1
|
Choi H, Yu OH, Eyun SI. Evolutionary insights into adaptation of hemocyanins from deep-sea hydrothermal vent shrimps. MARINE POLLUTION BULLETIN 2025; 215:117872. [PMID: 40199006 DOI: 10.1016/j.marpolbul.2025.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025]
Abstract
Deep-sea hydrothermal vent shrimps inhabit environments with low oxygen levels and may even be exposed to hypoxic conditions. In response, their respiratory pigment, hemocyanin (Hc) may undergo molecular adaptations to enable them to survive in such extreme ecosystems. Therefore, we sampled four Alvinocarididae species from hydrothermal vents in the northern Central Indian Ridge and two types of Hc genes (α and γ) were observed. Employing the branch model, we detected positive selection for the deep-sea hydrothermal vent lineage, including 11 Decapoda species. Furthermore, using the branch-site model, we identified a putative mutant residue (Leu226, Ser377, and Ile390) close to the active site of Hc. Moreover, our results suggested potential molecular docking between two α-type Hc proteins. Thus, this study provides valuable and novel perspectives on the functional significance of the Hc gene in deep-sea hydrothermal vent shrimps, laying the foundation for future investigations in this intriguing area of research.
Collapse
Affiliation(s)
- Hyeongwoo Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; Research Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 47122, Korea.
| | - Ok-Hwan Yu
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
2
|
Bruno R, Boidin-Wichlacz C, Melnyk O, Zeppilli D, Landon C, Thomas F, Cambon MA, Lafond M, Mabrouk K, Massol F, Hourdez S, Maresca M, Jollivet D, Tasiemski A. The diversification of the antimicrobial peptides from marine worms is driven by environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162875. [PMID: 36933721 DOI: 10.1016/j.scitotenv.2023.162875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Antimicrobial peptides (AMPs) play a key role in the external immunity of animals, offering an interesting model for studying the influence of the environment on the diversification and evolution of immune effectors. Alvinellacin (ALV), arenicin (ARE) and polaricin (POL, a novel AMP identified here), characterized from three marine worms inhabiting contrasted habitats ('hot' vents, temperate and polar respectively), possess a well conserved BRICHOS domain in their precursor molecule despite a profound amino acid and structural diversification of the C-terminal part containing the core peptide. Data not only showed that ARE, ALV and POL display an optimal bactericidal activity against the bacteria typical of the habitat where each worm species lives but also that this killing efficacy is optimal under the thermochemical conditions encountered by their producers in their environment. Moreover, the correlation between species habitat and the cysteine contents of POL, ARE and ALV led us to investigate the importance of disulfide bridges in their biological efficacy as a function of abiotic pressures (pH and temperature). The construction of variants using non-proteinogenic residues instead of cysteines (α-aminobutyric acid variants) leading to AMPs devoid of disulfide bridges, provided evidence that the disulfide pattern of the three AMPs allows for a better bactericidal activity and suggests an adaptive way to sustain the fluctuations of the worm's environment. This work shows that the external immune effectors exemplified here by BRICHOS AMPs are evolving under strong diversifying environmental pressures to be structurally shaped and more efficient/specific under the ecological niche of their producer.
