1
|
Does anti-IgE therapy prevent chronic allergic asthma-related bone deterioration in asthmatic mice? J Biomech 2022; 141:111180. [PMID: 35724549 DOI: 10.1016/j.jbiomech.2022.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
Current evidence on the association between allergic diseases and bone metabolism indicates asthma may be a potential risk factor for bone health. Using anti-IgE has been proven effective in allergic asthma treatment with a good safety profile; however, its effects on bone health are unknown. Thus, we aimed to investigate whether: (i) chronic allergic asthma (CAA) causes any meaningful changes in bone, and if any, (ii) anti-IgE therapy prevents any CAA-induced adverse alteration. A murine model was used to study CAA. Thirty-two BALB/c male-mice were assigned into four groups (eight-mice/group): Control, CAA (treated with saline), CAA + 100 µg of anti-IgE (CAA + 100AIgE), and CAA + 200 µg of anti-IgE (CAA + 200AIgE) groups. After immunization, saline or anti-IgE was performed intraperitoneally for 8-weeks (in five-sessions at 15-days interval). Three-point bending test was used for the mechanical analysis. Bone calcium (Ca2+) and phosphorus (P3-) as well as Ca/P ratio were evaluated using inductively-coupled plasma-mass-spectrometer (ICP-MS). Compared to control, reductions observed in yield and ultimate moments, rigidity, energy-to-failure, yield and ultimate stresses, elastic modulus, toughness, and post-yield toughness parameters of the CAA group were found significant (P < 0.05). Similar declines were also detected regarding bone Ca2+, P3- and Ca/P ratio (P < 0.05). Compared to control, we observed that 200 µg administration of anti-IgE in CAA + 200AIgE group hindered CAA-related impairments in mineral and mechanical characteristics of bone, while 100 µg in CAA + 100AIgE failed to do so. Our results showed CAA may cause bone loss, leading to a decrease in bone strength, and anti-IgE administration may dose-dependently inhibit these impairments in bone.
Collapse
|
2
|
Henyš P, Kuchař M, Hájek P, Hammer N. Mechanical metric for skeletal biomechanics derived from spectral analysis of stiffness matrix. Sci Rep 2021; 11:15690. [PMID: 34344907 PMCID: PMC8333423 DOI: 10.1038/s41598-021-94998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
A new metric for the quantitative and qualitative evaluation of bone stiffness is introduced. It is based on the spectral decomposition of stiffness matrix computed with finite element method. The here proposed metric is defined as an amplitude rescaled eigenvalues of stiffness matrix. The metric contains unique information on the principal stiffness of bone and reflects both bone shape and material properties. The metric was compared with anthropometrical measures and was tested for sex sensitivity on pelvis bone. Further, the smallest stiffness of pelvis was computed under a certain loading condition and analyzed with respect to sex and direction. The metric complements anthropometrical measures and provides a unique information about the smallest bone stiffness independent from the loading configuration and can be easily computed by state-of-the-art subject specified finite element algorithms.
Collapse
Affiliation(s)
- Petr Henyš
- grid.6912.c0000000110151740Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Michal Kuchař
- grid.4491.80000 0004 1937 116XDepartment of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Petr Hájek
- grid.4491.80000 0004 1937 116XDepartment of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Niels Hammer
- grid.11598.340000 0000 8988 2476Department of Macroscopic and Clinical Anatomy, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria ,grid.9647.c0000 0004 7669 9786Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany ,grid.461651.10000 0004 0574 2038Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187 Dresden, Germany
| |
Collapse
|
3
|
Unger CM, Devine J, Hallgrímsson B, Rolian C. Selection for increased tibia length in mice alters skull shape through parallel changes in developmental mechanisms. eLife 2021; 10:e67612. [PMID: 33899741 PMCID: PMC8118654 DOI: 10.7554/elife.67612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Bones in the vertebrate cranial base and limb skeleton grow by endochondral ossification, under the control of growth plates. Mechanisms of endochondral ossification are conserved across growth plates, which increases covariation in size and shape among bones, and in turn may lead to correlated changes in skeletal traits not under direct selection. We used micro-CT and geometric morphometrics to characterize shape changes in the cranium of the Longshanks mouse, which was selectively bred for longer tibiae. We show that Longshanks skulls became longer, flatter, and narrower in a stepwise process. Moreover, we show that these morphological changes likely resulted from developmental changes in the growth plates of the Longshanks cranial base, mirroring changes observed in its tibia. Thus, indirect and non-adaptive morphological changes can occur due to developmental overlap among distant skeletal elements, with important implications for interpreting the evolutionary history of vertebrate skeletal form.
