s)
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark Elgar
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ivan Marusic
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amanda M Franklin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
6
|
Rosenheim JA, Schreiber SJ. Pathways to the density-dependent expression of cannibalism, and consequences for regulated population dynamics. Ecology 2022; 103:e3785. [PMID: 35818739 DOI: 10.1002/ecy.3785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Cannibalism, once viewed as a rare or aberrant behavior, is now recognized to be widespread and to contribute broadly to the self-regulation of many populations. Cannibalism can produce endogenous negative feedback on population growth because it is expressed as a conditional behavior, responding to the deteriorating ecological conditions that flow, directly or indirectly, from increasing densities of conspecifics. Thus, cannibalism emerges as a strongly density-dependent source of mortality. In this synthesis, we review recent research that has revealed a rich diversity of pathways through which rising density elicits increased cannibalism, including both factors that (a) elevate the rate of dangerous encounters between conspecifics and (b) enhance the likelihood that such encounters will lead to successful cannibalistic attacks. These pathways include both features of the autecology of cannibal populations and features of interactions with other species, including food resources and pathogens. Using mathematical models, we explore the consequences of including density-dependent cannibal attack rates on population dynamics. The conditional expression of cannibalism generally enhances stability and population regulation in single-species models but also may increase opportunities for alternative states and prey population escape from control by cannibalistic predators.
Collapse
Affiliation(s)
- Jay A Rosenheim
- Department of Entomology and Nematology, University of California, Davis, California, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
7
|
Wosnitza A, Martin JP, Pollack AJ, Svenson GJ, Ritzmann RE. The Role of Central Complex Neurons in Prey Detection and Tracking in the Freely Moving Praying Mantis (Tenodera sinensis). Front Neural Circuits 2022; 16:893004. [PMID: 35769200 PMCID: PMC9234402 DOI: 10.3389/fncir.2022.893004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.
Collapse
Affiliation(s)
- Anne Wosnitza
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Joshua P. Martin
- Department of Biology, Colby College, Waterville, ME, United States
- *Correspondence: Joshua P. Martin
| | - Alan J. Pollack
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Gavin J. Svenson
- Cleveland Museum of Natural History, Cleveland, OH, United States
| | - Roy E. Ritzmann
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
8
|
Bosse JW, Svenson GJ, Bowers TA, Bourges-Sevenier BM, Ritzmann RE. Context dependent effects on attack and defense behaviors in the praying mantis Tenodera sinensis. J Exp Biol 2022; 225:275277. [PMID: 35502775 DOI: 10.1242/jeb.243710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
Most behavior needs to strike a balance between the competing needs to find food and protect an animal from predators. The factors that influence this balance and the resulting behavior are not well understood in many animals. Here we examined these influences in the praying mantis Tenodera sinensis (Saussure) by presenting perching individuals with alternating sinusoidally moving prey-like stimuli and rapidly expanding looming stimuli then scoring their behavior on a defensive - aggressive scale. In this way, we tested the hypothesis that such behaviors are highly context dependent. Specifically, we found that defensive responses, which are normally very consistent, are decreased in magnitude if the animal has just performed an aggressive response to the previous sinusoid. A thrash behavior not normally seen with looming alone was often seen following aggression. In thrashing the animal tries to push the looming stimulus away. It almost exclusively followed aggressive responses to the sinusoid stimulus. Moreover, aggression levels were found to shift from low to high and back to low as adult animals aged and, in general, female mantises were more aggressive than males. Finally, the specific nature of the mid-life spike in aggressive behaviors differed according to whether the animals were lab-raised or caught in the wild. Lab raised animals showed roughly equal amounts of increased attention to the stimulus and very aggressive strike behaviors whereas wild caught animals tended to either ignore the stimulus or react very aggressively with strikes. Therefore, our hypothesis regarding context dependent effects was supported with all 4 factors influencing the behaviors that were studied.