Collapse
Affiliation(s)
- Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Daniela Zeppilli
- Univ. Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Céline Landon
- Center for Molecular Biophysics, CNRS, UPR 4301, Orleans, France
| | - Frédéric Thomas
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Marie-Anne Cambon
- Univ. Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Mickael Lafond
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille F-13013, France
| | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR 7273, ICR, Marseille F-13013, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphane Hourdez
- Sorbonne Université, LECOB, UMR 8222, Observatoire Océanologique de Banyuls, 1 Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille F-13013, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, Roscoff F-29688, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
3
|
Annelids in Extreme Aquatic Environments: Diversity, Adaptations and Evolution. DIVERSITY 2021. [DOI: 10.3390/d13020098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We review the variety of morphological, physiological and behavioral modifications that annelids have acquired to cope with environments either unsuitable for, or on the limits of, survival for most animals. We focus on polychaetes (excluding sipunculans and echiurans) and clitellates (oligochaetes and leeches) and source information mostly from the primary literature. We identified many modifications common to both polychaetes and clitellates, and others that are specific to one or the other group. For example, certain land-adapted polychaetes show reduction in nuchal organs, epidermal ciliation and receptor cells, and other coastal polychaetes use adhesive glands and glue-reinforced tubes to maintain position in surf zones, while oligochaetes, with their simple body plans, appear to be ‘pre-adapted’ to life underground. Modifications common to both groups include the ability to construct protective cocoons, make cryoprotective substances such as antifreeze and heat shock proteins, develop gills, transform their bodies into a home for symbiotic chemoautotrophic bacteria, metabolize contaminants, and display avoidance behaviors. Convergent evolution in both directions has enabled annelids to transition from salt water to freshwater, sea to land via beaches, freshwater to soil, and surface water to subterranean water. A superficially simple worm-like body and a mostly benthic/burrowing lifestyle has facilitated radiation into every conceivable environment, making annelids among the most common and diverse animal groups on the planet.
Collapse
|
4
|
Barts N, Greenway R, Passow CN, Arias-Rodriguez L, Kelley JL, Tobler M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018; 61:273-286. [DOI: 10.1139/gen-2017-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S—along with related lineages from non-sulfidic environments—to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.
Collapse
Affiliation(s)
- Nicholas Barts
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Ryan Greenway
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Courtney N. Passow
- Ecology, Evolution and Behavior, University of Minnesota St. Paul, 205 Cargill Building, St. Paul, MN 55108, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, 431 Heald Hall, Pullman, WA 99164, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Tobler M, Passow CN, Greenway R, Kelley JL, Shaw JH. The Evolutionary Ecology of Animals Inhabiting Hydrogen Sulfide–Rich Environments. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032418] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrogen sulfide (H2S) is a respiratory toxicant that creates extreme environments tolerated by few organisms. H2S is also produced endogenously by metazoans and plays a role in cell signaling. The mechanisms of H2S toxicity and its physiological functions serve as a basis to discuss the multifarious strategies that allow animals to survive in H2S-rich environments. Despite their toxicity, H2S-rich environments also provide ecological opportunities, and complex selective regimes of covarying abiotic and biotic factors drive trait evolution in organisms inhabiting H2S-rich environments. Furthermore, adaptation to H2S-rich environments can drive speciation, giving rise to biodiversity hot spots with high levels of endemism in deep-sea hydrothermal vents, cold seeps, and freshwater sulfide springs. The diversity of H2S-rich environments and their inhabitants provides ideal systems for comparative studies of the effects of a clear-cut source of selection across vast geographic and phylogenetic scales, ultimately informing our understanding of how environmental stressors affect ecological and evolutionary processes.
Collapse
Affiliation(s)
- Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | | | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Joanna L. Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Jennifer H. Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
6
|
Cordes EE, Bergquist DC, Fisher CR. Macro-ecology of Gulf of Mexico cold seeps. ANNUAL REVIEW OF MARINE SCIENCE 2009; 1:143-168. [PMID: 21141033 DOI: 10.1146/annurev.marine.010908.163912] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shortly after the discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents, similar ecosystems were found at cold seeps in the Gulf of Mexico. Over the past two decades, these sites have become model systems for understanding the physiology of the symbiont-containing megafauna and the ecology of seep communities worldwide. Symbiont-containing bi-valves and siboglinid polychaetes dominate the communities, including five bathymodiolin mussel species and six vestimentiferan (siboglinid polychaete) species in the Gulf of Mexico. The mussels include the first described examples of methanotrophic symbiosis and dual methanotrophic/thiotrophic symbiosis. Studies with the vestimentiferans have demonstrated their potential for extreme longevity and their ability to use posterior structures for subsurface exchange of dissolved metabolites. Ecological investigations have demonstrated that the vestimentiferans function as ecosystem engineers and identified a community succession sequence from a specialized high-biomass endemic community to a low-biomass community of background fauna over the life of a hydrocarbon seep site.
Collapse
Affiliation(s)
- Erik E Cordes
- Biology Department, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | |
Collapse
|