Collapse
Affiliation(s)
- Colton M Unger
- Department of Biological Sciences, University of CalgaryCalgaryCanada
- McCaig Institute for Bone and Joint HealthCalgaryCanada
| | - Jay Devine
- Department of Cell Biology and Anatomy, University of CalgaryCalgaryCanada
| | - Benedikt Hallgrímsson
- McCaig Institute for Bone and Joint HealthCalgaryCanada
- Department of Cell Biology and Anatomy, University of CalgaryCalgaryCanada
- Alberta Children's Hospital Research Institute for Child and Maternal Health, University of CalgaryCalgaryCanada
| | - Campbell Rolian
- McCaig Institute for Bone and Joint HealthCalgaryCanada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of CalgaryCalgaryCanada
| |
Collapse
|
4
|
Cooper KL. Developmental and Evolutionary Allometry of the Mammalian Limb Skeleton. Integr Comp Biol 2020; 59:1356-1368. [PMID: 31180500 DOI: 10.1093/icb/icz082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The variety of limb skeletal proportions enables a remarkable diversity of behaviors that include powered flight in bats and flipper-propelled swimming in whales using extremes of a range of homologous limb architectures. Even within human limbs, bone lengths span more than an order of magnitude from the short finger and toe bones to the long arm and leg bones. Yet all of this diversity arises from embryonic skeletal elements that are each a very similar size at formation. In this review article, I survey what is and is not yet known of the development and evolution of skeletal proportion at multiple hierarchical levels of biological organization. These include the cellular parameters of skeletal elongation in the cartilage growth plate, genes associated with differential growth, and putative gene regulatory mechanisms that would allow both covariant and independent evolution of the forelimbs and hindlimbs and of individual limb segments. Although the genetic mechanisms that shape skeletal proportion are still largely unknown, and most of what is known is limited to mammals, it is becoming increasingly apparent that the diversity of bone lengths is an emergent property of a complex system that controls elongation of individual skeletal elements using a genetic toolkit shared by all.
Collapse
Affiliation(s)
- Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377, USA
| |
Collapse
|
5
|
Rolian C. Endochondral ossification and the evolution of limb proportions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e373. [PMID: 31997553 DOI: 10.1002/wdev.373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Mammals have remarkably diverse limb proportions hypothesized to have evolved adaptively in the context of locomotion and other behaviors. Mechanistically, evolutionary diversity in limb proportions is the result of differential limb bone growth. Longitudinal limb bone growth is driven by the process of endochondral ossification, under the control of the growth plates. In growth plates, chondrocytes undergo a tightly orchestrated life cycle of proliferation, matrix production, hypertrophy, and cell death/transdifferentiation. This life cycle is highly conserved, both among the long bones of an individual, and among homologous bones of distantly related taxa, leading to a finite number of complementary cell mechanisms that can generate heritable phenotype variation in limb bone size and shape. The most important of these mechanisms are chondrocyte population size in chondrogenesis and in individual growth plates, proliferation rates, and hypertrophic chondrocyte size. Comparative evidence in mammals and birds suggests the existence of developmental biases that favor evolutionary changes in some of these cellular mechanisms over others in driving limb allometry. Specifically, chondrocyte population size may evolve more readily in response to selection than hypertrophic chondrocyte size, and extreme hypertrophy may be a rarer evolutionary phenomenon associated with highly specialized modes of locomotion in mammals (e.g., powered flight, ricochetal bipedal hopping). Physical and physiological constraints at multiple levels of biological organization may also have influenced the cell developmental mechanisms that have evolved to produce the highly diverse limb proportions in extant mammals. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Campbell Rolian
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Carmeli-Ligati S, Shipov A, Dumont M, Holtze S, Hildebrandt T, Shahar R. The structure, composition and mechanical properties of the skeleton of the naked mole-rat (Heterocephalus glaber). Bone 2019; 128:115035. [PMID: 31421251 DOI: 10.1016/j.bone.2019.115035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/29/2022]
Abstract
The naked mole-rat (NMR) is a small rodent with a remarkable array of properties, such as unique physiology, extremely long life-span and unusual social life. However, very little is known regarding its skeleton. The aim of this study was to describe the structure, composition and mechanical properties in an ontogenetic series of naked mole-rat bones. Since common small rodents like mice and rats have an unusual structure of cortical bone, which includes a central region of non-lamellar (disordered) bone, mineralized cartilaginous islands and total lack of remodeling, this study could also determine if these are features of all small rodents. Sixty-one NMRs were included in the study and were divided into the following four age groups: 0-0.5 years old (n = 17), 0.5-3 years old (n = 25), 3-10 years old (n = 13), and >10 years (n = 6). Femora, vertebrae and mandibulae were examined using micro-CT, light microscopy, polarized light microscopy and scanning electron microscopy, thermogravimetric analysis was used to determine their dry ash content and their derived elastic modulus and hardness were determined using micro-indentation. Our findings show that NMR bones are similar in composition and mechanical properties to those of other small rodents. However, in contrast to other small rodents, the cortical bone of NMRs is entirely circumferential-lamellar and lacks mineralized cartilage islands. Furthermore, despite their long life-span, their bones did not show evidence of remodeling at any of the age groups, thus proving that lack of cortical remodeling in small rodents is not caused by their short life-span, but characteristic of this order of mammals.
Collapse
Affiliation(s)
- Shira Carmeli-Ligati
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Maïtena Dumont
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|