Collapse
Affiliation(s)
- Jacob W Bosse
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gavin J Svenson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Invertebrate Zoology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA
| | - Troy A Bowers
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | | | - Roy E Ritzmann
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Wang G, Zhou JJ, Li Y, Gou Y, Quandahor P, Liu C. Trehalose and glucose levels regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum Harris. Sci Rep 2021; 11:15864. [PMID: 34354165 PMCID: PMC8342477 DOI: 10.1038/s41598-021-95390-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Trehalose serves multifarious roles in growth and development of insects. In this study, we demonstrated that the high trehalose diet increased the glucose content, and high glucose diet increased the glucose content but decreased the trehalose content of Acyrthosiphon pisum. RNA interference (RNAi) of trehalose-6-phosphate synthase gene (ApTPS) decreased while RNAi of trehalase gene (ApTRE) increased the trehalose and glucose contents. In the electrical penetration graph experiment, RNAi of ApTPS increased the percentage of E2 waveform and decreased the percentage of F and G waveforms. The high trehalose and glucose diets increased the percentage of E2 waveform of A. pisum red biotype. The correlation between feeding behavior and sugar contents indicated that the percentage of E1 and E2 waveforms were increased but np, C, F and G waveforms were decreased in low trehalose and glucose contents. The percentage of np, E1 and E2 waveforms were reduced but C, F and G waveforms were elevated in high trehalose and glucose contents. The results suggest that the A. pisum with high trehalose and glucose contents spent less feeding time during non-probing phase and phloem feeding phase, but had an increased feeding time during probing phase, stylet work phase and xylem feeding phase.
Collapse
Affiliation(s)
- Guang Wang
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| | - Jing-Jiang Zhou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,grid.443382.a0000 0004 1804 268XState Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025 China
| | - Yan Li
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| | - Yuping Gou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| | - Peter Quandahor
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| | - Changzhong Liu
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| |
Collapse
|
10
|
Rossoni S, Niven JE. Prey speed influences the speed and structure of the raptorial strike of a 'sit-and-wait' predator. Biol Lett 2020; 16:20200098. [PMID: 32396788 PMCID: PMC7280040 DOI: 10.1098/rsbl.2020.0098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Predators must often employ flexible strategies to capture prey. Particular attention has been given to the strategies of visual predators that actively pursue their prey, but sit-and-wait predators have been largely overlooked, their strategies often characterized as stereotyped. Praying mantids are primarily sit-and-wait predators that often employ crypsis to catch their prey using a raptorial strike produced by their highly modified forelimbs. Here, we show that the raptorial strike of the Madagascan marbled mantis (Polyspilota aeruginosa) varies in duration from 60 to 290 ms due to the tibial extension alone; slower strikes involve slower tibial extensions that may also be interrupted by a pause. The success of a strike is independent of its duration or the presence of these pauses. However, prey speed affects the duration of tibial extension and the probability of a pause occurring, both increasing at slower prey speeds. Adjusting the duration of the tibial extension according to prey speed allows mantids to time the final downward sweep of the tibia to their prey's approach. The use of visual inputs to adjust the motor pattern controlling forelimb movements shows that not all aspects of the strike are stereotyped and that sit-and-wait predators can produce behavioural flexibility.
Collapse
Affiliation(s)
| | - Jeremy E. Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
11
|
Pickard SC, Quinn RD, Szczecinski NS. A dynamical model exploring sensory integration in the insect central complex substructures. BIOINSPIRATION & BIOMIMETICS 2020; 15:026003. [PMID: 31726442 DOI: 10.1088/1748-3190/ab57b6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is imperative that an animal has the ability to contextually integrate received sensory information to formulate appropriate behavioral responses. Determining a body heading based on a multitude of ego-motion cues and visual landmarks is an example of such a task that requires this context dependent integration. The work presented here simulates a sensory integrator in the insect brain called the central complex (CX). Based on the architecture of the CX, we assembled a dynamical neural simulation of two structures called the protocerebral bridge (PB) and the ellipsoid body (EB). Using non-spiking neuronal dynamics, our simulation was able to recreate in vivo neuronal behavior such as correlating body rotation direction and speed to activity bumps within the EB as well as updating the believed heading with quick secondary system updates. With this model, we performed sensitivity analysis of certain neuronal parameters as a possible means to control multi-system gains during sensory integration. We found that modulation of synapses in the memory network and EB inhibition are two possible mechanisms in which a sensory system could affect the memory stability and gain of another input, respectively. This model serves as an exploration in network design for integrating simultaneous idiothetic and allothetic cues in the task of body tracking and determining contextually dependent behavioral outputs.
Collapse
Affiliation(s)
- S C Pickard
- Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
12
|
Knight K. Insulin switches off praying mantis's urge to hunt when full. J Exp Biol 2019. [DOI: 10.1242/jeb.207191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|